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Real-time evolution and quantized charge pumping in magnetic Weyl semimetals
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Real-time evolution and charge pumping in magnetic Weyl semimetals are studied by solving the time-
dependent Schrödinger equations. In the adiabatic limit of the real-time evolution, we show that the total pumped
charge is quantized in the magnetic Weyl semimetals as in the quantum Hall system, although the Weyl semimetal
has no bulk gap. We examine how the disorder affects the charge pumping. As a result, we show that the quantized
pumped charge is robust against the small disorder and find that the pumped charge increases in the intermediate
disorder region. We also examine the doping effects on the charge pumping and show that the remnant of the
quantized pumped charge at zero doping can be detected. Our results show that the real-time evolution is a useful
technique for detecting the topological properties of the systems with no bulk gap and/or disorders.
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I. INTRODUCTION

Immediately after the discovery of the integer quantum
Hall effects [1], Laughlin presented the simple and impor-
tant gedanken experiment for explaining the quantized Hall
conductivity [2]. In Laughlin’s gedanken experiment, by adia-
batically introducing the magnetic flux � from zero to � =
�0 = e/h into the quantum Hall system on a cylinder, the
electrons move from one edge to the opposite side of the edge
as schematically shown in Fig. 1. Due to the invariance of the
wave functions under the gauge transformation by the flux �,
it is shown that the total pumped charge should be quantized
when � = �0.

In a similar way, Thouless argued the charge pumping in
one-dimensional systems with slow time-dependent periodic
potentials [3]. By solving the time-dependent Schrödinger
equations, Thouless showed that the pumped charge is quan-
tized and it is related to the topological invariant. The charge
pumping caused by introducing the external flux is called the
Thouless pumping, and Laughlin’s argument can be regarded
as the adiabatic limit of the Thouless pumping. Although the
realization of the Thouless pumping in experiment is difficult
because introducing the magnetic flux and adiabatically con-
trolling the periodic potential are difficult, recent experiments
show that the Thouless pumping can be realized in ultracold
atoms [4,5].

In a theoretical point of view, the Thouless pumping is
a useful theoretical technique for detecting the topological
invariant. In previous studies, the Thouless pumping in the
quantum Hall system was numerically studied, and it was
shown that the charge pumping continuously occurs from
t = 0 (t represents time) and it reaches the quantized value at
t = T (T is the time interval during which the magnetization
increases by �0) in the adiabatic limit [6,7]. In quantum
Hall systems, the total charge pumping is expressed by the
topological invariant as follows [8,9]:

�N (t = T ) = NL(t = T ) − NR(t = T ) = 2C, (1)

where NL(t ) [NR(t )] denotes the number of electrons dis-
tributed on the left side (right side) of the system and C is
the topological invariant called the Chern number that takes
integer values (C = 0,±1,±2, . . . ).

In the conventional ways for calculating the topological
invariants, it is necessary to define the Bloch wave functions
[10]. Although such definitions are useful for noninteracting
systems with translational invariance, they are not directly
used for nonperiodic systems such as disordered systems.
In the Thouless pumping, by solving the time-dependent
Schrödinger equations, it is easy to calculate the topological
invariant even for disordered systems through the quantized
charge pumping. We note that the Thouless pumping may
be useful for detecting the topological invariant in correlated
electron systems [11].

In this paper, by using the real-time evolution, we ap-
ply the Thouless pumping to Weyl semimetals where the
quantized charge pumping also occurs [12–16]. We note that
Weyl semimetals were recently found in inversion symmetry-
broken systems such as TaAs [17–20] and time-reversal
symmetry-broken systems (magnetic Weyl semimetals) such
as Mn3Sn [21,22], Heusler alloys [23,24], Co3Sn2S2 [25–28],
and Sr1−yMn1−zSb2 [29]. Because magnetic Weyl semimetals
can be constructed by stacking two-dimensional quantum
anomalous Hall (QAH) systems (see Fig. 2), the Hall con-
ductivity is quantized as follows:

σxy = e2

h

�k

2π
, (2)

where �k is the distance between two Weyl points. By per-
forming the Thouless pumping in the Weyl semimetal, it is
expected that the charge pumping is also quantized as follows:

�N = 2�k
Lz

2π
, (3)
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FIG. 1. Schematic picture of Laughlin’s gedanken experiment
in the quantum Hall system. By introducing flux � (equivalently,
introducing electric field in the y direction), charge pumping occurs
in the x direction.

where Lz is the length of the system in the z direction. In
Weyl semimetals, however, the charge gap is zero, and it is
nontrivial whether the Thouless pumping gives the quantized
charge pumping for gapless systems or not. In this work, we
show that quantized charge pumping occurs in the adiabatic
limit. This result indicates that the Thouless pumping is useful
even when the bulk charge gap is absent.

We also examine the effects of the disorder on the Thouless
pumping and find that the charge pumping is robust against
the small disorder and it increases in the intermediate-disorder
region. These behaviors are consistent with previous studies
[31–33]. This indicates that the Thouless pumping also works
well for disordered systems.

This paper is organized as follows: In Sec. II A, we intro-
duce model Hamiltonians for describing the Weyl semimetal
and explain the algorithms for solving the time-dependent
Schrödinger equation in Sec. II B. Although the algorithms
are explained in the literature [34–37], to make our paper
self-contained, we detail how to efficiently solve the time-
dependent Schrödinger equations. In Sec. III A, we show the
results of the Thouless pumping for the clean limit and at zero
doping. Then, we examine the disorder effects in Sec. III B.
We also examine the doping effects in Sec. III C and show
that the Thouless pumping occurs for the finite-doping case;
that is, a remnant of the quantization can be detected. Finally,
Sec. IV is devoted to the summary.

kz

Δk
+−

E C=1
2d QAH ins.

C=0C=0

-kW kW

FIG. 2. Schematic picture of the Weyl points in the momentum
space. The positions of the Weyl points are denoted by ±kW. Signs
of monopole charges [30] at the Weyl points are represented by +
and −. Inside the Weyl point (−kW � kz � kW), the Chern number is
nontrivial (C = 1), while it is trivial outside the Weyl points (C = 0).
The Hall conductivity in the Weyl semimetal is given by σxy = e2

h
�k
2π

.

II. MODEL AND METHOD

A. Lattice model for Weyl semimetals

The Hamiltonian used in this study is given by

HW =
∑

ν=x,y,z

Hν + Hdiag, (4)

Hν =
∑

j

hν, j, (5)

hν, j = c†
j+�eν

Tνc j + H.c., (6)

Hdiag = (2thop − m)
∑

j

c†
jσzc j +

∑
j

ε jc
†
jσ0c j, (7)

ε j ∈ [−W/2,W/2], (8)

where c†
j (c j) represents the two-component fermion creation

(annihilation) operator defined on a site j on the three-
dimensional cubic lattice spanned by three orthogonal unit
vectors �eν=x,y,z. The matrices Tν are defined as

Tx = thop(−σz + iσx )/2, (9)

Ty = thop(−σz + iσy)/2, (10)

Tz = −thopσz/2, (11)

where

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (12)

Throughout this paper, we take the amplitude of the hopping
transfer thop = 1 as a unit of the energy scale.

The band structure of the Hamiltonian is given by

EW = ±[(sin kx )2 + (sin ky)2

+ (2 − m − cos kx − cos ky − cos kz )2]1/2. (13)

From this band structure, we can show that the Weyl points
are located at (0, 0, kW = ± cos−1(−m)) for |m| < 1. Around
the Weyl points, the dispersions are given as

EW ∼ ±(
k2

x + k2
y + k̃2

z

)1/2
, (14)

where k̃z = √
1 − m2[kz − cos−1(−m)]. We note that the

Weyl semimetal is constructed by stacking the two-
dimensional QAH insulators. As shown in Fig. 2, the Chern
number becomes nontrivial between the two Weyl points, and
it becomes trivial outside the Weyl points. Thus, the quantized
Hall conductivity is proportional to �k = 2kW.

To perform the Thouless pumping, we introduce the time-
dependent vector potentials as follows:

Ty(t ) = eiAy (t )Ty, (15)

Ay(t ) = 2πt

LyT
. (16)

By introducing Ay(t ) in the y direction, the charge pumping in
the x direction occurs if the Hall conductivity is finite.
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B. Method for solving the time-dependent
Schrödinger equations

To perform the Thouless pumping, we explicitly solve the
time-dependent Schrödinger equation defined as

i
∂ |φ(t )〉

∂t
= HW |φ(t )〉 . (17)

Here, |φ(t )〉 is a single Slater determinant given by

|φ(t )〉 =
Ne∏

n=1

(
Ns−1∑
i=0

�ni(t )c†
i

)
|0〉 , (18)

where Ne is the number of particles, Ns is the number of
sites, and �ni(t ) denotes the coefficient of the Slater deter-
minant. By discretizing the time and multiplying the time
evolution operator U (t + �t, t ) by the wave functions at
each discretized time step, we can solve the time-dependent
Schrödinger equations as follows:

|φ(t + �t )〉 = U (t + �t, t ) |φ(t )〉 , (19)

U (t + �t, t ) = T
{

exp

[
−i

∫ t+�t

t
HW (s)ds

]}
, (20)

where T it the time ordering operator.
One simple way to solve the time-dependent Schrödinger

equation is given by

|φ(t + �t )〉 ∼ exp [−i�tHW (t )]|φ(t )〉. (21)

Here, we approximate U (t + �, t ) as exp [−i�tHW (t )], and
we denote the coefficients of the Hamiltonian as H̃W , i.e.,
HW (t ) = c†H̃W (t )c. By diagonalizing H̃W (t ) at each time step,
we obtain the solutions as follows:

e−i�tc†H̃W (t )c |φ(t )〉 =
Ne∏

n=1

[
Ns−1∑
i=0

�ni(t + �t )c†
i

]
|0〉 , (22)

�ni(t + �t ) =
∑
α j

�n j (t )e−i�tλα (V †)α jViα, (23)

V †H̃W (t )V = diag(λ0, λ1, . . . , λ2Ns−1). (24)

Because this method requires the diagonalization of the
Hamiltonian at each step, the computational costs are large. To
reduce the costs, we decompose the time-evolution operator
by using the Suzuki-Trotter decomposition [34–36]. In this
method, because the diagonalization of the full Hamiltonian
is necessary only for preparing the initial wave functions,
computational cost is drastically reduced.

From here, we explain the outline of the method. Since the
cubic lattice is bipartite, we decompose the nearest-neighbor
hopping terms in the Hamiltonian into two parts as follows:

Hν = Hν,e + Hν,o, (25)

Hν,e = hν,0 + hν,2 + · · · , (26)

Hν,o = hν,1 + hν,3 + · · · , (27)

where hν,2n (2n+1) contains hopping terms between sites on
ν = 2n (2n + 1) and those on ν = 2n + 1 (2n + 2) for ν =
x, y, z. We note that each component of the Hamiltonian can

be described as

hν,i = (
c†

i c†
i+�eν

)
Kν

(
ci

ci+�eν

)
. (28)

For example, Kx is given by

Kx = 1

2

⎛
⎜⎝

0 0 −1 −i
0 0 −i 1

−1 i 0 0
i 1 0 0

⎞
⎟⎠. (29)

Because hν,2 j are commutable with each other (hν,2 j+1 are
also commutable with each other), it is easy to decompose
eHν,e and eHν,o as follows:

eHν,e = ehν,0 × ehν,2 × · · · , (30)

eHν,o = ehν,1 × ehν,3 × · · · . (31)

From this relation, by just diagonalizing hν,i, whose matrix
size is 4 × 4, we can perform the real-time evolutions.

Because Hν,e and Hν,o are not commutable, we use the
fourth-order Suzuki-Trotter decomposition [34], whose gen-
eral form is by

eη(A1+···+Aq ) = S(ηp)S(η(1 − 2p))S(ηp) + O(η5), (32)

S(η) = eηA1/2eηA2/2 · · · eηAq−1/2eηAq

× eηAq−1/2 · · · eηA1/2, (33)

p = (2 − 21/3)−1, (34)

where η is the c number and Aq denotes the matrix. By using
the formula, we can decompose eηHW as follows:

eηHW = S(ηp)S(η(1 − 2p))S(ηp), (35)

S(η) = S0(η)eηHdiag S1(η), (36)

S0(η) = eηHx,e/2eηHx,o/2eηHy,e/2eηHy,o/2

×eηHz,e/2eηHinz,o/2,

S1(η) = eηHz,o/2eηHz,e/2eηHy,o/2eηHy,e/2

×eηHx,o/2eηHx,e/2. (37)

If the Hamiltonian is not the time-dependent one, this formula
has fourth-order precision. For the time-dependent Hamil-
tonian, the time-evolution operator is defined by using the
superoperator T̃ as follows [35,36]:

U (t + �t, t ) = exp {�t[−iH (t ) + T̃ ]}, (38)

F (t )e�t T̃ G(t ) = F (t + �t )G(t ). (39)

Here, F and G are arbitrary functions. We note that the
superoperator T̃ acts on only the operators on its left. By using
this formula, we decompose U as follows:

U (t + �t, t ) = S( − i�t p, t + (1 − p/2)�t )

× S( − i�t (1 − 2p), t + p�t/2)

× S(−i�t p, t + p�t/2) + O(�t5), (40)
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FIG. 3. (a) Schematic illustration of the geometry used in this
study. We take the open boundary condition in the x direction and the
periodic boundary conditions in the y and z directions. The employed
geometry is given by L = Lx = 2Ly = 2Lz. We introduce Ay(t ) in the
y direction, and charge pumping occurs in the x direction. (b) Time
dependence of the charge distribution N (x, t ) in the x direction.
We take m = 0, T = 20, W = 0, and L = 44. The charge pumping
occurs around the edges in the x direction by introducing Ay(t ).

where time-dependent S is defined as

S(η, t ) = S0(η, t )eηHdiag S1(η, t ), (41)

S0(η, t ) = eηHx,e/2eηHx,o/2eηHy,e(t )/2

× eηHy,o(t )/2eηHz,e/2eηHz,o/2,

S1(η, t ) = eηHz,o/2eηHz,e/2eηHy,o(t )/2

× eηHy,e(t )/2eηHx,o/2eηHx,e/2. (42)

We note that superoperator T̃ operates all the left-side opera-
tors. By using Eq. (40), we perform the real-time evolution.

III. RESULTS

A. Thouless pumping in Weyl semimetals

In Fig. 3(a), we show a setup of the Thouless pumping
for a Weyl semimetal. The system size is given by Ns =
Lx × Ly × Lz, and we employ the rectangle geometry given
by L = Lx = 2Ly = 2Lz. In the x (y and z) direction, we
employ the open (periodic) boundary condition. By applying
the vector potentials in the y direction [Eq. (16)], it is expected
that the quantized charge pumping in the x direction occurs.
We take �t = 0.02 and m = 0 in this paper.

In this setup, we perform the Thouless pumping, i.e.,
solve the time-dependent Schrödinger equations, and obtain
|φ(t )〉. From |φ(t )〉, we calculate the time-dependent charge

distribution in the x direction, which is defined as

N (x, t ) =
∑
y,z

[〈φ(t )| c†
x,y,zcx,y,z |φ(t )〉

− 〈φ(0)| c†
x,y,zcx,y,z |φ(0)〉]. (43)

As shown in Fig. 3(b), by introducing the vector potentials
in the y direction, the charge pumping in the x direction
occurs; that is, N (x, t ) becomes positive around x = 0, while
it becomes negative around x = Lx − 1. This result shows that
the pumped charge is mainly induced at the edges in the clean
limit.

At t = T , the total pumped charge is expected to be
quantized for sufficiently large T . The total pumped charge
is defined as

�N (t ) =
∑

0�x<Lx/2

N (x, t ) −
∑

Lx/2�x<Lx

N (x, t ). (44)

We show �N (t ) for several different system sizes in Fig. 4(a).
We find that �N (t ) monotonically increases as a function of
t , and it nearly becomes Lz at t = T . This is consistent with
the topological properties of the Weyl semimetals; that is, the
Hall conductivity is quantized as σxy = (e2/2πh)�k, and the
corresponding charge pumping is given by �N = (�k/π )Lz.
This result indicates that the Thouless pumping works well
even when the systems have no bulk gaps.

To examine when the Thouless pumping can be regarded
as an adiabatic process, we calculate the unit time T depen-
dence of the charge pumping. In Fig. 4(b), we show the T
dependence of �N (t = T ) for several different system sizes.
For small T (T < 1), the speed of introducing Ay(t ) is too
fast to change the electronic states in the Weyl semimetals.
Thus, for T < 1, the Thouless pumping is nonadiabatic, and
the pumped charge is not quantized. By increasing T , for
T � 10, the pumped charge is quantized except for small os-
cillations. This result indicates that the Thouless pumping can
be regarded as an adiabatic process for T � 10. Thus, we take
T = 20 in the remainder of this paper. We note that the typical
timescale does not significantly change for the weak-disorder
region, but it becomes large for the strong-disorder region.
Nevertheless, we note that the charge pumping at T = 20
can be regarded as adiabatic pumping in the relevant disorder
region.

We note that Laughlin’s argument or Thouless’s argument
requires the existence of a bulk charge gap for the quantized
charge pumping. The Weyl semimetal has no bulk charge
gap, and it is unclear whether the Thouless pumping works
well or not. By comparing it with the T dependence in the
two-dimensional QAH insulator as shown in Fig. 4(b), we
find that the T dependence of the pumped charge for the Weyl
semimetal is basically the same as that of the QAH insulator.
This result clearly shows that the Thouless pumping works
well for detecting the topological invariant even when the
systems have no bulk gap.

B. Effects of disorders

We examine how the disorder affects the charge pumping
in the Weyl semimetal. In general, the topological property
is robust against the perturbations because the topological
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FIG. 4. (a) System size dependence of the charge pumping as a
function of time. We take T = 20, W = 0, and m = 0. The charge
pumping t = T is quantized as �N (t = T ) = 2�k Lz

2π
, which is

proportional to Lz. (b) T dependence of the charge pumping. For
small T , because introducing Ay(t ) is not adiabatic, the charge
pumping is not quantized. For comparison, we also show the T
dependence of the charge pumping for the two-dimensional QAH
insulator N2D(t = T ), where the bulk gap exists. Details of the two-
dimensional QAH insulator are shown in the Appendix. For T � 10,
the charge pumping is nearly quantized for both systems except
for small oscillations. In the inset, we show an enlarged figure for
T � 10. In contrast to the gapped system [see the inset of Fig. 9(b)],
for the Weyl semimetal, we find that the small but finite oscillations
remain even for larger T . These remaining oscillations may originate
from the gapless nature of the Weyl semimetal.

property cannot be changed by the perturbations unless the
energy scale of the perturbations reaches that of the charge
gap. For a Weyl semimetal, it is, however, unclear whether
the topological property remains or not because the bulk
charge gap is zero in a Weyl semimetal. Several theoretical
studies, however, showed that topological properties in Weyl
semimetals are robust against small disorder [31–33,38]. We
examine whether the Thouless pumping can reproduce the
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FIG. 5. Disorder dependence of the pumped charge at t = T . We
take T = 20 and m = 0.

results of the previous studies. We note that we do not consider
the rare region effects [39–41] in this paper.

In Fig. 5, we show the disorder dependence of total
charge pumping �N (t = T ). We find that overall behaviors
are consistent with previous studies [31–33,38]: a plateau
for small disorder (W � 1), enhanced charge pumping in
the intermediate-disorder (W ∼ 3) region, and a decrease of
the charge pumping in the strong-disorder region (W � 4.5).
We note that enhancement of the charge pumping is not
observed in the two-dimensional QAH insulator, as shown in
the Appendix.

To examine how the pumped charge is enhanced by the
disorder, we analyze the real-space dependence of the pumped
charge. In Fig. 6, we show the charge distribution at t = T for
several different strengths of the disorders. Because the charge
pumping mainly occurs around the edges (x ∼ 0, Lx − 1), we
enlarge the shaded region in Fig. 6(a) and plot the x depen-
dence of the pumped charge measured from the clean limit
[�Ñ (x, t ) = �N (x, t,W ) − �N (x, t,W = 0)] in Fig. 6(b).

For small disorder (W = 2), we find that the disorder
mainly changes the pumping around the edges, and it does not
affect the pumping inside the systems. This enhancement for
small disorder can be explained by the mass renormalization
effects [31–33,38]; that is, disorder increases the mass term
m and widens the length of Fermi arcs. By further increasing
the strengths of the disorders, we find that the pumped charge
begins to penetrate into the systems. This behavior can be
explained as follows: For the strong-disorder region, the Fermi
arcs at the surfaces begin to mix with the bulk states. This
mixing induces the penetration of the Fermi arcs inside the
systems; that is, Fermi arcs begin to have finite width in
the x direction and induce the charge pumping inside of
the systems. This is the reason why the pumped charge is
enhanced by the disorder.

C. Effects of doping

In this section, we examine the effects of doping on the
charge pumping in the Weyl semimetal. First, we examine
whether the adiabatic limit of the charge pumping exists
for finite doping where the finite density of states exists. In
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FIG. 6. (a) Charge pumping in the presence of the disorder. We
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To estimate the errors of the realizations of the disorder, we take five
different realizations and regard the standard errors as error bars. We
take L = 44 and m = 0. (b) Pumped charge measured from the clean
limit [�Ñ (x, t = T )] in the shaded region in (a). By increasing the
strength of the disorder, we find that the pumped charges penetrate
into the inside of the system.

Fig. 7(a), we show the T dependence of the pumped charge.
At small T (T � 1), i.e., in the nonadiabatic process, the T
dependence of the pumped charge is the same as that of zero
doping. Here, the doping rate is defined as δ = �N/Ns, where
�N is the number of electrons measured from half filling, i.e.,
�N = Ne − Ns. In the nonadiabatic region, because the elec-
trons move too fast, the low-energy structures of the systems
such as Fermi surfaces do not affect the charge pumping. This
is the reason why the pumped charges do not change in the
nonadiabatic region.

By taking larger T , we find that the T dependence of the
charge pumping is basically the same as that of the nondoping
case; that is, the large oscillations seen for small T (T � 5)
are suppressed, and the pumped charge seems to converge
to a constant for T � 20. However, as shown in the inset
in Fig. 7(a), it slightly decreases for T � 20, and there is
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FIG. 7. (a) T dependence of the charge pumping �N (t = T )/Lz

at finite doping δ = 0.01. We take m = 0. For comparison, we plot
the result at zero doping with dashed lines. In the inset, we show
an enlarged figure for T � 10. (b) Doping dependence of charge
pumping for T = 20. Charge pumping monotonically decreases with
doping.

considerable system-size dependence. From the available
data, it is difficult to identify whether the origin of the decrease
is the finite-size effects or not, and it is also difficult to
accurately estimate the converged pumped charge in the long-
time and bulk limit for the doped case. Nevertheless, as we
show later, the pumped charge around T = 20 can capture the
essence of the finite-doping effects on the charge pumping and
can be useful for detecting the remnant of the quantized charge
pumping at zero doping. Thus, to examine the doping effects,
we use the pumped charge at T = 20 as a simple estimation
of the converged value.

In Fig. 7(b), we show the doping dependence of the
pumped charge for T = 20. We find that the pumped charge
monotonically decreases for electron and hole doping except
for slight oscillations found in small system sizes. This result
shows that doping in Weyl semimetals continuously lowers
the pumped charge from its quantized values at zero doping.
We note that the changes in the pumped charge are induced
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FIG. 8. Disorder W dependence of pumped charge at finite dop-
ing. We take T = 20 and m = 0.

by the Berry curvature in nonlinear dispersions because the
Berry curvature in linear dispersions around the Weyl points
does not contribute to the pumped charge. We note that the
saddle points around the zero doping are located at Esaddle =
±thop and the corresponding doping rate is given by δsaddle ∼
±0.065.

We examine the disorder effects of the Thouless pumping
at finite dopings. In Fig. 8, we plot the disorder W dependence
of the pumped charge for several different doping rates. At
finite-doping rates, quantization at zero doping is absent;
the pumped charge monotonically increases as a function
of the disorder strength W . By further increasing the disorder,
the pumped charge has peaks around W ∼ 4.5 as in the case
of zero doping. The robustness of the peak structure against
the finite-doping rates is a characteristic feature of Weyl
semimetals. In the strong-disorder region (W � 6), charge
pumping does not depend on the doping rates because the
Fermi surfaces are completely smeared out in this region.

IV. SUMMARY

To summarize, we introduced a lattice model for Weyl
semimetals in Sec. II A and detailed the methods for solv-
ing the time-dependent Schrödinger equations by using the
fourth-order Suzuki-Trotter decomposition in Sec. II B. Al-
though the time-dependent Schrödinger equations can be
solved by performing the diagonalization of the Hamiltonian
at each time step, the numerical cost of diagonalization is
large, and that method cannot be applied to large systems.
The Suzuki-Trotter decomposition method does not require
the diagonalization of the full Hamiltonian at each time step,
and numerical cost is dramatically reduced. By using this
method, we can perform the Thouless pumping up to the order
of 104-site systems.

In Sec. III A, we showed the results of the Thouless
pumping for the clean limit and zero doping. Although a Weyl
semimetal does not have a bulk charge gap, we found that the
Thouless pumping works well for detecting the topological
quantization of Weyl semimetals. By examining the unit time
T dependence of the charge pumping, we confirmed that
the adiabatic charge pumping occurs for larger T , typically
T � 20.

In Sec. III B, we examined the disorder effects on the
Thouless pumping. We note that the Thouless pumping itself
can be applied to disorder systems without changing the
method because we just solve the time-dependent Schrödinger
equations in real space. As a result, we have shown that the
quantized pumped charge is robust against small disorder.
We have also shown that the pumped charge increases by
increasing the disorder for the intermediate strength of dis-
order. These behaviors are consistent with previous studies
[31–33,38]. This shows that the usefulness of the Thouless
pumping for detecting the topological properties in disordered
systems.

We have found that the charge pumping has a large system
size dependence around W ∼ 3, as shown in Fig. 5, where
the transition between Weyl semimetals and a diffusive metal
is pointed out in the literature [32]. Thus, this system size
dependence may be related to the transition into the diffusive
metal. In this study, the available system size was limited,
and it was difficult to perform accurate finite-size scaling for
detecting the signatures of the phase transitions. Systematic
calculations for determining the phase transitions is left for
future studies.

In Sec. III C, we examined the effects of doping into the
Weyl semimetals. For finite-doping rates, we found that the
pumped charge slightly decreases for larger T and it is diffi-
cult to accurately estimate the pumped charge in the adiabatic
limit. In this paper, we simply used the pumped charge at T =
20 as a rough estimation of the adiabatic pumping. It is left
for future studies to accurately estimate the pumped charge
in the adiabatic limit by performing calculations for larger
system sizes and larger T . By using the pumped charge at
T = 20, we showed that the remnant of the quantized pumped
charge can be detected for finite-doping rates. We also showed
that the pumped charge is also enhanced by increasing
the disorders for finite-doping rates. The peak positions of
the charge pumping under disorder do not largely depend on
the doping rates.

Our results show that the Thouless pumping is a useful
theoretical tool for detecting the topological properties even
for gapless systems such as Weyl semimetals. This method is
also applicable to doped systems and can capture the remnant
of the topological properties of the systems through the charge
pumping. Because the Thouless pumping requires only the
real-time evolution of the ground-state wave functions, it can
be applied to correlated electron systems, where it is difficult
to obtain full eigenvectors. For the one-dimensional system,
the Thouless pumping for the correlated system was studied in
detail [11]. Recent studies [42–44] showed that it is possible
to perform accurate real-time evolutions of the wave functions
in correlated quantum many-body systems based on the time-
dependent variation principles [45]. Studies in this direction
are intriguing challenges for clarifying the nature of the
correlated topological systems in more than one dimension,
and our detailed study of the Thouless pumping presented in
this paper offers a firm basis for such advanced studies.
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APPENDIX: THOULESS PUMPING IN
TWO-DIMENSIONAL CHERN INSULATORS

Here, we show the results of the Thouless pumping for two-
dimensional quantum anomalous Hall (QAH) insulators. By
simply ignoring the z dependence of the Weyl Hamiltonians,
we can obtain the lattice Hamiltonian for the two-dimensional
QAH insulators as follows:

HQAH =
∑
ν=x,y

Hν + Hdiag, (A1)

Hdiag = (2 − m)
∑

j

c†
jσzc j +

∑
j

ε jc
†
jσ0c j, (A2)

ε j ∈ [−W/2,W/2]. (A3)

For m > 0, we obtain the QAH insulator with C = 1, and a
trivial insulator appears for m < 0. We consider L = Lx = Ly

systems, and the pumped charge is given by

�N2D(t ) =
∑

0�x<Lx/2,y

N (x, y, t ) −
∑

Lx/2�x<Lx,y

N (x, y, t ).

(A4)

We note that the charge pumping is quantized as follows:

�N2D(t = T ) = 2C, (A5)

where C is the Chern number.
In Fig. 9(a), we show the results of the Thouless pumping

for m = 0.5 and m = −0.5. In the topologically trivial insula-
tor (m = −0.5), the charge pumping does not occur, while the
charge pumping is quantized for m = 0.5. Because the Chern
number is 1 in this system, the quantized charge pumping
becomes 2.

We show the T dependence of �N2D(T ) in Fig. 9(b).
Similar to Weyl semimetals, although the oscillation occurs
for small T (T � 10), the charge pumping converges to the
quantized value. In QAH insulators, we show only the results
for L = 50 because size effects are small.

We show the disorder dependence of �N2D(T ) in Fig. 9(c).
In contrast to Weyl semimetals, the charge pumping does
not have peak structures. For W � 5, the pumped charge is
quantized, and it begins to decrease for W � 5. This result
indicates that the characteristic enhanced charge pumping in
Weyl semimetals is induced by their gapless nature.
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