
PHYSICAL REVIEW B 100, 155119 (2019)

Frustrated quantum spin systems in small triangular lattices studied with a numerical method
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The study of quantum frustrated systems remains one of the most challenging subjects of quantum magnetism,
as they can hold quantum spin liquids, whose characterization is quite elusive. The presence of gapped quantum
spin liquids possessing long-range entanglement while being locally indistinguishable often demands highly
sophisticated numerical approaches for their description. Here we propose an easy computational method based
on exact diagonalization with engineered boundary conditions in very small plaquettes. We apply the method
to study the quantum phase diagram of diverse antiferromagnetic frustrated Heisenberg models in the triangular
lattice. Our results are in qualitative agreement with previous results obtained by means of sophisticated methods
like density matrix renormalization group (2D-DMRG) or variational quantum Monte Carlo.
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I. INTRODUCTION

Some entangled ground states of spin systems do not order
even at zero temperature. The lack of order, which is origi-
nated by strong quantum fluctuations on the spin orientations,
prevents their characterization by means of local order pa-
rameters. Such quantum disordered states, termed generically
quantum spin liquids (QSLs), are linked to topological de-
generated ground states and contain long-range entanglement.
Moreover, they are locally indistinguishable [1–3], meaning
that they cannot be detected or distinguished using local
measurements.

QSLs are often caricatured as a liquid of singlets, where
the singlets formed between nearby spins strongly fluctuate
from one configuration to another. Due to such fluctuations,
the ground state of the system is far from a product state, im-
plying that entanglement in QSL plays a crucial role. Ground
states of local spin Hamiltonians are normally short-range
entangled, as evidenced by the fact that the entanglement
entropy, S , of any bipartite cut of the system follows an
area law: S (L) ∼ LD−1, where D is the dimension of the
system and L the linear size of the boundary separating
both regions. Corrections to this law appear, for instance, in
critical gapless quantum phases or in topologically ordered
states. In 2D, the latter fulfill S (L) ∼ L + b0γ , where γ is a
universal correction called topological entanglement entropy,
which is independent of the lattice size and signals topological
order [4–6].

The combination of the above features makes it unfeasi-
ble to use effective mean-field approaches with fluctuation
corrections over the mean-field Ansätz for the description of
QSL. Hence, finding for such cases the eigenstates of the
Hamiltonians of interest mostly relies, for the time being, in
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numerical approaches and/or complex variational Ansätze.
The numerical methods are, of course, severely hindered by
the requirement of large lattices.

Although exact diagonalization (ED) methods suffer from
strict size constraints, which can be slightly leveraged when
symmetries are cleverly implemented, here we approach the
study of quantum frustrated systems by using Lanczos-based
ED in very small system sizes at the expense of properly
engineering the boundary conditions. With this method, we
search for signatures of putative gapped QSL models in
frustrated systems. On the one hand, we are able to repro-
duce in a good qualitative agreement the quantum phase
diagram of some paradigmatic frustrated models that have
been previously reported in the literature. On the other hand,
we exploit our method to investigate unexplored frustrated
models. Interestingly enough, some signatures of gapped QSL
as, for instance, the lack of an order parameter, the topological
degeneracy, the increase of entanglement, or the blurring of
defined peaks in the spin structure factor can be observed
using properly engineered boundary conditions.

We focus our analysis to spin-1/2 antiferromagnetic (AF)
Heisenberg models in the triangular lattice, a paradigmatic
geometry where quantum fluctuations and frustration com-
pete. The effect of frustration, i.e., the impossibility to simul-
taneously minimize the Hamiltonian locally, can be further
tuned if the couplings along different lattice directions are
anisotropic. In this context, the paradigmatic model is the
Heisenberg model with spatial anisotropy between horizontal
and diagonal bonds, the so-called SATL model. Such a model
has been extensively addressed in the literature using different
methods such as tensor networks, quantum Monte Carlo, 2D
DMRG, ED, or modified spin-wave theory (MSWT), see,
e.g., Refs. [7–22], all of them reporting the existence of
gapped QSL in some regions of the phase-space diagram.
Here, we consider the straight generalization of the SATL
model; the spatially completely anisotropic triangular lattice
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(SCATL) with anisotropic couplings along all lattice direc-
tions. It is important to remark that the SCATL model has been
scarcely addressed in the literature. We also investigate here
the J1-J2 model in the triangular lattice, where the anisotropy
is now introduced between the nearest-neighbor (NN) (J1) and
next-nearest-neighbor (NNN) (J2) couplings. The presence of
gapped QSL in this model has also been addressed recently
in the literature [23–28]. All the above models give room for
both gapless and highly nontrivial gapped QSL. Finally, we
propose and study a hybrid model between the anisotropic
SATL and the J1-J2 model, which we denote as the anisotropic
J1-J2 model. Such a hybrid model reduces to the SATL in
the limit J2 → 0, and to the standard J1-J2 model in the
limit where the anisotropy between horizontal and diagonal
bonds disappears. Our aim, aside from gaining further insight
into frustrated models, is to investigate if the predicted QSL
present in the SATL and J1-J2 Heisenberg models are con-
nected and have, therefore, the same nature.

Before proceeding further, we summarize our main results.
We derive a quantum phase diagram for the above models
using ED with engineered boundary conditions in lattices of
N = 9, 12, or 16 spins. Our results reproduce quite closely
both the ordered and disordered quantum phases previously
reported. Our method relies on the fact that in the small
lattice limit, ordered phases correspond to precisely fixed
boundary conditions, while there exist regions on the phase-
space diagram where a massive number of different boundary
conditions provide ground states whose energy is approxi-
mately equal. These regions match qualitatively the param-
eters for which gapped QSL have been previously predicted
using MSWT, 2D-DMRG, or projected entangled pair states
(PEPS). Our lattice sizes are definitively too small to show
nontrivial topological invariants or the presence of topological
entanglement entropy, but the calculation of the geometric
entanglement—-quantifying how far an entangled state is
from its closest separable one—shows that these presumed
gapped QSL phases have a large entanglement compared to
their surrounding ordered phases. Moreover, even with such
small lattice sizes, it is possible to see in these regions of
the phase space the presence of a topological degeneracy if
the system is subjected to the effect of an external artificial
magnetic flux.

The paper is organized as follows: In Sec. II, we explain
the main features of our numerical method together with
the relevant figures of merit used. In Sec. III, we derive the
quantum phase diagram of the SCATL model with anisotropic
couplings along all lattice directions. For this model, to the
best of our knowledge, only a study based on a MSWT exists
[14]. Therefore, alternative methods are clearly needed to
settle the presence of conjectured QSL. In Sec. IV, we move
onto another paradigmatic frustrated model, the so-called
J1-J2. We analyze it also in the presence of chiral interac-
tions, which helps to elucidate the nature of the predicted
QSL. There, we compare our results with the quantum phase
diagram obtained recently in Ref. [28] using 2D-DMRG. In
Sec. V, we introduce the anisotropic J1-J2 Heisenberg model,
aiming at investigating the connection between the gapped
QSL appearing in the SATL model with the ones appearing for
the J1-J2 model. Finally, in Sec. VI, we conclude and present
some open questions.

II. RANDOM TWISTED BOUNDARY CONDITIONS

Twisted boundary conditions (TBCs) were introduced in
the seminal contributions of Refs. [29,30], and can be thought
of as periodic boundary conditions (PBCs) under a twist.
Since then, they have often been used to calculate properties
of quantum magnets, as they provide better access to mo-
mentum space and help to mitigate finite size effects, see,
e.g., Refs. [19,31–34]. More recently, periodic TBCs in a 2D
lattice have also been used to calculate the Chern numbers
for many-body systems in a lattice [35] (playing the role
of momenta kx, ky) and to also investigate the topological
degeneracy [36,37] present in some chiral phases (see, e.g.,
Refs. [38,39]). However, here we use random TBC (RTBC) in
a conceptually different approach with the aim of unveiling
underlying properties of quantum disordered antiferromag-
nets. In Fig. 1, we sketch our philosophy. Consider a generic
AF Heisenberg model in the triangular lattice. For the ordered
phases of the Hamiltonian, the relative orientation of the spins
is fixed due to broken symmetry, as depicted, for example,
in the cartoon of a 2D Néel phase in Fig. 1 (top left). If the
lattice is large, the bulk spins dominate over the boundary
ones, imposing the order expected in the thermodynamical
limit independently of the chosen boundaries. However, for
small lattices this is no longer the case, and the bulk-boundary
correspondence becomes much more involved. If the lattice
is small, some ordered phases cannot be accommodated in the
lattice. For instance, the 4 × 4 lattice is a hypercube leading to
special features in its spectrum while the 4 × 3 lattice cannot
accommodate the ordered Néel phase along its short edge.
The boundaries must, thus, be properly chosen—-in accor-
dance with the lattice geometry—to recover the underlying
symmetries of the ordered phase, Fig. 1 (bottom left). Now,
for quantum disordered phases that are not associated with a
symmetry breaking, we expect the ground state of the system
in the small lattice limit to be compatible with many different
boundary conditions, as schematically shown in Fig. 1. The
lack of local symmetry if the phase is quantum disordered
avoids the a priori identification of the boundaries. This
feature is illustrated with the symbol “?” in Fig. 1 (bottom
right). Nevertheless, we can count how many RTBCs lead
to the same ground state energy and postselect only those to
calculate physical quantities of interest. This postselection of
the boundary conditions [21], together with the consequences
that stem from it, crucially differentiates our method, to the
best of our knowledge, from any other method based on
twisted or random boundary conditions.

Specifically, for 2D spin-1/2 AF Heisenberg models, the
spins lay in the XY plane and TBCs correspond to adding a
phase in the spins i, j interacting through the boundaries:

S+
i S−

j → S+
i S−

j e−iφ, (1)

S−
i S+

j → S−
i S+

j e+iφ. (2)

To twist the lattice simultaneously in two directions re-
quires two different phases φ1 (φ2), for left-right (top-bottom)
boundaries, as depicted in the bottom panels of Fig. 1. The
spins of the lattice laying at both boundaries acquire a phase
φ = φ1 + φ2. Notice that conventional PBCs favor order com-
mensurate with the lattice dimensions, N = L × W , since in
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FIG. 1. Upper panels: Sketch representation of a quantum ordered Néel phase (left) and a QSL phase (right) in a large lattice. Lower panels:
Sketch of twisted boundary conditions in a 4 × 3 triangular lattice with anisotropic nearest-neighbor interactions. Boundary spins in blue are
twisted in the XY plane by an angle φ1, while red-colored boundary spins are twisted by a phase φ2. The pink-colored boundary spin (top-left
corner) is twisted by an angle φ = φ1 + φ2. Bottom left: For an ordered 2D-Néel phase along the diagonal directions, the boundary phases
which reproduce the order are φ1 = 0 and φ2 = π . Bottom right: For a quantum disordered phase, such a set of phases cannot be defined. The
anisotropy of the SCATL model is depicted by the three different line styles in the bottom panels.

the reciprocal lattice, momentum is selected at k1 = 2πn1/L
and k2 = 2πn2/W for ni ∈ N. In contrast, TBCs allow us to
test all possible momenta in the first Brillouin zone [19,29,30]:

k1 = 2πn1

L
± φ1

L
,

k2 = 2πn2

W
± φ2

W
. (3)

Let us briefly review our approach [21]. First, we fix the
lattice size N and its geometry. Here, we use N = 4 × 3 or
N = 4 × 4 but, to ensure convergence, some of the results are
also calculated for N = 6 × 4 and 4 × 6. Then, we generate
a set p of two randomly chosen phases, {φ1, φ2}p, with φi ∈
[0, 2π ) and p = 1, 2, . . . , 200. For each configuration, we
diagonalize the Hamiltonian, generating a ground state |ψp〉
with energy Ep, and denote by |ψ0〉 the ground state with
the lowest energy, E0. We postselect those configurations
whose ground-state energy fulfills εp = (Ep − E0)/|E0| < α.
The election of the energy bias, α, is somehow arbitrary as
it depends on the lattice size and the ratio between bulk and
boundary interactions. Nevertheless, our results are indepen-
dent of it if the set p is sufficiently large. Notice, however, that
for small lattices, the bias cannot be vanishingly small. Note
also that, since the postselection implies that several different
twisted boundaries are simultaneously used to describe the
same Hamiltonian parameters, our method cannot be inter-
preted as the insertion of an external magnetic flux in a lattice
with PBCs.

Consequently, one relevant figure of merit is the number
of configurations, Nc, laying in the interval 0 � εp < α. Typ-
ically, we choose α = 0.01, meaning that only configurations
whose ground-state energies are less than 1% higher than
E0 are retained. For ordered phases, just very few random
TBCs accommodate the symmetry of the phase and the ones

which do not correspond to large Ep and are automatically
discarded in our approach. In contrast, we find regions in the
Hamiltonian parameters where Nc increases dramatically. The
corresponding ground states, |ψp〉, strongly differ from each
other, as observed by computing the overlap Op = |〈ψp |ψ0〉 |.
Finally, as is standard in disordered systems, we calculate
the quantities of interest for each postselected configuration
and perform the corresponding average afterward, which we
denote by 〈...〉d . The average washes out some of the spurious
symmetries introduced by TBCs. In ED, one quantity which
can be easily obtained is the static spin structure factor,

S(�k) = 1

N

∑
i, j

e−i�k·(�ri−�r j )〈SiS j〉, (4)

where the expectation value is taken over the corresponding
ground state |ψp〉. From the spin structure factor, one can
extract the following order parameter:

M =
√

S( �Qmax)/N , (5)

where �Qmax are the k-vectors corresponding to the maxima
of the spin-structure factor in the first Brillouin zone. This
parameter signals long-range order (LRO) and, therefore, the
presence of a quantum disordered phase must be accompanied
by a decrease of LRO. Regarding entanglement, it is well
known that local entanglement measurements cannot detect
QSL, but they help to identify the underlying ordering of
the phases. Aside from the topological entanglement entropy,
topological properties can also be detected through the en-
tanglement spectrum [40–42]. However, in 2D systems, the
entanglement spectrum depends explicitly on the particular
chosen partition and it becomes cumbersome to extract topo-
logical properties with this method [41]. To release such a
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constraint, we analyze here both the concurrence and entan-
glement entropy. The concurrence is a measure of entangle-
ment between any two spins i, j of the ground state described
by its reduced density matrix ρi j = Trk �=i, j (|ψp〉 〈ψp|), which
can be easily computed in ED methods [43]. For local Hamil-
tonians, the concurrence cannot capture long-range entangle-
ment [44]. To go beyond short-range entanglement, one can
use also geometrical entanglement. It “measures” the distance
of a state to its closest separable one,

	max,p = max
|φprod〉

|〈ψp|φprod〉|, (6)

where |φprod〉 = ⊗N
i=1 |φi〉 and we maximize over the set of all

separable (nonentangled) states. The larger 	max,p, the lower
the entanglement of |ψp〉, since it is closer to a product state.
It makes sense to define the geometric entanglement [45] as

EG = 1 − 〈	max,p〉d , (7)

where the average over all postselected configurations has
been used. Clearly, the geometric entanglement goes beyond
bipartite entanglement, and provides a measure of the amount
of entanglement encoded in the state. Finally, we analyze the
behavior of the ground state of the system in the small lattice

under an external magnetic field. This tool has been used to
elucidate the presence of topological degeneracy [36,37,39].

III. SPATIALLY COMPLETELY ANISOTROPIC
TRIANGULAR LATTICE (SCATL)

Our staring point is the AF Heisenberg spin-1/2 model in
a triangular lattice, whose Hamiltonian reads

H =
∑
〈i, j〉

ti j
(
Sx

i Sx
j + Sy

i Sy
j + λ Sz

i Sz
j

)
, (8)

where Sα
i are the spin-1/2 Pauli matrices for site i, the sum

runs over all NN pairs, and the notation ti j > 0 denotes the
coupling constants (i.e., tunneling in the corresponding Bose-
Hubbard model). We restrict ourselves to the cases λ = 0 (λ =
1), which correspond to XY (Heisenberg) interactions. The
anisotropy of the model is given by the different interaction
strengths (t1, t2, t3) along the lattice directions (see Fig. 1,
bottom). Without losing generality, we consider t1 = 1 and
leave as free parameters t2 and t3. The case t2 = t3 has been ex-
tensively studied [9,11,14,21]. For the sake of completeness,
it is instructive to first reproduce its classical phase diagram.
The reader familiar with it can skip this part.

FIG. 2. Classical phase diagram for the SCATL for both XY (λ = 0) and Heisenberg (λ = 1) interactions, obtained by plotting Qx in
Eqs. (9) as a function of the anisotropy (top left). The other panels show the spin-structure factor and a sketch of the spin order for each
classical phase.

155119-4



FRUSTRATED QUANTUM SPIN SYSTEMS IN SMALL … PHYSICAL REVIEW B 100, 155119 (2019)

FIG. 3. Quantum phase diagram of the SCATL model as obtained through the number of quasidegenerate configurations, Nc, for a 4 × 3
and 4 × 4 lattice. Upper (lower) panels, XY (Heisenberg) interactions. In the 4 × 4 XY diagram, the different quantum phases are labeled 1
to 8 (see text for details). The right panels correspond to the quantum phase diagram obtained with MSWT from Ref. [46], where the white
regions correspond to the breakdown of the MSWT calculations and are indistinguishably associated with gapless or gapped QSL.

A. Classical phase diagram

The classical phase diagram provides an estimate of the
location and nature of the ordered phases. Order is signaled by
the points in the reciprocal space that maximize correlations
or, equivalently, the ones that minimize the Hamiltonian en-
ergy. The classical ordering vector, �Qcl, is obtained replacing
the spin operators in Eq. (8) by a classical rotor laying in
the XY plane, Si = S · (cos ( �Qcl · �ri ), sin ( �Qcl · �ri )), up to a
global phase. Energy minimization yields a region in the phase
diagram with continuously varying ordering vector, described
by the following equations:

Qcl
x = ± arccos

[
t2t3
2

− t2
2 + t2

3

2t2t3

]
if

∣∣∣∣ t2t3
2

− t2
2 + t2

3

2t2t3

∣∣∣∣ � 1,

Qcl
y = ± 2√

3
arccos

⎡
⎣∓

(
t2 + t3
2t2t3

)√
t2t3 + 2 − t2

2 + t2
3

t2t3

⎤
⎦, (9)

where the argument of Qcl
y is negative if the corresponding Qcl

x

satisfies |Qcl
x | � π , and positive otherwise. The classical phase

diagram is depicted in Fig. 2, together with the representative
spin-structure factor of each phase. First, we describe the
1D lattice limit corresponding to (1) t2 = t3 = 0, (2) t2 →
∞, t3 = 1, and (3) t3 → ∞, t2 = 1 as shown in Fig. 2. For
these cases, the lattice becomes a system of uncorrelated
chains and the corresponding phases are 1D Néel ordered
along the dominant lattice coupling and uncorrelated along
the other two. This is clearly shown in the corresponding spin-
structure factors. At the isotropic point, t2 = t3 = 1, indicated

by (4) in Fig. 2, the system has spiral order (Néel 120o) with
maxima in the structure factor at all the vertices of the recip-
rocal lattice cell. This phase extends as an incommensurate
spiral phase merging smoothly with the classical 2D Néel
phases corresponding to ti = t j  tk , and the lattice deforms
into diamond lattices along the two dominant directions,
indicated in Fig. 2 by (5)–(7). This completes the classical
phase diagram. Finally, we also add a symbolic sketch of the
spin orientations for each phase.

B. Quantum phase diagram

Our first results for both XY and Heisenberg interactions
are summarized in the schematic phase diagram of Fig. 3
(columns 1 and 2). Our figure of merit there is Nc, i.e., the
number of configurations such that εp < 0.01 for a lattice of
size N = 4 × 3 and N = 4 × 4. For the sake of comparison,
we also plot in the last column of Fig. 3, the quantum phase di-
agram obtained with MSWT from Ref. [46]. The dependence
of our results on the lattice size prevents a precise location of
the phase boundaries, but as we shall see, it does not change
their characterization.

Let us first focus on the N = 4 × 4 lattice case (Fig. 3,
second column) for both the XY and Heisenberg models.
While the figure of merit Nc simply tells the number of ener-
getically close configurations with different boundary condi-
tions, further analysis of the quantum phase diagram demands
computing the spin-structure factor, the order parameter, and
the entanglement properties.
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FIG. 4. Study of the SCATL quantum phase diagram in the
region between two 2D Néel phases. The averaged order parameter,
as defined in Eq. (5), is plotted along the vertical white line in Fig. 3
for different lattice sizes. The three arrows indicate the points where
the three representative spin-structure factors are plotted.

In accordance with the classical phase diagram, spiral
ordering [labeled by (4) in Fig. 3] occurs around the isotropic
point t3 = t2 = 1, and its extension is much reduced as com-
pared to the classical case, in particular in the Heisenberg
model. Surrounding the spiral phase, we observe a region,
absent in the classical phase diagram, with a massive number
of energetically compatible ground states [labeled by (8) in
Fig. 3]. This is a signature of a disordered quantum phase and
it is reconcilable with the conjectured gapped QSL reported
in Refs. [9,11,14,20,46] for the isotropic line t2 = t3. Contin-
uously connected to this “gapped QSL” phase, there are three
regions labeled (1)–(3) in Fig. 3. These regions lay between
two 2D Néel ordered phases [(5)–(7)] that span around ti =
t j  tk , and are connected to the respective classical 1D limit
of uncoupled chains: ti → ∞, t j = tk . The regions (1)–(3) are
commonly referred to in the literature as gapless QSLs, and
are not particularly enhanced in Fig. 3 because, in them, the
spins are ordered along the corresponding dominant direction
and totally disordered along the other two. This constraint
strongly restricts the number of random TBCs which are
quasidegenerate in energy. However, an inspection of the
corresponding ground states shows that they are indeed 1D
disordered quantum phases. All our results apply both to the
XY and the Heisenberg model, but for the sake of concrete-
ness, we refer from now on to the XY model.

FIG. 5. Quantum phase diagram along the diagonal white line in Fig. 3 for the 4 × 4 lattice with XY interactions. Top: Averaged structure
factor 〈S(�k)〉d . Center: Overlap, Op, versus relative energy, εp. Bottom: Order parameter, Mp (see text). The dashed vertical lines limit the
region εp < 0.01, where the average is done.
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In Fig. 4, we plot the averaged order parameter 〈M〉d

for different lattice sizes along the vertical line displayed in
Fig. 3, which goes from a 2D Néel state with t3 = t2  t1
(5) to a 2D Néel state occurring for t2  t3 (7). In both Néel
phases, the value we obtain, 〈M〉d � 0.44, closely matches
the value obtained in the square-lattice limit, i.e., ti = t j  tk ,
with precise QMC calculations, M = 0.4373 [47]. Between
the two 2D Néel ordered phases, faithfully identified by the
spin-structure factor and the order parameter, there is a region
with lower LRO signaled by the decrease of 〈M〉d . The value
of 〈M〉d , although finite, clearly decreases as the lattice size
increases, suggesting M → 0 in the thermodynamic limit.
Furthermore, the corresponding spin-structure factor shows
the expected pattern for 1D Néel order. We identify this region
as a trivial gapless QSL. The same features are observed in the
two other limiting cases (1) and (3).

To further explore the nature of the truly quantum dis-
ordered phase, we now restrict our analysis to the quantum
phase diagram along the diagonal line depicted in Fig. 3,
which crosses several quantum phases including the assumed
gapped QSL (8). In the top row of Fig. 5, we display 〈S(�k)〉d

for some selected points along this line. Its inspection al-
lows for an easy identification of two 2D Néel phases at
the extremes of this quantum phase diagram: the first one
exemplified at t2 = 0.2, t3 = 0.6 and the second one at t2 =
2.6, t3 = 1.65. Between them, we find the expected spiral
phase at t2 = 1, t3 = 0.95. Finally, between the 2D Néel
phases and the spiral one, there are two regions (circa t2 =
0.65, t3 = 0.8 and t2 = 1.5, t3 = 1.15), whose spin-structure
factor does not correspond to any order. In the middle row
of the same figure, we plot the corresponding overlap Op =
| 〈ψp| ψ0〉| for all configurations p, sorted by their energy. The
energy bias for postselection is there indicated by a dashed
vertical line. For the 2D Néel order, Op slowly decreases as
εp increases, meaning that quasidegenerate states correspond
to alike ground states. A similar behavior is observed for
the spiral phase, except Op has two branches around Op = 1
and 0. They correspond to the two orthogonal chiralities of
the spiral ground state. In contrast, the “gapped QSL” phase
shows a radically different behavior. All sets of postselected
configurations (i.e., εp < 0.01) might correspond to very dif-
ferent ground states.

Finally, in the last row of Fig. 5, we display the value
of the order parameter Mp [as defined in Eq. (5)] for all
configurations prior to any averages. While ordered quantum
phases have a very small dispersion of the order parameter, the
dispersion becomes much more significant for the presump-
tive gapped QSL, indicating that there is not a well-defined
value of the order parameter in these regions.

We proceed by calculating the entanglement properties for
the same parameters of Fig. 5. In Fig. 6 (upper panel), we
show the averaged concurrence, Ci j , between NNs along the
three lattice directions (t1, t2, t3), as well as its dispersion.
The vertical arrows in the figures indicate the location of
the different quantum phases (2D Néel–QSL–spiral–QSL–2D
Néel) under study in Fig. 5. As expected, the spiral phase has
an isotropic concurrence along all directions. The concurrence
also signals the two preferred directions in the 2D Néel
phases.

FIG. 6. Top: Averaged concurrence between NN sites along
the three lattice directions. Bottom: Geometrical entanglement, EG

[Eq. (7)], and projections to separable states (see text). All quantities
are averaged over the configurations with εp < 0.01, and the disper-
sion of the values is represented by error bars. The plotted region
corresponds to the white diagonal line in Fig. 3, where the values
of t2 are chosen accordingly. The arrows indicate the values used in
Fig. 5, which are representative of each quantum phase explored.

In the bottom panel of Fig. 6, we display the geometrical
entanglement EG, together with the projection of the posts-
elected ground states |ψp〉 on a classical 2D Néel state and
a classical spiral state (120o Néel). As shown there, the as-
sumed QSL phases display a larger geometric entanglement as
compared to the surrounding ordered phases and a vanishing
overlap with classical states.

A unique topological feature of 2D gapped QSLs is the
presence of nontrivial Chern numbers or topological invari-
ants. For many-body systems in a lattice, the Chern numbers
can be straightforwardly computed [35,48]. However, since
we associate the presence of a gapped QSL with the presence
of many different compatible ground states, each of them
associated with different TBCs, calculating the Chern num-
ber becomes very involved. Another characteristic feature of
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FIG. 7. Energy spectrum of the five lowest states in the Sz = 0
manifold for a 4 × 4 lattice in the putative QSL (t2 = t3 = 0.7) using
PBCs (φ1 = φ2 = 0) as a function of an inserted twisting phase,
�, on the boundary along the horizontal direction, simulating an
external magnetic field.

topological states is a ground-state degeneracy that depends
on the topology of the surface on which the states are defined.
For a lattice with PBCs, i.e., a torus, there exists the possibility
to check such topological degeneracy by inserting an “artifi-
cial” magnetic flux perpendicular to the torus geometry that
simulates the phase acquired by the atoms when they loop
along the transverse direction. The topological degeneration
can be understood from the similarity with the fractional
quantum Hall effect, and its mapping to the corresponding
Laughlin state in the thermodynamical limit. If the corre-
sponding Laughlin state has filling factor ν = 1/2, the topo-
logical degeneracy in the thermodynamical limit will be equal
to 2 (see, e.g., Ref. [49]). For small lattices, normally this
degeneracy is not seen, but by inserting an external magnetic
flux, it is possible to check if there is a flow of one ground
state onto another [36,37]. In the case of ν = 1/2, the level
crossing will manifest for an external magnetic flux � = π .
Moreover, the gap to higher energy levels will remain finite
for any value of inserted flux �. Similar calculations for larger
lattices (e.g., 6 × 5) have been done for other models [37] to
show the topological character of the phase. In this spirit, we
analyze our system for a representative point of the predicted
QSL phase first using PBCs and twisting the boundary along
the horizontal direction with a phase � ∈ [0, 2π ). In Fig. 7,
we display the energy spectrum for the five lowest eigenstates
(i.e., in the Sz = 0 manifold) on the torus as a function of
the inserted twisting phase � for a 4 × 4 lattice. The crossing
of the two lowest levels, although not perfect, can be clearly
appreciated. The gap to high energy levels remains finite for
any value of the inserted flux.

Now, for all the compatible configurations Nc given by our
RTBC (i.e., all compatible φ1, φ2 leading to almost degenerate
ground-state energy), we simulate the insertion of the external
magnetic flux by modifying the tunneling couplings along the
x direction as

t1 −→ t1ei�1/L, (10)

with L the number of spins along the x-direction, and �1 ∈
[0, 2π ). We compute the energy spectrum for each config-
uration as a function of the phase, �1, and extract the flux

FIG. 8. Left: Introduced external magnetic flux at which the
minimum gap between ground and first excited state is reached in
the SCATL-XY model using RTBC in a 4 × 4 lattice. The flux �1

is implemented by modifying the tunneling coefficients along the
x direction as explained in the text. The plotted values correspond
to the average over all the compatible configurations Nc. Right:
Energy spectrum of the five lowest states in the Sz = 0 manifold as
a function of the inserted flux �1 for one single configuration of our
RTBC (φ1, φ2). The plots correspond to the points indicated with
white crosses on the left panel. From bottom to top, (i) 1D Néel
(t2 = t3 = 0.1), (ii) expected gapped QSL (t2 = t3 = 0.7), and (iii)
spiral phase (t2 = t3 = 1). Clearly, the gap is only closing in the
expected gapped QSL phase.

for which the gap between the first and second eigenvalues is
minimum. Finally, we average the results over all considered
configurations Nc. Our results for the SCATL-XY model are
displayed in Fig. 8 for a significant part of phase diagram
using a 4 × 4 lattice.

Although the closing of the gap is not complete (as happens
already for the PBC of Fig. 7), it is interesting to notice that for
the phase diagram regions compatible with 2D Néel phases or
1D-gapless QSL, the average gap closes trivially for a flux of
�1 � 2π . In these regions, the effect of the anisotropy reduces
the triangular lattice into a set of disconnected 1D chains or
into a “squared” lattice, suppressing in this way frustration.
At �1 = 2π , there are two compatible ground states related
by a flip of all spins. For the putative gapped QSL, the gap
becomes minimal for a flux �1 = π . As can be seen in Fig. 8,
the closing of the gap for a flux of �1 � π occurs in the region
of the phase diagram surrounding the spiral phase. Finally,
in the spiral phase, the gap does not close for any value of
the external flux, indicated in the figure by �1 = 0. As we
explain later, our numerical results show that the gapped QSL
in the anisotropic Heisenberg model can be connected to the
chiral QSL of the J1-J2 model and, thus, they share the same
degeneracy.

IV. J1-J2 MODEL

In this section, we extend our work to the AF Heisenberg
model with NN and NNN interactions,

HJ1−J2 = J1

∑
〈i, j〉

�Si · �S j + J2

∑
〈〈i, j〉〉

�Si · �S j, (11)
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FIG. 9. Left: Sketched quantum phase diagram of the J1 − J2 model with chiral interactions obtained from Refs. [27,28]. Right: Nc for the
same model using a 4 × 4 lattice. The area with large Nc is a signature of a putative gapped QSL phase.

where we fix J1 = 1, leaving J2 as the free parameter, and the
sums run over all NN and NNN pairs, respectively.

Before proceeding further, let us mention that finite size
effects are now further enhanced by the presence of NNN
terms. However, in consonance with Sec. III, our aim here is to
find the signatures of the ground states which are compatible
with QSL rather than to provide the precise location of the
quantum phase boundaries. It is also important to stress that
implementing random TBC for a Hamiltonian hosting both
NNN and chiral interactions, as we will later introduce, de-
mands some subtleties which are explained in the Appendix.

A. Classical phase diagram

The classical phase diagram of this system is well known
[50]. For J2 < 1/8, there is a three-sublattice 120 Néel ordered
ground state (spiral order). For 1/8 < J2 < 1, the classical
phase diagram is degenerate with the three different collinear
2D Néel orders and a tetrahedral noncoplanar state. However,
an order-by-disorder mechanism selects the 2D Néel order
when quantum fluctuations are taken into account [50,51]. For
J2 > 1, there is noncommensurate spiral order.

B. Quantum phase diagram

Recent studies have analyzed the quantum phase diagram
of the model with special attention to the surroundings of the
classical phase transition point at J2 = 1/8 with 2D-DMRG
[23,24], variational quantum Monte Carlo [25], ED [27],
and Schwinger-boson mean field [52]. A consensus has been
reached in identifying a QSL phase for 0.08 � J2 � 0.15. The
nature of this phase, though, is still under debate. To shed
more light on the issue, an extra chiral term in the Hamiltonian
has been proposed [26–28,53,54],

Hχ = HJ1−J2 + Jχ

∑
i, j,k∈�

�Si · (�S j × �Sk ), (12)

where the sum runs clockwise over all the up and down
triangles of the lattice.

In Fig. 9 (left panel), we show a sketch of the quantum
phase diagram taken from Refs. [26–28]. For Jχ = 0, we
recover the J1 − J2 model. As Jχ is turned on, there is a phase

transition from the QSL under debate into a chiral spin liquid
(CSL), which lies between the ordered spiral, the 2D Néel
collinear, and the tetrahedral phase. In Fig. 9 (right panel),
we show our schematic quantum phase diagram obtained by
counting the number of postselected configurations, Nc, for
εp < 0.005, as a function of the parameters of the model, J2

and Jχ , for a lattice of just N = 4 × 4 spins. For this model,
in contrast with the analysis of previous models (Sec. III),
we choose a smaller energy bias, εp, for postselection of
quasidegenerate states because the number of inner bonds is
much increased compared to the Heisenberg model. For Jχ =
0, we observe a region with a large number of quasidegenerate
ground states that extends approximately 0.05 � J2 � 0.10.
As Jχ increases, this region is continuously enlarged and
at J2 = 0, it expands approximately between 0.10 � Jχ �
0.4. It is interesting to compare both figures. Although the
boundaries we obtain are clearly different from those sketched
in Fig. 9 (left panel), our results show a large increase of
compatible configurations in a region reconcilable with the
location of both the CSL present in the model described above
[Eq. (12)] and the QSL of the J1 − J2 model [Eq. (11)].

Finite size effects can be spotted by calculating the quan-
tum phase diagram in larger lattices. In Fig. 10 (top), we
display Nc as function of J2 (Jχ = 0) for different lattice
sizes and geometries: N = 4 × 4, 4 × 6, 6 × 4. As expected,
by increasing the lattice size, the location of the maximum
of Nc shifts to larger values of J2, in accordance with the
quantum phase diagram of the system. To deepen further in
the nature of the possible phases observed in Fig. 9 (right
panel), we explore other physical quantities, like the averaged
spin-structure factor, to determine the corresponding orders
for a lattice of N = 6 × 4. Our results are depicted in Fig. 10
and agree quite closely with the expected orders. For 0 � J2 �
0.05, spiral order is dominant. As J2 further increases, there is
a region with a large number of random configurations, Nc,
which lead to a ground-state energy, Ep, quasidegenerate with
the smallest one, E0. These configurations correspond to dif-
ferent ground states, as demonstrated by all possible values the
overlap Op takes. In this region, the average structure factor,
〈S(�k)〉d , is blurred, showing that there are no clear prefer-
able k-vectors. This indicates disorder and, consequently, a

155119-9



CASTELLS-GRAELLS, YUSTE, AND SANPERA PHYSICAL REVIEW B 100, 155119 (2019)

p p p

J2=0 J2=0.08

02 1302 1302 13

O
p

0 0.05 0.1 0.15J2

0

25

50

75

100

N
c(

%
)

4x4
4x6
6x4

J2=0.2

0 0.01 0.02
0

0.5

1

0 0.01 0.02
0

0.5

1

0 0.01 0.02
0

0.5

1

-4 -2 0 2 4
-4
-2
0
2
4

0246

-4 -2 0 2 4
-4
-2
0
2
4

0123

-4 -2 0 2 4
-4
-2
0
2
4

0123

ky ky ky

kx kx kx

ky

kx
4 2 0 2 4

4
2
0
2
4

kx

ky

4 2 0 2 4

4
2
0
2
4

kx

ky

J2=0 J2=0.2J2=0.1

4 2 0 2 4

4
2
0
2
4

FIG. 10. J1 − J2 model without chiral interactions (Jχ = 0). Up-
per panel: Number of configurations, Nc, with εp < 0.05 for different
lattice sizes and geometries. First row: Op and energy bias εp for
a 6 × 4 lattice. Second row: Our average spin-structure factors,
〈S(�k)〉d . Third row: S(�k) obtained with 2D-DMRG taken from
Ref. [24].

decrease of LRO. Again, it is instructive to compare our
results with the results of the quantum phase diagram obtained
with more sophisticated methods for larger lattices. In the
bottom row of Fig. 10, we attach for comparison S(�k) obtained
with 2D-DMRG from Ref. [24]. For the values where the
putative QSL is predicted, both S(�k) obtained from the 2D-
DMRG simulations and our 〈S(�k)〉d are impressively similar.
For J2 = 0.2, the 2D-DMRG shows collinear order corre-
sponding to a 2D Néel order along two lattice directions (see
Fig. 2), while our results show a superposition of two of the
2D Néel collinear orders. This is not relevant, as all collinear
orders are degenerate and of course any superposition of them
as well. Finally, let us remark that in the same spirit, we have
also analyzed the nature of the quantum phases that appear
when the chiral term is included for a lattice of N = 4 × 4.
The results in this case suffer from strong finite size effects,
but ordered phases can be easily identified by 〈S(�k)〉d .

V. THE ANISOTROPIC J1 − J2 MODEL

To gain further insight into our method, we have proposed
and investigated a hybrid model: the anisotropic J1 − J2 in the
triangular lattice. This model should allow us to understand
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FIG. 11. Sketch of the phase diagram of the hybrid anisotropic
J1-J2 model in the triangular lattice introduced in the text.

if the topological phases appearing in the SATL-XY model
are connected with the topological phases of the J1 − J2

model. The latter, as indicated in Fig. 10, is connected to
the topological CSL whose topological degeneracy is, in the
thermodynamical limit, equal to two. Solving such a model
with our RTBC method should allow us to indirectly deter-
mine if the gapped QSL of the anisotropic Heisenberg model
has the same topological degeneracy in the thermodynamical
limit than the chiral QSL of the J1-J2 model. The investigated
hybrid model we propose reads

H = t1
∑
〈i, j〉

(
Sx

i Sx
j + Sy

i Sy
j + λSz

i Sz
j

)

+ t2
∑
〈i, j〉

(
Sx

i Sx
j + Sy

i Sy
j + λSz

i Sz
j

)

+ J2

∑
〈〈i, j〉〉

(
Sx

i Sx
j + Sy

i Sy
j + λSz

i Sz
j

)
, (13)

where the first two sums run over NNs with the anisotropic
parameters t1 and t2 corresponding to interactions along the
horizontal and diagonal bonds (SATL-XY), and the term
proportional to J2 indicates the next-nearest interactions. In
the limit J2 → 0, the model reduces to the anisotropic XY,
while in the limit t2/t1 → 1, the model reduces to the J1-J2

model. The value λ = 1(0) corresponds to Heisenberg (XY)
interactions.

A sketch of the quantum phase diagram of the hybrid
model connecting the anisotropic Heisenberg model (horizon-
tal phase diagram) and the J1-J2 (vertical phase diagram) is
presented in Fig. 11. Both models intersect at J2 = t2/t1 = 1,
in the isotropic triangular lattice, whose quantum phase is spi-
ral LRO (Néel-120). As before, we use our RTBC to diagonal-
ize the Hamiltonian in Eq. (13) for a lattice of size 4 × 4, and
derive a quantum phase diagram using Nc as a figure of merit.
Our results displayed in Fig. 12 are clear: According to RTBC,
the putative gapped QSL appearing in the anisotropic Heisen-
berg (XY) model are connected to the gapped QSL appearing
in the J1-J2 model. Thus, we conjecture that the gapped quan-
tum phases appearing in the anisotropic Heisenberg model
are in one-to-one correspondence to the gapped QSL of J1-J2
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Eq. (13)] obtained with random twisted boundary conditions for a
plaquette 4 × 4. Our figure of merit is Nc, the number of configura-
tions with ground-state energy compatible with the ground state. Top
(bottom) panel corresponds to Heisenberg (XY) interactions.

and thus they should have the same topological degeneracy.
We have also calculated the phase diagram of this hybrid
model by means of modified spin wave theory (MSWT). The
application of MSWT in the triangular lattice is, however, far
from trivial. These results will be presented elsewhere.

VI. CONCLUSIONS

We have presented a numerical method based on ED
with engineered boundary conditions (RTBC) to unveil the
presence of QSLs in frustrated quantum systems in very
small lattices. We have applied our method to several Heisen-
berg models in the triangular lattice and the quantum phase
diagrams thus obtained are in qualitative accordance with
previous results derived using QCM or 2D-DMRG. To elu-
cidate the presence of gapped QSLs, we have also shown
that the ground states are topologically degenerated under
the presence of an external magnetic flux. We have also
proposed a new model, the anisotropic J1-J2 model in the
triangular lattice, and calculated with RTBC its corresponding
quantum phase diagram. Based on our calculations, we have
conjectured that the gapped QSL phases appearing in the
anisotropic XY model in the triangular lattice are the same
as the ones appearing in J1-J2: a chiral QSL. It will be very
interesting to corroborate this conjecture with other methods.

Finally, it is important to signal that our method is not
free from finite size effects although it strongly reduces them
as compared to traditional ED methods. Indeed, the precise
location of the distinct quantum phases found depends on the
system size and improves as the size of the lattices increases.
It remains as an open question if a finite size scaling can also
be applied with our RTBC.
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APPENDIX

In this Appendix, we show how TBCs are implemented for
the NNNs and chirality terms present in the model studied
in Sec. IV. We show the scheme for both cases in Fig. 13.
In the same way as in the NN interactions (Fig. 1), when
an interaction term crosses the left-right (up-down) boundary,
the external spin gets twisted by a phase φ1, blue color (φ2,
red color). The external spins in the top-left corner of the
figures are twisted by φ3 = φ1 + φ2 (pink color) because the
interaction crosses both boundaries. In the NNN case, there
is, as well, an external spin in the bottom-left corner which
crosses the left-right down-up border. Note that crossing the
down-up border is the opposite as crossing the up-down one.
Therefore, the spin in the bottom-left corner gets twisted by a
phase φ4 = φ1 − φ2 (green color).
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FIG. 13. Scheme of twisted boundary conditions in a 4 × 3
triangular lattice with next-nearest-neighbor interactions (top panel)
and chiral interactions (bottom panel). In every interaction term in
the periodic boundary, depicted by a black oval, the colored spin
is twisted by an angle φ1 (blue), φ2 (red) for the left-right and
top-bottom boundaries, respectively. Interaction terms which cross
two boundaries get twisted by both phases, φ3 = φ1 + φ2 (pink) for
the left-top boundary, and φ4 = φ1 − φ2 (green) for the left-bottom
one. The inner bounds are not depicted for clarity.
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