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Boundary-condition and geometry engineering in electronic hydrodynamics
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We analyze the role of boundary geometry in viscous electronic hydrodynamics. We address the twin questions
of how boundary geometry impacts flow profiles, and how one can engineer boundary conditions—in particular
the effective slip parameter—to manipulate the flow in a controlled way. We first propose a micropatterned
geometry involving finned barriers, for which we show by an explicit solution that one can obtain effectively
no-slip boundary conditions regardless of the detailed microscopic nature of the channel surface. Next we
analyze the role of mesoscopic boundary curvature on the effective slip length, in particular its impact on the
Gurzhi effect. Finally we investigate a hydrodynamic flow through a circular junction, providing a solution
which suggests an experimental setup for determining the slip parameter. We find that its transport properties
differ qualitatively from the case of ballistic conduction, and thus presents a promising setting for distinguishing
the two.
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I. INTRODUCTION

The field of electronic transport phenomena has been
greatly enriched by the idea that for sufficiently strong
electron-electron scattering, a description in terms of an ef-
fectively viscous hydrodynamics becomes appropriate. This
studies the flow of conserved quantities such as mass, charge,
or energy (heat). Proposed a long time ago by Gurzhi in [1,2],
only recently a family of samples clean enough to observe a
wide range of hydrodynamic effects (such as negative local
resistance, superballistic flow, or a modification of the Hall
effect [3–10]) has been subjected to a systematic study. For a
review of the field of viscous electronics see [11].

One of the important aspects of hydrodynamics as an effec-
tive transport theory is its inherently mesoscopic character due
to the fact that the solutions of the transport equations strongly
depend on the boundary conditions. The so-called Maxwell
boundary conditions, a one-parameter family of consistent
boundary conditions for hydrodynamics, read

ut
i

∣∣
B = ξ n j

∂ut
i

∂x j

∣∣∣∣
B

. (1)

The parameter ξ is called the slip length. This boundary
condition involves the tangent velocity ut at the boundary of
flow domain and its normal (with respect to inward pointing
vector n j) derivative.

In many everyday uses of hydrodynamics, the slip length is
negligibly small, encoded by the no-slip boundary condition
that prohibits the fluid from having any tangent velocity at
the domain’s boundary. However, there are situations, like in
liquid helium or microfluidics [12,13], where a nonzero slip
length cannot be neglected.

Recent experiments failing to observe the Gurzhi effect in
a long graphene channel [6], as well as theoretical insights on
the dependence of slip length ξ on temperature [14], suggest
that a similar situation may exist for viscous electronics. In

that case the question of determining and correctly treating
the boundary condition becomes crucial for both further theo-
retical developments and possible practical applications of the
field.

Whereas the microscopic1 slip in viscous electronic sys-
tems has been investigated in detail [14], there is another
aspect of the boundary condition (1) associated with the
geometry of the boundary, studied by Einzel, Panzer, and Liu
[12]. If the boundary of a channel is not flat but has some
curvature, it modifies the boundary condition by replacing the
microscopic slip length ξ by an effective parameter ξeff that is
a function of the local curvature. For a mesoscopic sample the
curvature can be either mesoscopic (i.e., of order of character-
istic system size) or submesoscopic (i.e., much smaller than
system size yet bigger than momentum conserving scattering
mean free path).

In this work we address a group of issues concerning
boundary conditions of viscous electronic flow relating to
their nature, observability, and tunability. We start in Sec. II
with answering a practical question: Can one, independently
of the nature of microscopic boundary condition, perform
some microstructuring of the boundary that would effectively
yield a well controlled boundary condition? The answer to
that question turns out to be affirmative as a relatively simple
boundary patterning turns out to mimic the classical no-
slip boundary condition. Then, in Sec. III we discuss the

1To avoid confusion with length scale description, let us stress
here that when we write about microscopic effects, we mean atomic-
scale effects; mesoscopic will denote scales around the micrometer
scale, and by macroscopic we mean things measurable at everyday
length scales, e.g., temperature. We also sometimes use the word
submesoscopic to denote intermediate scales between micro- and
mesoscopic, i.e., larger than atomic, but smaller than, e.g., typical
sample dimensions.
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Einzel-Panzer-Liu (EPL) boundary condition. We present
modifications of the basic (Hagen-)Poiseuille flow to account
for effective geometric slips on the boundaries. The cor-
responding conductance for a couple of test parameters is
presented. Since the results obtained in that section indicate
a possible breakdown of the theory, we perform also a linear
stability analysis of those viscous flow solutions which, as
technically involved, is relegated to Appendix B.

The next section, Sec. IV, is devoted to studying the effects
of nonzero slip in a flow through a circular junction—a setup
that was previously investigated in the framework of ballistic
transport in semiconductors [15–17]. We present qualitative
differences between ballistic and hydrodynamic transport in
such a setup and propose a measurement protocol that allows
one to directly access the slip length. The local conductivity is
a nonmonotonic function of that parameter and, in turn, also
of temperature. We close the main text with conclusions and a
discussion. Due to multiplicity of techniques used in this work
we supplement the text with several Appendixes in which we
elaborate on the technical side of our computations.

II. BOUNDARY-CONDITION ENGINEERING

Recent theoretical analysis [14] suggests that the micro-
scopic slip length exhibits strong temperature dependence,
and is divergent when T → 0. This result, implying that for
low temperatures slip length can be of order of the sample
size, is backed up by some experimental data [6].

One can ask why is the issue of boundary conditions so
important? The answer stems from the fact that the viscous
force is proportional to the gradient of velocity so, in any
setup where a flow is locally parallel to the boundary, any
nonzero slip length will substantially reduce the local resis-
tance. Probably the simplest example of such a situation is a
Hagen-Poiseuille flow through a channel with an arbitrary slip
length, where the average velocity is proportional to the slip
length. In particular, the velocity turns infinite in the no-stress
limit where the slip length diverges.

This situation can be regularized if one takes into
account weak momentum relaxation due to momentum-
nonconserving impurities, phonons, and Umklapp scattering.
In order to do that one adds an Ohmic term proportional to
velocity to the Navier-Stokes equation. In that case, however,
the conductivity is dominated by the Ohmic rather than the
viscous effects for large slip. This leads us to the question if
one can somehow slow down the fluid near the boundary to
make the viscous effects more pronounced.

Our simple proposal is to slow down the fluid near the
walls by introducing a series of small obstacles on the bound-
ary (Fig. 1). The mechanism guaranteeing efficiency of that
method takes up an idea by Moffatt [18], who noticed that an
arbitrary viscous flow outside of a cavity will drive a vortical
flow inside (see also [19–21] for a discussion of this effect
in various setups). Later Wang [22] constructed a solution for
a Stokes flow with no-slip boundary conditions in a channel
with perpendicular barriers equally spaced on the channel
boundaries. He observed Moffatt vortices appearing inside the
cavities below a critical distance between barriers.

Crucially, the induced vortices are typically tiny—the flow
velocity around such a vortex is orders of magnitude smaller
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FIG. 1. Flow geometry with a series of obstacles forming cavities
on the boundaries

than in the main driving flow. Thus, in general the fluid inside
the cavity flows with a relatively small velocity compared to
flow in the middle of the channel, thus mimicking the no-slip
boundary.

To test this idea, we conduct a series of simulations of
an infinite channel with a periodic array of obstacles on
the boundary (see Fig. 1). We calculate flow profiles with
arbitrary slip parameters and deduce that for some range of
obstacle lengths and spacings, there is no strong dependence
of the flow profile on the slip parameter, and indeed the flow
in the center of the channel resembles a standard no-slip
parallel Poiseuille flow. To additionally check our results, we
repeat the simulations for a periodically driven AC flow, and
observe the development of a boundary layer in the high-
frequency regime. That phenomenon, like the Gurzhi effect, is
characteristic of the viscous flow regime [23], but it is absent
in parallel flows with no-stress boundary condition.

In our computation, which is performed for two-
dimensional systems, it is convenient to use a stream function
formulation of the flow. The most general time-dependent
case is governed by the following equation:

∂t �� − η�2 � + γ�� = 0. (2)

Here η is the viscosity and γ the coefficient of the Ohmic
term. We concentrate first on the time-independent (DC) case.
The equation can be simplified:

�2 � − ��� = 0, � = γ (h/2)2

η
. (3)

In the equation above, the spatial variables are dimensionless.
In order to study the behavior of the flow through the finned
channel, we define parameters

σ ≡ 2a

h
and β ≡ 2b

h
, (4)

σ being a fraction of the channel in which the fluid is blocked,
so in the middle we have a free “channel” of width h(1 − σ ),
while β measures the aspect ratio of the unit cell.

In Fig. 2 (left panel), the x component of the velocity
along the line x = 1/10, for a unit cell with β = 1/10 and
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FIG. 2. Left panel: Flow velocity cuts at the edge of the unit
cell, x = 1/10, for different Ohmic coefficients. The three plots
correspond to no-slip boundary conditions and parameters σ = 1/2,
β = 1/10 (see text). Red line � = 1 (hydrodynamic), blue line � =
100 (crossover), and purple line � = 1000 (Ohmic). Right panel:
Profile of the flow velocity along a unit cell for no-stress boundary
conditions; both plots correspond to β = 1/10, while σ = 1/4 (top)
and σ = 1/2 (bottom).

σ = 1/2, is plotted for different Ohmic coefficients. It can
be seen that it looks parabolic for small Ohmic dissipation,
resembling hydrodynamic behavior. For higher values of the
Ohmic coefficient the flow profile becomes flat. This result is
for no-slip boundary condition and is in correspondence with
[9].

More interestingly, if the no-stress boundary condition is
implemented, the flow through the middle aperture of the
channel still resembles a parabolic flow, as can be seen from
the right panel of Fig. 2. This is our first central result. To
investigate the similarity of the flow with the Poiseuille case
in detail, we fix the dimensionless Ohmic coefficient � = 1,
which places it in an experimentally feasible range [6,7,24].
In Fig. 3 we plot how the velocity profile in the middle of the
channel changes with respect to the parameter β for both no-
slip and no-stress boundary conditions. All plots are for fixed
σ = 1/2, therefore we also plot the velocity for the Poiseuille
flow on a flat channel of width equal to 1 for comparison.

Given the similarity of the obtained profiles with the
parabolic flow, we define an effective channel in the middle
of our sample. Along this effective central channel, the fluid

FIG. 3. Flow velocity cuts at the center of the unit cell, x = 0, for
no-slip (left) and no-stress (right) boundary conditions. The black
lines correspond to Poiseuille flows for an effective center channel
of width h̃ = 1/2 = 1 − σ . Recall that we are in the low dissipation
regime, � = 1. Note the similarity between the actual flow and the
Poiseuille flow.

FIG. 4. Top: Velocity profiles along the channel for the corre-
sponding values of β and σ = 1/5, corresponding to small obstacles
in comparison with the height of the channel. Middle: Velocity
profiles along the channel for the corresponding values of β and
σ = 1/20, corresponding to very small obstacles in comparison with
the height of the channel, h = 2 in our units. Bottom: Value of the
flow velocity at the top wall, coordinates (x, y) = (0, 1), of a unit
channel cell as a function of σ and for three values of β.

behaves as if the boundary condition on its walls were no-slip,
regardless of the actual boundary conditions on the full finned
channel.

How small can the obstacles be made for the flow along the
effective channel to be effectively parabolic? This is addressed
in Fig. 4, which depicts the evolution of the velocity profile
for different values of β, and as a function of the aperture
parameter σ . In the top and middle panels of Fig. 4, the spatial
dependence of the flow velocity is plotted for different param-
eters β and σ , concentrating particularly on small obstacles.
For some combinations of these parameters the flow closely
resembles the parabolic no-slip flow. Other combinations of
parameters, corresponding to distantly spaced obstacles, yield
flows differing considerably from classical Poiseuille.

In Fig. 4 (bottom panel), the velocity on the no-stress wall
is plotted in red as a function of σ for β fixed. We see that
when the velocity at the wall is not zero (or near to zero), the
flow profile in the middle of the channel differs qualitatively
from the parabolic Poiseuille flow. We use this to propose
a criterion indicating when the effective flow in the middle
channel resembles a parabolic flow. The analysis of numerical
data suggests that in order to ensure that the velocity in the
cavity is negligibly small the following condition needs to
hold:

β � σ,

i.e., it is important that the obstacles are not too far away from
each other—the distance between them should be of order of
obstacle length or smaller.
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FIG. 5. Spatiotemporal velocity cut profiles at x = 0, for high
frequency driving over one period, t ∈ [0, 2π ]. No-stress boundary
conditions on walls and obstacles. Parameters: � = 500 i + 1, h =
2, σ = 1/2, and β = 1/10.

Note for example that for β = 1/10 (the parameter of the
plots in Fig. 2), there is a large range of values of the σ

parameter for which the velocity at the walls is very close to
zero despite the no-stress boundary condition. This supports
the idea that a series of obstacles can effectively change the
slip parameter in a channel.

Also, note that mimicking no-slip boundary conditions re-
produces more than just the simplest effects (such as parabolic
Poiseuille flow). To confirm that fact, we repeat the above
simulation in a time-dependent (AC) scenario with a periodic
forcing. The Stokes boundary layers emerge above a certain
forcing frequency (see Fig. 5). This phenomenon, previously
described for a flat channel [23], is also tied to the no-slip
boundary condition, in the following way. For large frequen-
cies, the fluid “cannot follow” the drive, and stops to be
in phase with the rapidly oscillating force. The fluid in the
middle of the channel oscillates uniformly, and only close
to the boundary does the viscosity become important. This
has to do with the frequency of forcing being too big for
the viscosity to efficiently transport the momentum through
the whole channel. As a consequence, a strong gradient is
created near the boundary, on a distance that corresponds to
the effective “range” of viscous interaction under periodic
driving. This gradient of course only emerges if the fluid sticks
to the boundary, i.e., the velocity there is close to zero.

Since in parallel to the flow in channels without barriers,
fast forcing in our setup results in the maximal velocity at
some distance from the center, we conclude that the structured
boundary indeed does mimic a no-slip boundary quite well.
Apart from that, this analysis supplements existing literature
on time-dependent electronic flows [25–27].

III. FLOWS WITH CURVED BOUNDARY

A. Boundary conditions on curved geometry

The behavior of a fluid flow at the interface with other
bodies (i.e., on the boundary of the sample) is a complicated

Fluid domain

R > 0R < 0

FIG. 6. The conventions on boundary curvature used in Eq. (5).
R > 0 for convex domain boundary, R < 0 for concave.

one that crucially influences the solutions of the theory. Plenty
of nontrivial physical phenomena governing this behavior
are contained in effective descriptions in terms of a proper
boundary condition [12,28–32]. Indeed, various character-
istics of our system modify the slip length. They include
temperature and parameters related to the wall material and
fluid composition, as well as mesoscopic and submesoscopic
components, in particular the wall curvature [33]. A quan-
titative understanding of the wall curvature in terms of an
effective slip value was given by Einzel, Panzer, and Liu [12]:

ξeff =
(

1

ξ0
− 1

R

)−1

, (5)

where R is the curvature radius measured in such a way
that it is positive if the fluid domain is convex and negative
otherwise; see Fig. 6. For an explanation of this condition see
Appendix E. The fact that the boundary curvature modifies
the slip parameter has a direct influence on solutions on more
complicated domains. On top of that one needs to consider
submesoscopic roughness of the boundary, too big to directly
influence boundary scattering of individual carriers, but not
small enough to be approximated with a straight line on the
scale of a system. Instead the roughness modifies the slip
length with an effective curvature contribution [30]. In this
section we focus on the effective description of curvature
effects in the context of electronic fluids.

Having introduced how the boundary condition gets modi-
fied, we proceed to test experimental implications in a couple
of setups.

B. Flow in a channel with mesoscopic boundary curvature

The analysis above shows that geometric effects can have
crucial impact on the slip length. In materials like graphene,
the sample production process may yield a boundary that is
rough not only on the microscopic scale but at scales up to
the sample size, in which case the boundary curvature needs
to be taken into account. As a simple yet very instructive
example, we take a channel that is almost flat. More precisely,
we study the curvature radii on both sides of the samples R1

and R2 which are much bigger than the channel width w.
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If the microscopic slip length is also large compared to that
scale, we can approximately use the flat channel parallel flow
solution in which the curvature effects manifest themselves in
the modified slip length ξeff. We then have to solve the Stokes
equation

η
∂2ux

∂y2
= − e

m

∂φ

∂x
, (6)

where η is the viscosity coefficient and φ is the electrochemi-
cal potential. The most general situation allows the curvature
radii to be different on the two boundaries of the channel:

ut
i

∣∣
B1

= ξ1 n j
∂ut

i

∂x j

∣∣∣∣
B1

, (7)

ut
i

∣∣
B2

= ξ2 n j
∂ut

i

∂x j

∣∣∣∣
B2

, (8)

where the boundaries are located at {−w/2,w/2}. The above
boundary conditions lead to the following velocity profile:

ux(y) = 1

8η(w + ξ1 + ξ2)
U (y)

e

m

∂φ

∂x
, (9)

where

U (y) = w3 − 4wy(y + ξ1) + 4w(y + 2ξ1)ξ2

+ 3w2(ξ1 + ξ2) − 4y2(ξ1 + ξ2). (10)

Integrating this expression we obtain the total current,

I =
∫ w/2

−w/2
dyux(y)

= w2[w2 + 12ξ1ξ2 + 4w(ξ1 + ξ2)]

8η(w + ξ1 + ξ2)

e

m

∂φ

∂x
. (11)

We see that the Gurzhi effect corresponds to an idealized
situation, with zero slip, legitimate only in setups where both
the microscopic contribution to the slip length as well as the
geometric component are much smaller than the width of the
channel.

Since we are interested in the role of slip on the elec-
tronic flow, we use this solution to investigate geometric
contributions to the current. The importance of this analysis
stems from the fact that in most experimental samples the flat
channel serves as a theoretical benchmark, and the boundary
conditions are an important missing ingredient for a more
comprehensive theoretical understanding.

In our setup we distinguish three situations: The curvature
is positive on both boundaries, the curvature is negative on
both boundaries, and one boundary has positive and the other
has negative curvature. We start with two boundaries with
negative curvature (i.e., the channel is thinner in the middle).
In this case

ξ1 =
(

1

ξ0
+ 1

R1

)−1

, ξ2 =
(

1

ξ0
+ 1

R2

)−1

, (12)

where ξ0 is the microscopic slip length. Note that obtaining
the formal no-stress limit requires not only microscopic slip ξ0

but also curvature radius R to be infinite for positive curvature.
We plot the corresponding curvature in Fig. 7.
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FIG. 7. Conductance as a function of the slip length for bound-
aries with positive curvature with η = 1, R1 = 110, R2 = 100.

The next example we consider is when the boundaries both
have negative curvature,

ξ1 =
(

1

ξ0
− 1

R1

)−1

, ξ2 =
(

1

ξ0
− 1

R2

)−1

. (13)

The conductance that follows changes character as can be seen
in Fig. 8. The negative contribution from geometry results
in a special point where the microscopic and geometric slip
lengths are equal and an infinite jump of ξ1 and ξ2 happens.
This is, however, not physical as in effect it leads to con-
ductance having infinite jump with a sign change, yielding
the negative conductance for some parameters. Therefore,
the boundary condition (1) is certainly unphysical when the
curvature radius becomes comparable with the microscopic
slip length. This problem also arises if only one side has
negative curvature.

The main message of this section is that the boundary
curvature changes many flow characteristics in fluids, which
naturally have non-negligible slip length. The resulting so-
lution possesses a richer structure, which does not fall into
two categories of either flat or parabolic flow profiles. The
conductance that follows depends on two slip parameters,
which contain the geometric characteristic of the boundaries.
As a result it has neither a linear scaling with the channel
width as in the ballistic regime, nor the quadratic scaling in
the Hagen-Poiseuille regime. More precisely one can see that
by looking at the solution (9), which has a form of the ratio of

10 20 30 40 50
Slip � length
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20
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40

50
Conductance

FIG. 8. Conductance as a function of the slip length for bound-
aries with negative curvature with η = 1, R1 = 110, R2 = 100.
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two polynomials and depends on two parameters. The choice
of parameters can affect both shape and symmetry of the flow
profile.

As we mentioned before, in the cases with a negative slip
length, the solution turns unphysical yielding infinite jump
of the flow velocity. Hence we need to ask a question: Does
the hydrodynamic theory itself provide some mechanism of
resolving this infinity? One of the possible mechanisms of
such a regularization would be if the Poiseuille-type solution
itself becomes unstable. Hydrodynamic instability means that
the solution, although mathematically correct, is fragile and
can be easily destroyed. On a more formal level, it means
that there are some perturbations that, once introduced in the
system, grow in time ultimately completely altering the nature
of the solution.

To check that possibility, we perform a linear stability
analysis of the solution (9). The analysis is based on the
Orr-Sommerfeld equation for linear perturbations of a parallel
flow [34–36]. This analysis is technically involved so we
describe it in detail in Appendix B. Let us just remark that
such an analysis yields values of parameters (like Reynolds
number Re) for which some linearized perturbation(s) around
the base solution grow in time rather than decay or oscillate,
and therefore fall under the definition of unstable perturba-
tions.

It turns out that while positive slip stabilizes the solution
[37], a negative value of the slip parameter renders a very
unstable flow. In a channel with w = 2 and the boundary
slip lengths ξ1 = ξ2 = −0.55, the flow is unstable even for
extremely low Reynolds numbers Re = 5. We conclude that
the parallel flow approximation we employ becomes unreli-
able when the microscopic slip length is large. This happens
as a large microscopic slip length in combination with even
a slightly curved boundary (or a submesoscopic roughness
of the sample edge) can yield a negative effective slip that
destabilizes solutions drastically. The importance of this result
stems from the fact that the parallel channel is often used as
a benchmark geometry for hydrodynamic effects. Our result
shows that in viscous electronics where slip lengths may be
large, results obtained in such a setup must be approached
with caution.

IV. FLOW THROUGH A CIRCULAR JUNCTION

A. Flow profiles

Boundaries can modify the effective slip. Beyond the weak
curvature considered above we next study systems in which
the curvature radius is smaller than the system size. In general,
to extract the geometric contribution to slip, the solutions
corresponding to any but the simplest setups become com-
plicated and the resulting effect is not transparent. Therefore
we investigate the flow through a circular junction. In such
a setup, the only geometric length scale is the circle radius,
which is at the same time the radius of curvature of the
boundary to be used in the effective slip (5). Technically, the
high degree of symmetry allows one to separate variables and
Fourier decompose the angular dependence.

Finally, this setup was also investigated in the ballistic
regime, both experimentally and theoretically [15–17]. A

β α

FIG. 9. Inflow/outflow problem into a circular contact.

striking feature that emerges in the ballistic regime is that the
conductance exhibits characteristic irregular fluctuations as a
function of Fermi momentum.

Our setup is a disk-shaped sample with two narrow con-
tacts of width ε. The radial coordinate has range r ∈ (0, 1].
The setup is presented in Fig. 9.

The problem of a fluid flowing into a circular domain
through a boundary and then flowing out at some other bound-
ary point has a long history in fluid literature. The solution can
be constructed as a series expansion of the stream function
[38–42]. We relegate the details to Appendix D.

Junctions possess a big advantage over the channels,
namely that a relatively simple theoretical analysis may be
possible in both ballistic and hydrodynamic regimes unveiling
the distinctive features. The hydrodynamic flow through a
confined geometry is smooth due to electron-electron in-
teractions. To illustrate this fact (see Fig. 10) we plot a
stream pattern for two configurations of contacts. In one
configuration the contacts are separated by an angle π/2
in the second by π/8. Note that the former configuration
was studied in the ballistic regime, both semiclassically [17]
and quantum mechanically [16]. One can see that the flow
profile is smooth. Moreover, the closer the contacts are to
each other, the less regions away from them participate in the
flow.

In the ballistic regime only discrete values of the Fermi mo-
mentum, corresponding to the classical trajectories between
the entry and the exit, contribute to the conductance. This
is attributed to the fact that for some, “resonant,” values of
the Fermi momentum of the injected electrons, there exist
families of trajectories connecting source and sink contacts in
a direct way. Existence of those trajectories sharply increases
conductivity. As a result, the conductance, as a function of
the Fermi momentum, jitters and has a form of plateaus
with oscillating peaks at particular values of the Fermi
momentum.
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FIG. 10. Top: Streamlines in a circular cavity between two con-
tacts separated by an angle π/2 (α = 0, β = π/2). See Fig. 9 for
the conventions on angles α, β. Bottom: Streamlines between two
contacts separated by an angle π/8 (α = 0, β = π/8).

Combining these two behaviors would presumably lead
to the disappearance of the plateaus and the suppression of
oscillating peaks at a crossover, which, in principle, could
be observable experimentally. This setup can serve as an
exemplification of interaction enhanced conduction [9].

B. Slip-length extraction

The circular junction setup has one additional attractive
feature: The curvature term and the microscopic slip length

in (5) have opposite signs, which in the previously presented
case of parallel flow leads to peculiar and probably unphysical
behavior. So, we are led to expect distinctive effects when the
microscopic slip is of order of the sample radius.2 It turns
out that one observable in which such an effect is visible
is the boundary electrochemical potential profile, which can
be computed from the stream function (see Appendix C).
This observable describes the local voltage drop along the
boundary of the sample φ(θ ). In our case its measurement
may allow us to directly access the slip length experimentally.

The setup we propose is the one presented on Fig. 9 with
α = 0, β = π . For computational convenience we also take
contact sizes ε = ε′ → 0, so we inject current by pointlike
contacts. Remarkably, in this setup, the Fourier series can be
summed up analytically and expressed in the form of a rather
complicated combination of hypergeometric functions for an
arbitrary slip length.

A salient feature of the boundary potential profile is that the
curves are not too distinct for no-stress and no-slip conditions,
but have a pronouncedly smaller derivative at an intermediate
value of the slip length (numerically found to be ξ/R ≈ 0.36).
This is displayed in Fig. 12(a), which shows the value of angu-
lar derivative of the potential precisely in the middle between
two contacts as a function of microscopic slip. This quantity
undergoes significant changes (around 50%) upon changing
microscopic slip from zero to infinity. So, we propose an
experiment to measure the slip length to add to the setup
two measurement contacts located on the boundary around
point θ = π/2 (see Fig. 11). Then one would vary external
conditions such as temperature or background chemical po-
tential and observe the values of potential at the probe contacts
φ1, φ2. Such a setup would effectively measure the angular
derivative of the boundary electrochemical potential φ′(π/2).

Figure 12(b) presents the predicted behavior of our observ-
able as a function of temperature, assuming the slip-length
temperature dependence calculated in [14]. We consider a
case of doped graphene at different chemical potentials. It
should be noted here that the Stokes equations which we solve
to obtain those results are strictly speaking valid only in the
Fermi-liquid regime, i.e., if the background chemical potential
is much larger than the temperature. The main simplification
in that regime is that thermal effects are suppressed, i.e., local
temperature is no longer a relevant degree of freedom for the
dynamics, and the electric charge current is proportional to
the particle number current. That in turn limits the number
of independent variables and equations, thus allowing for a
simple description. The results discussed above, for doped
samples, should be directly comparable to experiment.3 It
follows from the plots that the temperature dependence of the
slip length can be measured using a series of such circular
devices with different radii: For every radius R there should

2Let us, however, stress that the unphysical effects of the previous
section originated in imposed simplifications, namely the assumption
that the flow is strictly parallel even in a channel with (slightly)
curved boundaries, so in the present case we do not expect such
pathologies to occur.

3See Appendix D for a more detailed discussion of the employed
approximations.
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(a)

(b)

FIG. 11. The proposed observable, boundary potential drop
around π/2, is characterized by a strongly nonmonotonic behavior.
(a) The observable as a function of a slip to radius ratio, keeping
all the other parameters fixed. The plot is normalized to its no-
slip value. (b) Predicted values of the observable times temperature
squared (to account for the thermal dependence of viscosity [43])
for doped graphene with various chemical potentials μ. In the given
range of dopings, the temperatures at which peaks occur lie in the
hydrodynamic regime for graphene [6], which makes it feasible to
measure the effect. The values of parameters used to generate the
plot coincide with [14]; all the plots are normalized by the room-
temperature value of the observable (T = 293 K). The sample radius
is 5 μm.

be a temperature in which the potential difference between the
electrodes (divided or multiplied by T 2 for charge neutral and
doped cases respectively, to get rid of thermal viscosity de-
pendence) is maximal. Then, the slip length is approximately
equal to 0.36R at this temperature.

V. CONCLUSIONS AND DISCUSSION

In this paper we investigated the role of barriers on the
channel walls as a tool to control boundary conditions in
electronic flows. Through a numerical analysis we showed
that in a system with large slip length, allowing in principle
large velocities on the flow boundaries, we can nonetheless
effectively realize a no-slip flow by introducing perpendicular
barriers. The main motivation for this comes from the fact that
a large slip at the boundary hinders the hydrodynamic nature
of the flow. As a result in graphene, where the slip velocity is
believed to be large, the flow profile should depart from the
parabolic Poiseuille profile. Engineering the no-slip boundary
condition should facilitate the experimental observation of
viscous hydrodynamics.

φ1φ2

FIG. 12. Experimental setup proposed to extract the value of
the microscopic slip length. The current flows between a pair of
contacts on opposite sides of circle diameter, and the electrochemical
potential difference φ2 − φ1 is measured between two points

In a more general context the message is that the properties
of the surface affect the slip on the boundary. We have shown
that the analysis of boundary conditions in the context of
electronic fluid flow has to be modified to account for a
mesoscopic boundary curvature and roughness as well as
the boundary shape. As a result the effective slip velocity is
not given purely by microscopics but rather a combination
of the microscopic slip length and submesoscopic as well
as mesoscopic curvature. We have constructed an explicit
solution and the corresponding charge current under a general
assumption of different effective slip lengths at the boundaries
of the two-dimensional flow.

The contribution of the curvature is not limited to meso-
scopic radii, in fact a submesoscopically rough surface will
also contribute to the effective slip. The consequences of this
contribution have been ignored so far. A question that arises
is when this is a legitimate thing to do. The answer is that we
can ignore the microscopic roughness for boundaries which
are characterized by a very diffuse scattering. One example
may be the case of delafossite metals, where the samples
are produced from flux-grown single crystals by focused
ion-beam etching. Ion beams produce boundaries which are
diffuse. The microscopic slip-length contribution dominates
over the geometric component and is well approximated by a
no-slip condition. On the other hand bilayer graphene devices
are prepared using lithography and a subsequent etching pro-
cesses. The boundary scattering is not efficient in dissipating
momentum, which results in a large microscopic slip length—
which may be comparable to the system size. In this case the
mesoscopic, geometric contribution, being of the same order
of magnitude, is important and should not be ignored.

Finally we studied a flow of electrons through a circular
junction—a system with a fixed mesoscopic curvature. We
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found that, in analogy with the flow through a constriction,
the hydrodynamic scenario provides for uniformly efficient
transport. On the other hand, ballistic transport exhibits res-
onances attributed to special trajectories inside a junction
corresponding to classical paths from the entrance to the
exit of the junction. In hydrodynamics, because of frequent
collisions between particles, the flow through the constriction
is smooth.

To sum up, the setups with curved boundaries possess the-
oretical and practical advantages over their straight-bounded
counterparts for studying viscous electronic flow. They may
provide crisp signatures of viscous-to-ballistic crossover (res-
onant conductance in ballistic regime vs smooth in hydro)
and they offer a possibility to directly experimentally access
the microscopic slip length. As such, they call for more
experimental attention than they have received so far.
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APPENDIX A: SOLUTION IN A CHANNEL
WITH PERPENDICULAR OBSTACLES

Following the procedure developed in [21], we introduce
the ansatz �(x, y, t ) = �̂(x, y) ei ω t , from which we obtain an
equation for the spatial part of the stream function,

�2 �̂ = ���̂, (A1)

with � = (iω+γ )(h/2)2

η
. Note that for zero frequency � = � is

used in main text. This is the nonhomogeneous biharmonic
equation for the complex function �̂. We are interested in the
real (physical) part of the complete stream function, which is
given by

Re[�] = Re[�̂] cos(ω t ) − Im[�̂] sin(ω t ). (A2)

We solve Eq. (A1) for different values of the slip parameter
and in different driving frequency regimes. In order to do
so, we use the method of eigenfunction expansion and point
match [22]. Based on the symmetries that the geometry of the
channel imposes on the stream function, we define α = nπ

b
and β = nπ and propose an ansatz solution of the form

�(x, y) = sinh(
√

� y) − √
� cosh(

√
�)y

sinh(
√

�) − √
� cosh(

√
�)

+ A0

[
y − sinh(

√
�y)

sinh(
√

�)

]

+
∞∑

n=1

An cos(αx)Pn(y) +
∞∑

n=1

[Bn sin(βy) Qn(x) + x Cn sin(βy) Tn(x)]. (A3)

The first term corresponds to the solution for a flat channel [14] and the second term introduces a possible correction due to the
presence of the obstacles. The functions Pn(y), Qn(x), and Tn(x) are given by

Pn(y) = [
e
√

α2+� (y−1) − e−√
α2+� (y+1)

] − 1 − e−2
√

α2+�

1 − e−2α
[eα(y−1) − e−α(y+1)],

Qn(x) = e
√

β2+� (x−b) + e−
√

β2+� (x+b), Tn(x) = e−β(x+b) − eβ(x−b).

We impose a fixed value for the stream function on the top
and bottom walls and on the obstacles, ψ (x,±h/2) = ±1.
Additionally we impose the slip boundary condition exactly
on the top and bottom walls of the channel. For x = b we
choose N equally spaced points along this line and impose the
boundary conditions there. Next, we truncate the series in the
stream function up to N terms, so that the problem reduces to
solving a (3N + 1) × (3N + 1) resulting linear system. Once
the coefficients An, Bn, and Cn are obtained, the streamlines
indicate the direction of the electron flow.

APPENDIX B: STABILITY

We want to analyze how the geometric contribution to the
slip length influences the stability of a flow (see Figs. 13–
15). For negative curvature we expect that the flow will be
stabilized as this case corresponds to a previously studied
[37] case of positive small slip lengths. However, the case

of positive curvatures, which can result in negative effective
slip, has not been investigated and it may destabilize the
Hagen-Poiseuille flow. To address this problem we employ
linear stability analysis. In order to do so we find it convenient
to use the stream function formulation of the Navier-Stokes
equations and write down the Orr-Sommerfeld problem for
linear perturbations [34–36],

� = ψ0 + ψ. (B1)

This is an eigenvalue equation describing the linear two-
dimensional modes of disturbance to a viscous parallel flow.
The perturbation has a wavelike structure

ψ = exp[iα(y − ct )]. (B2)

The frequency ω = αc is in general a complex number.
Its imaginary part determines the stability of the flow—if it
is positive for some values of wave number α or Reynolds
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0.2 0.4 0.6 0.8 1.0 1.2
α

�0.03

�0.02

�0.01

0.01
λ�Im�αc�

FIG. 13. Dispersion curves of the Poiseuille flow for various
Reynolds numbers. Green corresponds to Re = 5000, blue to Re =
8000, and red to Re = 10 000 with η = 1, ξ1 = ξ2 = −0.08. We
plot the dispersion relations for the modes which have the biggest
imaginary part of frequency—the dominant modes.

number Re, it indicates the existence of an unstable mode.
This, once excited, will exponentially grow in time, ulti-
mately destroying the solution. The flow is unstable if one or
more eigenvalues c have a positive imaginary part. Therefore,
our goal is to check if such unstable modes are present,
given the geometric contribution to the effective slip. The
Orr-Sommerfeld equation for perturbations around the basic
Hagen-Poiseuille flow reads

1

iαRe

(
d2

dy2
− α2

)2

ψ − U

(
d2

dy2
− α2

)
ψ + U ′′ψ

= − c

(
d2

dy2
ψ − α2

)
ψ, (B3)

where U is the basic flow solution around which we perturb
and U ′′ is the second y derivative of U . We discretize the above
equation using Chebyshev polynomials. The eigenfunctions
are expanded in a basis defined on an interval {−1, 1} and
we require that the equation (B3) is satisfied at the Gauss-
Lobatto collocation points y j = cos(π j/N ). The final result
is a generalized eigenvalue problem of the form

A a = c B a. (B4)

0.2 0.4 0.6 0.8 1.0 1.2
α

�0.1

0.1

0.2

0.3

0.4

0.5

0.6

λ�Im�αc�

FIG. 14. Dispersion curves of the Poiseuille flow for Re = 5,
with η = 1, ξ1 = ξ2 = −0.55.

0.2 0.4 0.6 0.8 1.0 1.2
α

�0.05

�0.04

�0.03

�0.02

�0.01

0.01

λ�Im�αc�

FIG. 15. Dispersion curves of the Poiseuille flow for various
Reynolds numbers. Magenta corresponds to Re = 960, dark blue to
Re = 1000, and red to Re = 1500 with η = 1, ξ1 = −0.1, ξ2 = 0.1.
We plot the dispersion relation of the dominant modes.

Because the channel width is not the same as before, we
need to construct the Poiseuille profile with the slip boundary
conditions (7) at {−1, 1}. The solution reads

U (y) = 1

2η
Ũ (y)

∂ p

∂x
, (B5)

where

Ũ (y) = 1 − y2 +
(

2ξ2 − 2ξ1

2 + ξ1 + ξ2

)
+

(
2ξ2 + 2ξ1 + 4ξ1ξ2

2 + ξ1 + ξ2

)
.

(B6)

Our equation is fourth order in the derivatives, hence, we need
to supplement two boundary conditions ψ (1) = ψ (−1) = 0.
Following the standard procedure we remove the first and the
last two rows of the discretized equation to add boundary con-
ditions and use N = 100 collocation points. When both our
slip lengths are zero we recover the usual instability around
α = 1 for Re = 10 000. If both slip lengths are small, and
positive, they stabilize the flow in accordance with previous
studies [37]. However, negative slip lengths have a destabi-
lizing effect: The instability is more pronounced the higher
the absolute value of negative slip lengths. The same phe-
nomenon is present if one boundary has a negative curvature,
when even for quite low Reynolds numbers the flow becomes
unstable.

APPENDIX C: INFLOW/OUTFLOW PROBLEM
IN A CIRCULAR JUNCTION

We consider the hydrodynamic flow inside a disk of unit
radius. We construct a Fourier series solution from fundamen-
tal solutions of the biharmonic equation [44],

�(r, θ ) = a0 + b0r2 +
∞∑

n=1

(anrn + bnrn+2) cos(nθ )

+
∞∑

n=1

(cnrn + dnrn+2) sin(nθ ). (C1)
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The coefficients a0, b0, an, bn, cn, dn are determined from the
boundary conditions. In the problem of a flow through a disk,
the boundary conditions are of the form

�(1) = f (θ ), (C2)

∂2�

∂r2

∣∣∣∣
r=1

= ξ − 1

ξ

∂�

∂r

∣∣∣∣
r=1

, (C3)

�(0) = 0. (C4)

We use the slip boundary condition (1) with the slip parameter
depending on the curvature radius. The function f (θ ) is fixed
based on the number of inflow and outflow channels and the
angular separation between them. For one inflow and one
outflow contact corresponding to slit widths ε and ε′ the
function f (θ ) is given by

f (θ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + θ−α
ε′ , α − ε′ < θ < α + ε′

2, α + ε′ < θ < β − ε

1 + β−θ

ε
, β − ε < θ < β + ε

0, β + ε < θ < 2π + α − ε′

. (C5)

In the following we impose the condition that the inflow
and outflow contacts have equal widths ε = ε′. Imposing the
derivative condition on the boundary fixes,

bn = an
n(1 − nξ )

(n + 2)[(n + 2)ξ − 1]
, (C6)

dn = cn
n(1 − nξ )

(n + 2)[(n + 2)ξ − 1]
. (C7)

The condition (C5) allows one to determine an and cn using
the orthogonality condition [45],

an = − (n + 2)[(n + 2)ξ − 1] sin(nε)[sin(αn) − sin(βn)]

πn2ε[2(n + 1)ξ − 1]
,

(C8)

cn = (n + 2)[(n + 2)ξ − 1] sin(nε)[cos(αn) − cos(βn)]

πn2ε[2(n + 1)ξ − 1]
.

(C9)

Finally the condition at the origin fixes a0 = 0. We note
that for the most symmetric configurations with α = 0, β =
π an = bn = 0.

APPENDIX D: STREAM FUNCTION FORMULATION
AND ELECTROCHEMICAL POTENTIAL

In the hydrodynamic regime, the ensemble of electrons is
described in terms of the following equations: The Stokes
equation

∂t u
i − η�ui + γ ui = e

m
∇iχ − 1

m
∇iδμ, (D1)

and the continuity equation

∂ ju
j = 0. (D2)

χ is the electric potential and δμ is the local variation of
the chemical potential giving rise to effective pressure [46],

m, e are the mass and electric charge of a carrier respectively.
In principle, the electric potential above should be not only
the external driving potential but also should contain, even
at the linearized level, a self-consistent term stemming from
variations of a local carrier density [47] that would make
the equations nonlocal. However, since the electric potential
enters in the equations in a special way, we can avoid this dif-
ficulty. First, we define the so-called electrochemical potential

φ = χ − 1

e
δμ, (D3)

which combines both scalar functions in the Stokes equation
into a single one. Real life experiments are usually sensitive
to the electrochemical potential rather than electric voltage
or chemical potential alone [11,46]. Taking that into account,
the Stokes equation (D1) is effectively incompressible, and
the gradient of electrochemical potential can be decoupled
from the system. To do this we introduce the stream function
formulation of a viscous equation, in which one acts with
antisymmetrized derivative on the Stokes equation to get rid
of the gradient term. The electrochemical potential can be
computed a posteriori from the solution.

The procedure to do so is the following: We use the stream
function definition

ui = εi j∇ j� (D4)

in combination with the Stokes equation sourced by the elec-
trochemical potential (D3),

∂t u
i − η�ui + γ ui = e

m
∇iφ. (D5)

Then we solve the resulting equation,

∇iφ = m

e
(∂tε

i j∇ j� − η�εi j∇ j� + γ εi j∇ j� ), (D6)

which can be done by simple integration as now � is a known
solution. The function φ is the observed electrochemical
potential.

APPENDIX E: EPL SLIP DERIVATION

Let us present the basic idea behind the EPL boundary
condition. The discussion is based on [30]. The origin of the
modification of the microscopic slip length is the following:
The force acting on the surface of a fluid element due to
friction (drag) on a boundary is

dF j = (βtiu
i )t j, (E1)

with β being the drag coefficient, and t the normal vector,
tangent to the boundary, provided that the boundary is at rest.
This has to equal the viscous force acting on the fluid surface,
given by

dF k = dS�k
i ni, (E2)

where dS is the surface area of our element. Balancing those
two forces yields

(βtiu
i )t j = dS�k

i ni. (E3)

Taking into account that

�i j = η̃(∂iu j + ∂ jui )
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(where η̃ = ηρ is the dynamic viscosity) and projecting the
above on the transverse direction to get a scalar equation we
obtain

uiti|B = ξ0t in j (∂iu j + ∂ jui )|B, (E4)

where the microscopic constants β, dS, η are collected into
a new one—the (microscopic) slip length ξ0, and the subscript
B means that the fields are evaluated on the boundary. u is
the velocity, n is the inward pointing normal, and t is the unit
tangent vector to the surface. Now, one can express t i and ni

by the means of the parametric description of the boundary as
a plane curve x(s),

t = 1

v

d

ds
x, (E5)

1

R
n = 1

v

d

ds
t, (E6)

with v being the norm, i.e., v = | d
ds x|, and R(s) the local

curvature radius4 to obtain the result

uT = ξ0[n j∂ juT + uT /R] (E7)

with uT = uiti. The latter expression can be rearranged into
the familiar form (1) upon defining

ξeff =
(

1

ξ0
− 1

R

)−1

. (E8)

We emphasize that the conventions for curvature radius are
such that for convex domains R > 0 and for concave ones
R < 0.

4Here the curvature R is defined by the means of derivative of
tangent vector in such a way to exhibit a sign difference depending
if the domain is convex or concave. The given definition implies the
standard one, in the sense that |R| = | d

ds t |−1.

The modification of the slip can also be thought of as
coming directly from the tensorial form of boundary condition
(E4) in any curvilinear coordinate system. If one wants to
write it in arbitrary coordinates, it takes the form(

uiti − ξ0

η
�i jt

in j

)∣∣∣∣
B

= 0, (E9)

where the shear stress tensor � is now given in terms of
velocity,

�i j = 2η∇(iu j), (E10)

with ∇ being the covariant derivative.5 Now, let us use polar
coordinates {r, θ} as an example. Let the domain boundary be
a circle of radius R. The normal and tangent vectors are then
basis vectors r̂ and θ̂ respectively so the boundary condition
turns into

uθ − ξ0�rθ = 0. (E11)

The viscous stress tensor evaluated on a boundary of curved
domain is given by

�rθ = η

(
∂uθ

∂r
− uθ

R

)
. (E12)

Plugging this expression back to (E11) allows us to define an
effective slip length (5). So we see how the curvature enters
the boundary condition and modifies slip.

5Mind that although the metric is a flat Cartesian one, the connec-
tion coefficients in arbitrary coordinates may be nonzero.
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