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Quantum phase diagram of Shiba impurities from bosonization
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A characteristic feature of magnetic impurities in superconductors is the existence of a spin- and parity-
changing quantum phase transition (known as “0-π” transition) which has been observed in scanning tunneling
microscopy (STM) and quantum transport experiments. Using the Abelian bosonization technique, here we
analyze the ground-state properties and the quantum phase diagram of an artificial “Shiba impurity” in a one-
dimensional superconductor. Within the bosonization framework, the ground-state properties are determined by
simple solitonlike solutions of the classical equations of motion of the bosonic fields, whose topological charge
is related to the spin and fermion-parity quantum numbers. Interestingly, the same theoretical framework can be
used in the case of a bulk superconductor, where previous results can be rederived in an elegant fashion. Our
results indicate that the quantum phase diagram of a magnetic impurity in the superconductor can be strongly
affected by geometrical and dimensional effects. Exploiting this fact, in the one-dimensional case we propose
an experimental superconducting setup in which a novel parity-preserving, spin-changing “0-0” transition is
predicted.
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I. INTRODUCTION

Yu-Shiba-Rusinov (or simply Shiba) states are localized
subgap states arising in a superconductor due to the local
pair-breaking processes induced by a magnetic impurity [1–4]
or by a quantum dot in superconductor-hybrid nanodevices,
where they are more commonly known as “Andreev bound
states” [5–8]. Recently, these systems have become the focus
of intensive research due to the prediction that Majorana zero
modes (i.e., non-Abelian quasiparticles with potential uses in
fault-tolerant topological quantum computation [9]) could be
realized in a linear chain of magnetic impurities deposited on
top of a superconductor. In these systems, the Shiba states can
overlap along the chain forming a topological “Shiba band”
[10–13], which at low temperatures mimics the physics of the
Kitaev one-dimensional model [14]. Subsequent STM studies
of chains of Fe atoms deposited on top of clean Pb surfaces
have shown compelling evidence for the Majorana scenario
[15–18], generating a lot of excitement.

A salient feature of Shiba systems is the existence of an
experimentally accessible quantum phase transition, known as
the “0-π transition,” determined by the position of the level
inside the superconducting gap: If the Shiba state falls below
the Fermi energy, it becomes occupied and the nature of the
collective ground state changes from an even-parity BCS-like
singlet to an odd-parity spin-1/2 doublet [19]. This parity- and
spin-changing transition has been experimentally observed
both in adatom/superconductor systems with STM techniques
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[20,21] and in superconductor-quantum dot devices via quan-
tum transport experiments [6,8,22–24].

Recent progress in nanofabrication has allowed the real-
ization of ultrathin superconducting epitaxial nanostructures
[i.e., one-dimensional nanowires (1DNWs)] using the prox-
imity effect, where a “hard” superconducting gap has been
induced [25,26]. These advances pave the way for novel tech-
nological applications and can potentially enable the study
of Shiba states in systems with reduced dimensionality. A
question which naturally arises in this context is whether the
different dimensionality or geometrical properties of the su-
perconductor can modify the properties of Shiba systems and
the above-mentioned phase transition. For instance, scattering
processes which are crucial in the one-dimensional (1D) ge-
ometry can be profoundly affected by interactions [27,28] or
interference effects. In a 1D system (such as a proximitized
1DNW), the enhanced effect of correlations might indeed
change the properties of a superconductor, thus modifying the
features of the induced quantum phases.

In this work we implement the Abelian bosonization for-
malism to study the zero-temperature phase diagram of a
Shiba impurity, both in a 1D and in a three-dimensional
(3D) superconductor. Interestingly, within the bosonic rep-
resentation the ground-state properties in both geometries
can be studied in a unified way. In particular for the 1D
case, we propose an experimental device based on proxim-
itized semiconducting 1DNWs with a nearby ferromagnetic
insulator nanowire grown on top (see Fig. 1) to induce a
controllable Shiba state. We predict that this device could
host a novel fermion parity-conserving, spin-changing “0-0”
transition. Our results might have an impact in recent theoret-
ical and experimental developments where Shiba states have
been observed and in recent works where superconductivity is
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FIG. 1. Side view of the 1D semiconductor nanowire (in gray)
proximitized by a bulk superconductor (blue region). An “artificial”
magnetic impurity can be generated in this setup depositing a per-
pendicular ferromagnetic insulator (FMI) nanowire of width d much
smaller than the coherence length ξ1D.

induced in semiconducting nanowires by means of proximity
effect.

II. THEORETICAL MODEL IN 1D

We describe a proximitized single-channel superconduct-
ing 1DNW of length 2LW with the Hamiltonian H = H0 +
H� + H1D

M , where

H0 =
∫ LW

−LW

dx

[∑
σ

�†
σ

(
− ∂2

x

2m

)
�σ + U�

†
↑�↑�

†
↓�↓

]
(1)

describes the “normal” part of the interacting wire. Here,
�σ = �σ (x) annihilates a fermion with spin σ =↑,↓, and
U > 0 is a repulsive Hubbard-type interaction parameter (here
we have used h̄ = 1). For later convenience, we assume a
closed wire with periodic boundary conditions

�σ (x) = �σ (x + 2LW), (2)

and then we take the limit LW → ∞. Linearization of the
1DNW spectrum in a region of width 2� around the Fermi
energy allows us to write the Fermi fields as �σ (x) =
eikF xψLσ (x) + e−ikF xψRσ (x), where kF is the Fermi wave vec-
tor, and ψrσ (x) with r = L(R) are left- (right-)moving chiral
fields slowly varying on the scale k−1

F . We now introduce
the bosonization formalism [29,30] and represent the chiral
fermion fields as

ψrσ (x) = Frσ√
2πa

e−irφrσ (x), (3)

where φrσ (x) are chiral bosonic fields obeying the
Kac-Moody commutation relations [φrσ (x), φr′σ ′ (x′)] =
iπrδr,r′,δσ,σ ′sgn(x − x′), a ∼ k−1

F is the short-distance cutoff
of the continuum theory, and Frσ are standard Klein factors
which ensure the proper anticommutation relations of the
Fermi fields.

To simplify the physical interpretation of these bosonic
fields, it is customary to introduce the transformation

φrσ = 1
2 [φc + rθc + σ (φs + rθs)], (4)

which satisfies canonical commutation relations
[φμ(x), ∂yθν (y)] = −2iπδμνδ(x − y) and where c(s) refers
to charge- (spin-)type operators. Here the convention
r = +1(−1) on the r.h.s has been used for the R(L) branch,
and similarly, σ = +1(−1) for ↑ (↓). Physically, the field

φs(x) is related to the spin density operator

ρs(x) = �
†
↑�↑ − �

†
↓�↓

2

= −∂xφs

2π
+ 1

4πa
[ei2kF xeiφc (eiφs F †

R↑FL↑

− e−iφs F †
R↓FL↓) + H.c.], (5)

while the field θc(x) is the Josephson phase field of the 1D su-
perconductor, related to the charge-current density through the
relation j(x) = −2evcKc∂xθc(x)/π . In terms of these fields,
the Hamiltonian H0 takes a Luttinger liquid form with de-
coupled charge and spin bosonic sectors, i.e., H0 = Hc + Hs,
where (see Refs. [29,30] for details)

Hν = vν

4π

∫ LW

−LW

dx

[
1

Kν

(∂xφν )2 + Kν (∂xθν )2

]
, (6)

for ν = c, s. The parameter Kν encodes the interactions
in each sector [i.e., Kν < 1(Kν > 1) corresponds
to repulsive(attractive) interactions] and physically
controls the decay of the correlation function
〈�rσ (x)�†

rσ (x′)〉 ∼ |x − x′|−(Kc+Ks ). In our particular case,
Kc = 1/

√
1 + Ua/(πvF ), and due to the SU(2) symmetry of

the model, the value of Ks should be constrained to Ks = 1.
On the other hand, vc = vF

√
1 + Ua/(πvF ) is the velocity

of the 1D charge plasmons, and vs is the velocity of the
1D spinons [29,30]. However, for generality purposes, in
what follows we will assume a more generic situation where
both Ks and vs can take different values due to, e.g., the
unaccounted presence of SU(2) symmetry-breaking terms,
and whenever we need to make contact with our specific
model, we will set Ks = 1 and vs = vF .

Proximity-induced superconductivity in the 1DNW is de-
scribed by the term [31–33]

H1D
� = �

∫ LW

−LW

dx [�†
↑�

†
↓ + H.c.]

= �

∫ LW

−LW

dx [ψ†
L↑ψ

†
R↓ + ψ

†
R↑ψ

†
L↓ + H.c.], (7)

where we have neglected the rapidly oscillating terms propor-
tional to e±i2kF x since they average to zero. Physically, the
induced pairing potential � emerges from the integration of
the bulk superconductor and strongly depends on the trans-
parency and disorder of the superconductor/nanowire contact
[25,26,34]. In terms of the bosonic fields, the pairing term
writes

H1D
� = 2�

πa

∫ LW

−LW

dx cos θc(x) cos φs(x). (8)

A simple scaling analysis where we rescale the cutoff a →
a(1 + d�) indicates that H1D

� is a relevant perturbation in the
RG sense, i.e., d�(�)/d� = (2 − 1/Kc)�(�), and flows to
strong coupling as � → ∞ when Kc > 1/2 [35,36].

We now introduce the effect of a classical magnetic im-
purity in the 1DNW. Although this is a well-known problem
studied originally in Refs. [1–3] for the case of a classical spin
in a noninteracting bulk BCS superconductor, here we focus
on an interacting system in a one-dimensional geometry, and
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therefore we expect important differences with respect to the
original works by Yu, Shiba, and Rusinov.

In order to connect our work with concrete experimental
realizations, in what follows we assume that the effect of a
classical spin in the 1DNW can be mimicked by the exchange
field generated by a nearby ferromagnetic-insulator (FMI)
nanowire, grown perpendicularly to the 1DNW [32,37,38]
(see Fig. 1). We assume that the width d of the FMI nanowire
is much smaller than ξ1D, the coherence length in the 1DNW.
Under such circumstances, for all practical purposes the local
exchange field becomes a pointlike perturbation (i.e., an arti-
ficial “magnetic impurity”) from the perspective of the chiral
fields ψrσ (x). In contrast to real magnetic impurities (i.e.,
atoms of Co, Fe, Mn, etc., in the semiconducting nanowire)
whose position and amount is unknown/uncontrolled for
a particular experimental realization, the proposed device
would have the advantage that induced subgap states could be
controlled in situ by changing the magnetization of the FMI
by, e.g., spin currents or external magnetic fields. Therefore,
we assume the following Hamiltonian

H1D
M = V

∫ LW

−LW

dx mz(x)ρs(x), (9)

where V is the average exchange field of the FMI nanowire,
and mz(x) is its dimensionless magnetization (assumed to
be oriented along the z axis) of the magnetic insulator
which takes values between −1 � mz(x) � 1. For concrete-
ness, here we assume a Gaussian magnetic profile mz(x) =
m0exp(−x2/d2), where m0 = ±1. Therefore, under the rea-
sonable assumption that k−1

F � d � ξ1D, the magnetization
of the STM tip can be approximated by mz(x) ∼ m0d

√
πδ(x).

Note that the assumption k−1
F � d allows us to further sim-

ply our model, since in that case single-particle backscattering
processes (i.e., scattering processes with momentum transfer
�q � 2kF between the R and L branches) can be ignored.
This fact allows us to neglect all rapidly oscillating terms
proportional to ∼e±i2kF x in Eq. (5), since they average to zero.
Note that this fact makes the proposed device very different
from the usual superconductor-quantum dot hybrid devices
[5–8], where backscattering processes are unavoidable and
appear in the form of a non-negligible reflection coefficient
from the quantum dot. Then, in the absence of single-particle
backscattering terms, the spin density operator Eq. (5) can
be approximated as ρs(x) � −∂xφs(x)/2π , and therefore the
bosonized Hamiltonian can be written as

H1D
M = −2

vsδ0

Ks

∂xφs(0)

π
, (10)

where we have defined the phase shift due to the scattering
with the localized exchange-field potential as [39]

δ0 = arctan

(
V m0d

√
πKs

4vs

)
. (11)

We note that in the absence of BCS pairing, the Hamiltonian
H0 + H1D

M is akin to the x-ray edge problem [29,30].
Interestingly, within the bosonization framework the total

spin along the z axis sz and fermion parity of the ground state

P = (−1)J can be obtained from simple expressions in terms
of the bosonic fields:

sz = −
∫ LW

−LW

dx
∂xφs(x)

2π
= −�φs

2π
, (12)

J =
∫ LW

−LW

dx
∂xθc(x)

π
= �θc

π
. (13)

Due to the original periodic boundary conditions [see Eq. (2)],
the following boundary conditions hold for the bosonic fields

φrσ (x + 2LW) = φrσ (x) + 2πnrσ , (14)

with nrσ integer numbers. From here, it is easy to show that 2sz

and J are topological quantum numbers fully characterizing
the ground state of the 1DNW. The relationship of J with
the fermion parity of the ground state can be understood
noting that the periodic boundary conditions impose J + N
mod 2 = 0, with N the total number of particles in the 1DNW
(see Ref. [40]). Since the fermion parity is defined as P =
(−1)N , from the previous relations we obtain P = (−1)J . This
is consistent with the fact that, although N is not a good
quantum number, the pairing Hamiltonian Eq. (7) preserves
the fermionic parity.

III. CLASSICAL EQUATIONS OF MOTION

We now focus on the ground-state properties of the system
when the parameter � flows to strong coupling and becomes
the dominant energy scale [i.e., when it becomes of the order
of the ultraviolet cutoff �(�∗) � �]. To that end, we note that
the Hamiltonian H1D

� only couples the commuting fields φs(x)
and θc(x), and therefore it is easy to see that both fields can
be simultaneously chosen to minimize the energy. This fact
allows us to obtain a well-defined classical limit, from where
useful information about the strongly-correlated ground state
can be extracted.

We now proceed to obtain classical equations of motion of
the system. To that end, we define the canonically conjugated
momenta of the fields φs(x) and θc(x), as �s(x) = 1

π
∂xθs(x)

and �c(x) = 1
π
∂xφc(x), respectively. The Lagrangian density

of the system is therefore expressed as

L(x) = �s(x)∂tφs(x) + �c(x)∂tθc(x) − H(x), (15)

where

H(x) = vc

4π

[
1

Kc
(π�c(x))2 + Kc(∂xθc(x))2

]

+ vs

4π

[
Ks(π�s(x))2 + 1

Ks
(∂xφs(x) − 4δ0δ(x))2

]

+ 2�

πa
cos θc(x) cos φs(x) (16)

is the Hamiltonian density of the 1DNW, obtained directly
from Eqs. (6), (8), and (10), and where we have neglected
a constant (and formally divergent) contribution independent
of the fields. The classical equations of motion for the fields
θc(x) and φs(x) are given by the Euler-Lagrange equations
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∂μ
∂L

∂ (∂μϕ) = ∂L
∂ϕ

, which in the static case yield

∂2
x φs(x) = − g

1 − ζ
cos θc(x) sin φs(x) + 4δ0δ

′(x), (17)

∂2
x θc(x) = − g

1 + ζ
sin θc(x) cos φs(x), (18)

where we have introduced the parameter g ≡
8�/[a(vcKc + vs/Ks)], related to the superconducting
coherence length through the relation ξ1D = g−1/2. Note that
the interactions in the 1DNW can also affect the coherence
length through the dependence on the Luttinger parameters
Kc and Ks. Finally, the “helicity” parameter

ζ = vcKc − vs/Ks

vcKc + vs/Ks
(19)

measures the relative stiffness of the θc(x) field versus the
stiffness of φs(x). For ζ < 0, the deformations of θc(x) are en-
ergetically more expensive than those of φs(x), and vice versa
for ζ > 0. Finally, δ′(x) is the derivative of the Dirac delta
function, which has to be interpreted in terms of the approxi-
mant δ(x) = lima→0 f (x, a) as δ′(x) = lima→0 ∂x f (x, a).

Physically, Eqs. (17) and (18) determine the ground-state
configurations of the fields φs(x) and θc(x). Note that the
effect of the impurity potential Eq. (10) is fully encoded
in the 4δ0δ

′(x) term, which introduces an inhomogeneity in
the φs(x) field at the origin. The classical energy of these
static solutions is obtained by replacing them directly into
the classical Hamiltonian density Hcl(x), which follows from
H(x) after setting the canonically-conjugated momenta to
zero, i.e. �s(x) = �c(x) = 0. Then, the expression of the
classical ground state energy is

E =
∫ LW

−LW

dx Hcl(x). (20)

Unfortunately, Eqs. (17) and (18) do not have a generic
analytical solution. In order to gain physical insight, in the
following sections we explore different cases, where simple or
approximate analytical solutions can be found: (A) Absence
of impurity, (B) helical point ζ = 0, and (C) approximate
results for finite ζ .

IV. RESULTS

A. Absence of impurity (case δ0 = 0)

As a pedagogical preparation to understand the more in-
volved case of a classical impurity in a superconductor, it is
instructive to analyze first the clean (albeit interacting) super-
conducting 1DNW. In the absence of the magnetic impurity,
the last term in Eq. (17) vanishes, and the most relevant
solutions at low energies are:

(1) The uniform and topologically-trivial solutions:(
φ(0)

s , θ (0)
c

) = (πm, πn), (21)

where (m, n) are integer numbers (even,odd) or (odd, even).
These uniform solutions minimize the pairing term H1D

� ∼
� cos φ(0)

s cos θ (0)
c in Eq. (8) and physically represent the

“classical” BCS ground state (i.e., the filled Fermi sea of
Bogoliubov quasiparticles). Evaluating the net z component of

FIG. 2. Quantum phase diagram and lowest energy branches as
functions of the phase shift δ0 of the 1DNW system at the helical
point ζ = 0. At the critical point δc

0 = π/4, a “0-0” transition occurs
from an even-parity singlet state to an even-parity sz = −1 state.
There is no spin doublet phase.

the spin and the fermion-parity index J of these configurations
from Eqs. (12) and (13), respectively, yields

sz = −
∫ LW

−LW

dx
∂xφ

(0)
s (x)

2π
= 0, (22)

J =
∫ LW

−LW

dx
∂xθ

(0)
c (x)

π
= 0, (23)

in agreement with the fact that the BCS ground state has
zero total spin and even fermion parity, corresponding to a
condensate of Cooper pairs (i.e., a global singlet). The energy
of these solutions is obtained replacing the above solutions
into Eq. (20)

E0 = 2�

πa

∫ LW

−LW

dx
[

cos φ(0)
s cos θ (0)

c + 1
] = 0, (24)

where we have substracted a uniform background contribution
so that these uniform configurations define the zero of energy.
Quantum corrections computed on top of these solutions give
rise to the standard (gapped) superconducting spectrum [41].

(2) Soliton or kink-type solutions, corresponding to config-
urations in which the fields are localized at a particular mini-
mum for x → −LW [i.e., (φs(−LW), θc(−LW)) → (πn, πm)]
but which develop a discrete “kink” to a neighboring mini-
mum at some point along the x axis. These configurations
naturally have higher energy, and we will discuss them in
better detail in the following sections (limit δ0 → 0 in Figs. 2
and 3). The kink can occur either:

(a) Only in the field φs. In this case, a jump of size ±2π

occurs in φs while the other field θc remains unaffected, and
the corresponding kink connects the minima (πn, πm) →
(π (n ± 2), πm). From Eqs. (17) and (18), the quantum num-
bers associated to this solution are sz = ∓1 and J = 0, and we
conclude that these are solutions with even fermion parity and
spin 1.

(b) Simultaneously in both fields: the kink connects the
minima (πn, πm) → (π (n ± 1), π (m ± 1)). These kinks im-
ply that sz = ∓ 1

2 and J = ±1, and therefore they represent
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FIG. 3. Energies of the different kink configurations for the in-
teracting 1D system and for ζ = −0.4. At δ0 = δ

(1)
0 (δ(2)

0 ) the system
exhibits a phase transition from an even-parity singlet state to an
odd-parity spin-1/2 doublet (odd-parity spin-1/2 doublet to an even-
parity triplet).

solutions where the ground state has odd fermion parity and
spin 1/2.

(c) Only in the field θc. In this case, the correspond-
ing kink connects the degenerate minima (πn, πm) →
(πn, π (m ± 2)). The associated quantum numbers are sz = 0
and J = ±2, meaning that these are spin 0 solutions with even
fermion parity.

B. Solutions at the helical point

At the so-called “helical point” ζ = 0, analytical solutions
of Eqs. (17) and (18) can be obtained. To motivate this
discussion, we can define the new fields

φ± = 1
2 (φs ± θc), (25)

θ± = 1
2 (θs ± φc), (26)

in terms of which the Hamiltonian terms in Eqs. (6), (8), and
(10) become

H0 =
∫ LW

−LW

dx

{
Kφvφ

4π

∑
μ=±

(∂xφμ)2 + 2ζ∂xφ+∂xφ−

+ Kθvθ

4π

[∑
μ=±

(∂xθμ)2 + 2λ∂xθ+∂xθ−

]}
, (27)

H1D
� = �

πa

∫ LW

−LW

dx [cos 2φ+ + cos 2φ−], (28)

H1D
M = − 2vsδ0

πKs
[∂xφ+(0) + ∂xφ−(0)], (29)

where we have defined the quantities Kθvθ = (vc/Kc + vsKs),
Kφvφ = (vs/Ks + Kcvc), and the parameter

λ ≡ (vc/Kc − vsKs)

(vc/Kc + vsKs)
, (30)

which, since it is associated to the canonical momenta ∂xθμ/π ,
will not appear at the level of the static equations of motion
and therefore will be ignored in the following.

Note that when ζ = 0, Eqs. (17) and (18) decouple and
become

∂2
x φμ = − g

2
sin 2φμ + 2δ0δ

′(x). (μ = ±) (31)

This decoupling of fields φ+(x) and φ−(x) is also evident in
Eqs. (27)–(29). In addition, note that in the absence of impu-
rity, δ0 → 0 and Eq. (31) takes the form of the celebrated sine-
Gordon equation, whose solutions are very well known [41].

To solve Eq. (31) for a generic δ0, we express the fields
φ±(x) as

φμ(x) = ημ

π

2
+ 2δ0�(x) + ϕμ(x) (μ = ±), (32)

where the unit-step function �(x) allows us to eliminate
the term δ′(x) in (31) and where ϕμ(x) is a continuous and
smooth function at x = 0. Note that the composite solitonlike
functions

ϕμ =
{

2 arctan eημ
√

g(x−x0 ) for x < 0,

2 arctan eημ
√

g(x+x0 ) + πημlμ − 2δ0 for x � 0,

(33)
are exact solutions of Eq. (31) (see also Appendix A). This
is one of the central results of our work. Here, ημ = ±1 is
an integer which determines the nature of the solution: either
soliton (ημ = +1) or antisoliton (ημ = −1). In addition, the
integer lμ = 0,±1,±2, . . . determines the different minima
of the cos 2φμ potential in Eq. (28). Finally, x0 is a parameter
which must be chosen so that the continuity condition at the
origin ϕμ(0−) = ϕμ(0+) is verified. From this condition we
obtain the equation

arctan[sinh(ημ

√
gx0)] = δ0 − ημlμ

π

2
, (34)

from where x0 is obtained. Once the value of δ0 and ημ are
fixed, the integer lμ becomes restricted to only two possibili-
ties since the left hand side of Eq. (34) can only vary between
−π/2 and π/2.

Of special importance here is the physical meaning associ-
ated with the topological charge of the solitonlike solutions
(32) and (33). Replacing them into Eqs. (12) and (13), we
obtain

sz = −1

2

∑
μ=±

ημ(lμ + 1), (35)

J =
∑
μ=±

(μ)ημ(lμ + 1). (36)

In addition, replacing them into the expression of the classical
energy Eq. (20) allows us to obtain

E (δ0) =
∑
μ=±

E (ημ,lμ)
μ (δ0), (37)
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where

E (ημ,lμ )
μ (δ0) = vs

2πKs

∫ LW

−LW

dx

[
(∂xφμ − 2δ0δ(x))2

+ g

2
(cos 2φμ + 1)

]
, (38)

where we have substracted the constant background term, as
in Eq. (24), so that the ground-state energy for δ0 = 0 (i.e.,
decoupled impurity) is zero.

Therefore, the integers ημ and lμ determine the topological
quantum numbers sz and J in the ground state and refer to
a particular “energy branch” E (ημ,lμ )

μ (δ0) associated to those
quantum numbers (see Fig. 2). Interestingly, in the limit
LW → ∞ the function E (ημ,lμ )

μ (δ0) has a simple analytical
expression

E (ημ,lμ )
μ (δ0)

2�sc
= 1 − sign(x0)

∣∣∣∣sin

(
δ0 − πημlμ

2

)∣∣∣∣, (39)

where we have defined �sc ≡ vs
√

g
πKs

.
With the knowledge of these solutions, we can now return

to the original fields φs(x) and θc(x) through the relations (25)
and (26). Note that since Eq. (31) is identical for φ+ and
φ−, it is easy to see that these solutions must be degenerate.
Then, at the helical point ζ = 0, the classical ground-state
configurations for the original fields are

φs(x) = φ+(x) + φ−(x) = 4δ0�(x) + ϕ+(x) + ϕ−(x), (40)

θc(x) = φ+(x) − φ−(x) = 0, (41)

i.e., while φs(x) strongly depends on the value of δ0; at the
helical point ζ = 0 the field θc(x) is fixed to one of the trivial
configurations (i.e., θ (0)

c = 0) and remains unaffected by the
impurity.

In Fig. 2 we show the three lowest energy branches of the
system as functions of the phase shift δ0 at the helical point
ζ = 0. The total ground-state energy is given by the sum of
the lowest degenerate branches at a particular value of δ0.
For δ0 < π/4, the ground-state energy is given by EGS(δ0) =∑

μ E (−1,−1)
μ (δ0) and corresponds to an even-parity singlet

phase with topological numbers sz = 0 and J = 0 (see blue
line in Fig. 2). On the other hand, for δ0 > π/4 the ground
state switches to a magnetic branch (topological number
sz = −1), with even fermion-parity (J = 2), and its energy
is EGS(δ0) = ∑

μ E (+1,0)
μ (δ0) (black dashed line). The value

δc
0 = π/4 indicates a critical point at which the ground-state

branches cross. This constitutes a transition that preserves
parity but not the spin, in stark contrast to the known case
in 3D (see Sec. V), and for that reason we dubbed it “0-0”
transition. This result can be understood due to the presence
of two independent bosonic modes φ±(x) in a 1D geometry.
Physically, these modes are related to the fermionic bilinears
cos 2φ+ ∼ ψ

†
R↑ψ

†
L↓ and cos 2φ− ∼ ψ

†
L↑ψ

†
R↓, each one capable

of binding independently one Shiba state with sz = −1/2
at the critical point. Therefore, this transition occurs when
these two Shiba states simultaneously cross the Fermi energy
and become occupied. Thus, the spin quantum number of
the ground state jumps from sz = 0 to sz = −1, whereas the
ground-state parity remains unchanged. Note that for this

transition to be observed it is crucial to avoid the mixing
of the fields φ±(x), something that requires that the mag-
netization profile induced by the FMI nanowire in Fig. 1 is
sufficiently smooth and extended as compared to the scale of
k−1

F , in order for the single-particle backwards scattering terms
∼ei2kFxeiφc (x) are suppressed.

Finally, it is interesting to explore the effect of the exper-
imental details on the 0-0 transition at the helical point. In
particular, from Eq. (11) it is easy to see that the critical point
δc

0 = π/4 is obtained for

V m0d
√

π = 4vs

Ks
. (42)

In other words, the critical point can be tuned either by in-
jecting spin currents in the FMI nanowire, which would have
the effect of modulating the induced exchange field V through
spin transfer torques [42,43], or by changing the width d of
the FMI nanowire. In addition, note that the critical point also
depends on the interactions through the parameters vs and Ks.
We stress that this effect is unique of the 1D geometry and has
no analog in the 3D case.

C. Approximate results for finite ζ

In this Section, we provide approximate results at finite
helicity ζ . As mentioned before, finding analytical solutions
for the generic case of Eqs. (17) and (18) is a hard task.
Intuitively, a finite ζ results in a highly nontrivial coupling of
the fields φ+ and φ−, as is evident from Eq. (27). Therefore,
we return to the equations of motion (17) and (18) in terms of
the fields φs and θc. In Sec. IV A we discussed topologically
nontrivial solutions in the case of a clean superconductor (i.e.,
δ0 = 0), which were classified according to their topological
quantum numbers sz and J (cases a, b, c in Sec. IV A).
Here, we will construct approximate ansätze that describe the
correct physical behavior of the fields in the case of a finite δ0,
built upon cases a, b, and c when δ0 = 0.

Note that generically θc(x) is a smooth and continuous
function at x = 0, and therefore should satisfy the boundary
conditions θc(0−) = θc(0+) and ∂xθc(0−) = ∂xθc(0+). On the
other hand, the field φs(x) must satisfy the conditions (see
Appendix A)

φs(0
+) − φs(0

−) = 4δ0, (43)

∂xφs(0
+) − ∂xφs(0

−) = 0. (44)

For a finite δ0, it is easy to see that solutions of type (c) are not
compatible with these boundary conditions, since a constant
φs(x) is inconsistent with Eq. (43), and must be excluded
from the possible anstäze. We therefore seek for approximate
solutions (φ( j)

s , θ
( j)
c ), where j refers to the cases j = a or b in

Sec. IV A. We also define

φ( j)
s (x) = 4δ0�(x) + ϕ( j)

s (x), (45)

where ϕ
( j)
s (x) is a smooth function with continuous derivative

at x = 0. Using the results of Ref. [44], we propose the
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following approximate solutions

θ (a)
c (x) = nπ, (46)

ϕ(a)
s (x) = mπ +

{
4 arctan eηs

√ g
1−ζ

(x−x(a)
0 ) + (ηs − 1)π for x < 0,

4 arctan eηs

√ g
1−ζ

(x+x(a)
0 ) + (ηs − 1)π + ηs2π l − 4δ0 for x > 0,

(47)

and

θ (b)
c (x) = nπ + 2 arctan eηc

√ g
1+ζ

x + ηc − 1

2
π, (48)

ϕ(b)
s (x) = mπ +

{
2 arctan eηs

√ g
1−ζ

(x−x(b)
0 ) + ηs−1

2 π for x < 0,

2 arctan eηs

√ g
1−ζ

(x+x(b)
0 ) + ηs−1

2 π + ηs2π l − 4δ0 for x > 0,
(49)

with (n, m)=(even, odd) or (odd, even). Similarly to the
previous Eq. (33), here ηs corresponds to ηs(c) = +1 for the
solitonlike solution, and ηs(c) = −1 to the antisolitonlike so-
lution. In addition, the integer l = 0,±1,±2, . . . determines
the specific minima of the ∼ cos φs(x) potential in Eq. (8).
For simplicity, the solutions (46)–(49) have been chosen to
converge to the same minimum of H1D

� in Eq. (8), i.e.,
(φ( j)

s (x), θ ( j)
c (x)) −−−−→

x→−∞ (mπ, nπ ). Imposing the continuity

condition for ϕ
( j)
s (x) and its derivative at x = 0, we obtain the

equation:

arctan

[
sinh

(
ηs

√
g

1 − ζ
x( j)

0

)]
= Aj

(
δ0 − ηslπ

2

)
, (50)

which determines the parameter x( j)
0 (here we have defined

Aa = 1 and Ab = 2). Once Eq. (50) is solved for given values
of δ0, ηs, l and the helicity ζ , the solution (φ( j)

s , θ
( j)
c ) is

completely determined. Replacing it into Eqs. (12) and (13),
we obtain the topological quantum numbers sz and J:

s(a)
z = ηs(1 + l ), J (a) = 0, (51)

s(b)
z = ηs

(
1
2 + l

)
, J (b) = ηc. (52)

Note that the solutions of type a(b) correspond to a ground
state with integer (semi-integer) spin sz. In addition, replacing
the solution (φ( j)

s , θ
( j)
c ) into Eq. (16) and integrating, we

obtain (up to a constant contribution):

E (ηs,l )
a (δ0)

= vs

4πKs
16

√
g

1−ζ

[
1 − sign

(
x(a)

0

)∣∣∣∣sin

(
δ0 − πηsl

2

)∣∣∣∣
]
, (53)

E (ηs,l )
b (δ0)

= vs

4πKs
2
√

g

1 − ζ

[
1 − sign

(
x(b)

0

)|sin (2δ0 − πηsl )|

+
√

1 + ζ

1 − ζ
+ 2F

(√
g

1 − ζ
x(b)

0 , ζ

)]
, (54)

where we have defined the dimensionless function

F (y0, ζ ) ≡
∫ ∞

0
dy

[
1 − tanh

(√
1 − ζ

1 + ζ
y

)
tanh (y + y0)

]
.

(55)

In order to compare with the usual superconductor gap in
the spectrum of fermionic quasiparticles, here we define
the single-particle energy gap in the clean case (δ0 = 0)
as the difference between the lowest spin-0 energy branch and
the first spin-1/2 energy branch. Explicitly in our case, this
corresponds to the formula:

2�1D
SC = E (+1,0)

b (0) − E (−1,−1)
a (0) = 2vs

√
g

πKs
, (56)

where we have assumed the helical condition ζ = 0 in order
to appreciate the deviations from helicity in Fig. 2.

The results in this section are summarized in Fig. 3, ob-
tained for the particular value ζ = −0.4. The most important
feature in this figure, as compared to Fig. 2, is the splitting
of the 0-0 transition into two 0-π transitions occurring at the
critical points δ

(1)
0 = 0.65 and δ

(2)
0 = 0.92. This splitting is

concomitant of an intermediate phase with spin sz = −1/2
and odd fermion parity (see light blue region in Fig. 3)
which emerges in between the sz = 0 and sz = −1 even parity
phases. The new critical points δ

(1)
0 and δ

(2)
0 appear, respec-

tively, from the crossing of the branches E (−1,−1)
a and E (+1,0)

b ,
and E (−1,−1)

b and E (+1,0)
a . The new phase appears due to the

stabilization of the odd-parity sz = −1/2 energy branches,
with respect to the ζ = 0 case, a fact that can be physically
understood because for ζ < 0 the deformations of the field φs

become energetically less costly than the deformations of θc.

V. BOSONIZATION OF A SHIBA IMPURITY
IN A 3D SUPERCONDUCTOR

Although our work mainly deals with a 1DNW, it is
illuminating to briefly turn to the well-known case of a mag-
netic impurity in a 3D superconductor [1–3]. Interestingly,
within the Abelian bosonization formalism this problem can
be considered as a particular case of the 1D geometry studied
before. Indeed, for a pointlike magnetic impurity placed at
the origin of a 3D superconductor (described by a spherically
symmetric BCS model), only the s-wave component �s

σ (r) of
the 3D Fermi field couples to the impurity. Then, linearizing
the spectrum around the Fermi energy, we can write [30]

�s
σ (r) = 1

i2
√

πr
[eikF rψLσ (r) − e−ikF rψRσ (r)], (57)
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where 0 � r � ∞ is the radial coordinate. Equivalently, the
half line can be unfolded to the whole axis by defining

ψr,σ (−x) ≡ ψ−r,σ (x), (r = L, R) (58)

and keeping a single chirality for each fermion. This definition
includes the boundary condition ψRσ (0) = ψLσ (0) at x = 0,
which guarantees that �s

σ (x) is finite at the origin. This
procedure is standard and we refer the reader to Refs. [29,30]
for details. In what follows, when treating the 3D case, we will
keep only the branches ψL↑ and ψR↓. Imposing a hard-wall
boundary condition in a sphere of radius R (i.e., �s

σ (R) =
0) induces periodic boundary conditions on the effective
1D chiral fermions, ψrσ (−R) = ψrσ (R). Therefore, we can
write H3D

0 = −ivF
∫ R
−R dx [ψ†

R↓∂xψR↓ − ψ
†
L↑∂xψL↑]. Interest-

ingly, this is the same Hamiltonian that describes the edge
states of a spin-Hall insulator [45]. Upon bosonization, this
Hamiltonian becomes

H3D
0 = vF

2π

∫ R

−R
dx [(∂xφ−(x))2 + (∂xθ−(x))2], (59)

where only the field φ−(x) appears. In addition, since the
(repulsive) interactions are efficiently screened in a 3D su-
perconductor, we have Kc = Ks = 1 and vs = vc = vF , and
the system is automatically at the helical point ζ = 0 seen
in Sec. IV B. On the other hand, it is easy to see that due to
the elimination of the chiral fields ψR↑ and ψL↓, the pairing
Hamiltonian in the s-wave channel writes

H3D
� = �

∫ R

−R
dx [ψ†

L↑(x)ψ†
R↓(x) + H.c.],

= �

πa

∫ R

−R
dx cos 2φ−(x), (60)

where here � is the intrinsic (i.e., originated in the electron-
phonon interaction) pairing interaction.

Finally, the presence of a classical spin is usually
modelled using the s-d Hamiltonian [1–3]: H3D

M =
JSz

2 [�s†
↑ (0)�s

↑(0) − �
s†
↓ (0)�s

↓(0)], where J is the s-d
exchange coupling and Sz = ±S is the z component of
the magnetic impurity S, assumed as an Ising spin. In

terms of the chiral fields, this term writes H3D
M = Jk2

F Sz

2π

[ψ†
L↑(0)ψL↑(0) − ψ

†
R↓(0)ψR↓(0)], where we have

used Eq. (58) and the result limr→0 �s
σ (r) =

kF

2
√

π
[ψLσ (0) + ψRσ (0)]. Again, H3D

M can be absorbed

via the gauge transformation ψL↑(R↓)(x) → ψ̃L↑(R↓)(x) =
e∓i2δ3D

0 �(x)ψL↑(R↓)(x), where

δ3D
0 = arctan

(
JSzρ0π

2

)
(61)

is the s-wave phase shift (note that we have used the definition
of the density of states at the Fermi level ρ0 = k2

F /4πvF ) [4].
Then, in bosonic language we obtain the expression

H3D
M = −2vF δ3D

0

π
∂xφ−(0). (62)

In this way, the connection between H1D and H3D can
be clearly seen: The 3D Hamiltonian is identical to the 1D
Hamiltonian at the point ζ = 0 with half the degrees of free-
dom (i.e., the field φ+(x) is absent, and the system becomes a

FIG. 4. Phase diagram of the Shiba impurity in 3D: energy of the
different branches as a function of the phase shift δ0 [see Eq. (39)]. At
the critical value δ3D,c

0 = π/4 the system exhibits a phase transition
from an even-parity singlet state to an odd-parity spin-1/2 doublet.

helical liquid [45]). Consequently, the classical configuration
of the field φ−(x) is also given by Eq. (31).

For a decoupled impurity (i.e., when δ0 = 0), the ground-
state configuration of the superconductor is described by
a constant φ−(x) = π

2 , which trivially minimizes the pair-
ing term cos 2φ−(x) in Eq. (60). This situation physically
corresponds to the “classical” BCS ground state. Our so-
lutions (32) and (33) precisely recover this behavior for
(η−, l−)=(−1,−1), for which Eq. (34) yields x0 → ∞, and
Eq. (39) yields the energy E (−1,−1)

− (0) = 0 (see continuous
blue line in Fig. 4). This ground state has topological num-
bers sz = 0 and J = 0 (i.e., even-parity singlet), as expected
physically for a BCS superconductor. On the other hand, the
solution with η− = +1 (η− = −1) and l− = 0 corresponds to
a topological kink (antikink) connecting the minima φ− = π

2
at x = −∞ and φ− = 3π

2 (φ− = −π
2 ) at x = ∞, and corre-

sponds to an excited state with sz = −1/2 (sz = 1/2) and
J = −1 (J = 1) (odd-parity doublet). We interpret this state
as having an extra (one less) fermion with respect to the BCS
ground state and has energy E (±1,0)

− (0) = 2�sc (dashed purple
line in Fig. 4). Other excited branches are shown in that figure.
As the value of δ0 is increased, the branches E (−1,−1)

− and
E (±1,0)

− approach each other and eventually cross at the value
δ

3D,c
0 = π/4, signaling a quantum phase transition. This is

precisely the 0-π transition obtained originally in Refs. [1–3],
at which the ground state abruptly changes spin and parity.
Interestingly, our formalism allows us to exactly recover the
critical value of the transition obtained from the crossing of
Shiba levels at zero energy [2,4]

EShiba = ±1 − α2

1 + α2
, (63)

(where α = Jρ0πSz/2). From here, note that the condition
EShiba = 0 precisely corresponds to δ

3D,c
0 = π/4. In addition

to allowing a simple and elegant rederivation of well-known
results, the results presented in this section serve as a sanity
check for the Abelian bosonization method in this context.
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VI. SUMMARY AND CONCLUSIONS

We have studied the ground-state properties and the quan-
tum phase diagram of a classical Shiba impurity in an inter-
acting one-dimensional superconducting nanowire from the
perspective of the Abelian bosonization technique. Quantum
1D systems are qualitatively different from their higher-
dimensional counterparts, and in the present work we have
shown that the quantum phase diagram of a Shiba impurity in
a 1D geometry is strongly modified with respect to the usual
0-π transition expected for bulk superconductors with quan-
tum dots or atomic impurities. In addition, we have considered
the effect of strong correlations on the ground-state properties
of the nanowire, something that is very hard to account for
using other analytical approaches.

For concreteness, we have focused the analysis on a hybrid
heterostructure consisting of a 1D semiconductor nanowire
(1DNW) proximitized by a bulk superconductor which acts as
a source of Cooper pairs, similar to those recently fabricated
and studied in the context of Majorana experiments [25,26].
The effect of an “artificial” magnetic impurity was considered
by assuming the presence of a ferromagnetic insulator (FMI)
nanowire inducing a localized exchange field on a scale
d � ξ1D. Under such conditions, the exchange field acts as
an artificial “pointlike” magnetic impurity inducing subgap
Shiba states, which can be controlled varying the magneti-
zation mz in the FMI nanowire with, e.g., external magnetic
fields or spin-polarized currents.

In particular, as a function of the induced phase shift δ0,
in the helical case ζ = 0 we have found a parity-preserving
“0-0” transition in which the spin of the ground state changes
from sz = 0 to sz = ±1. In the more usual quasiparticle-state
picture, this transition can be interpreted in terms of two
exactly degenerate subgap Shiba states (each hosting a spin-
1/2 Bogoliubov quasiparticle) which become simultaneously
occupied when they cross the Fermi level.

Although the helical point condition (ζ = 0) studied here
is a useful theoretical approximation, it is certainly a highly
idealized situation in experiments and it is interesting to
analyze possible deviations from it. We have studied the case
ζ �= 0, which has the effect of mixing and splitting the above-
mentioned degenerate states, and therefore an intermediate
phase where the ground state has spin 1/2 appears (see Fig. 3).
In addition, backscattering processes originated by the im-
purity (i.e., scattering processes with momentum transfer
�q � 2kF occurring between the R and L fermion branches),
which have been neglected in this work due to the condition
d � k−1

F , can be considered as another type of experimental
“nonideality.” Although it is technically very complicated
to address in detail these processes within our approach,
based on the intuitive picture provided by the noninteracting
fermionic picture, we expect that they will have a similar
effect to a finite helicity, since they mix right and left movers
ψRσ and ψLσ , and therefore they can also lift the above-
mentioned degeneracy at the helical point. A more detailed
study of these effects will be provided in forthcoming works
[46].

As mentioned above, the proposed device depicted in
Fig. 1 is qualitatively different from the usual superconductor-
quantum dot devices and is actually reminiscent of already ex-

isting experimental setups fabricated to observe fractionaliza-
tion of charges in Luttinger liquids [47]. In those experiments,
in order to inject electrons with well-defined energy and
momentum into a 1D nanowire, it was crucial that the length
on the injection contact LS was LS � k−1

F to avoid momentum
transfer processes [47,48]. Although in our case the FMI
nanowire does not inject electrons into the 1DNW (it is an
insulator), it shares the property that single-particle backscat-
tering processes are suppressed. Therefore, we believe that the
experimental requirements to fabricate the device proposed in
this work can be met using the nowadays available experi-
mental growth techniques. The typical experimental values of
k−1

F ∼ 20 nm found in semiconducting nanowires [49], and
the coherence length ξ1D ≈ 260 nm in proximitized nanowires
[50] are encouraging in this respect.

ACKNOWLEDGMENTS

The authors acknowledge support from ANPCyT, PICT
2017-2081, Argentina. A.M.L. acknowledges support from
PIP-11220150100364 (CONICET - Argentina) and Reloca-
tion Grant No. RD1158 - 52368 (CONICET - Argentina). A.I.
gratefully acknowledges support from the Fulbright Founda-
tion and the Hospitality of the University of Maryland where
part of this work was completed.

APPENDIX A: SOLUTION OF THE STATIC DEFECTIVE
SINE-GORDON EQUATION

Consider the static equation

∂2
x φ(x) = −h sin φ(x) + λ∂xδ(x). (A1)

We shall look for solutions of this equation that satisfy the
boundary conditions at infinity

∂xφ(±∞) = 0, (A2)

sin (φ(±∞)) = 0, (A3)

and that have at most a finite discontinuity at the origin. These
conditions ensure that solutions are localized in space and that
their classical energy is finite [41].

Note that in order to account for the presence of the term
λ∂xδ(x), the field φ(x) must allow for extra degrees of freedom
as compared to the kink solution. These extra degrees of
freedom must be fixed with new conditions at x = 0. To obtain
these conditions, we first perform the indefinite integral of
(A1)

∂xφ(x) = −h
∫ x

dx′ sin φ(x′) + λδ(x) + const. (A4)

If, as stated previously, φ(x) has at most a finite jump at
x = 0, then its primitive must be continuous there. Therefore,
taking the limit around the origin we obtain the condition to
be obeyed by the first derivative

∂xφ(0+) = ∂xφ(0−). (A5)

Next, we note that φ(x) itself cannot be continuous, otherwise
its second derivative would give rise to at most a function δ(x)
[and not ∂xδ(x)]. Thus, integrating again around the origin, we
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obtain the second condition

φ(0+) − φ(0−) = λ. (A6)

This equation is perfectly compatible with (A5), which only
fixes ∂xφ outside of the origin.

Conditions (A5) and (A6) can be taken into account with
the change of variables

φ(x) = λ�(x) + ϕ(x), (A7)

where �(x) is the unit-step function and ϕ(x) is a continuous
function with continuous derivatives. In terms of these new
variables, the term λ∂xδ(x) is eliminated from Eq. (A1), and
we obtain

∂2
x ϕ(x) = −h sin [ϕ(x) + λ�(x)]. (A8)

The solutions of this equation, which are compatible with the
conditions (A5) and (A6) can be written as:

ϕη,n(x) =
{

4 arctan eη
√

h(x−x0 ) + ηπ x < 0,

4 arctan eη
√

h(x+x0 ) + ηπ + η2πn − λ x > 0,

(A9)

where n is an arbitrary integer and where η = +1(−1) repre-
sents the kink (antikink) solution. Note that due to the form of
the solution, Eq. (A5) is automatically satisfied. In addition,
here x0 is an extra degree of freedom to be determined using
the condition Eq. (A6). This condition leads to the equation

arctan sinh(η
√

hx0) = λ − 2πηn

4
, (A10)

The left hand side of this equation takes values in the interval
(−π

2 , π
2 ), which puts a restriction on the allowed values of n:

ηλ

2π
− 1 < n <

ηλ

2π
+ 1. (A11)

Since n is an integer, it can only be equal to the roof or ceiling
of ηλ/2π .

The solutions are qualitatively different for the two allowed
values of n. For the roof of ηλ/2π x0 turns out to be positive,
and the solution has a single kink (or antikink) character. On
the contrary, if n is the ceiling of ηλ/2π , then x0 < 0 and
the solution develops a double kink [51]. To better picture the

FIG. 5. Shape of the kinks for different values of γ . Notice that
at γ = 2π the shape changes from 1-kink to 2-kinks configuration.
γ is equal to the topological charge γ = ϕK (∞) − ϕK (−∞).

situation, we plot the kink profile ϕ as a function of the incline
variable γ = 2π (n + 1) − λ, that takes values in (0, 4π ) and
signals the “topological charge” γ = ϕ(∞) − ϕ(−∞). γ is a
real number and therefore ϕ a fractional soliton [51]. For kinks
γ ∈ (0, 2π ) describes simple kinks, whereas γ ∈ (2π, 4π ) is
for double kinks. The kink profiles are depicted in Fig. 5. In
double kinks, the kink separation behaves as −x0 ∼ log( γ

4 −
π ) close to γ = 4π , thus it increases very slowly and must be
close to 4π to become appreciable.

The energy of this excitation is

E = 16
√

h sin2 γ

8
, (A12)

and its topological charge (or spin) is obtained from Eq. (5)

Qη,n = − 1

2π

∫ ∞

−∞
dx ∂xφη,n. (A13)

Inserting the decomposition of Eq. (A7) we obtain

Qη,n = − λ

2π
− ϕη,n(+∞) − ϕη,n(−∞)

2π
= −η(n + 1).

(A14)
Notice that there is a cancellation of the contribution from the
origin and the total topological charge takes an integer value.
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