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Theoretical phase diagram of unconventional alkali-doped fullerides
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By constructing an effective model based on recently calculated ab initio bare interaction parameters, we
study the phase diagram of alkali-doped fullerides as a function of temperature and internal pressure. We use
a slave-rotor mean-field approach at the weak and intermediate coupling limits and a variational mean-field
approach at the strong coupling limit, and find a good agreement with experimental phase diagram. We explain
the unified description of the phase diagram including the proximity of s-wave superconducting state and the
Mott-insulating state, and the existence of Jahn-Teller distorted metallic state using orbital selective physics. We
argue that the double electronic occupation of two degenerate orbitals triggers both s-wave superconductivity
and Jahn-Teller distortion. While the orbital ordering of two electrons causes the distortion, the remaining single
electron in the third orbital causes the metal-insulator transition.
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I. INTRODUCTION

Alkali-doped fullerides with the composition of A3C60,
doped with A = K, Rb, Cs atoms shows the highest crit-
ical temperature about 40 K among the molecular super-
conductors [1–11]. Since the first discovery of the super-
conductivity in K3C60, the A3C60 molecular compounds gain
tremendous attention recently due to their unconventional
phase diagram. Fulleride compounds have been synthesized
into two structures, face-centered-cubic (FCC) structure and
A15 phase [7,9,10]. While C60 molecules are located at the
FCC positions in the FCC structure, they are located at the
body-centered-cubic (BCC) positions in the A15 structure.
Surprisingly, the A3C60 molecular superconductors share a
common electronic phase diagram with that of unconventional
high-temperature cuprate superconductors. The superconduc-
tivity in alkali-doped fullerides (ADF’s) also emerges upon
chemical pressure from Mott-insulator ground state. Further,
Fermi-liquid metallic phase emerges from superconducting
phase upon raising the temperature. However, the alkali-
doped fullerides molecular compounds considered to be un-
conventional with respect to the cuprate superconductors due
to three main reasons. First, the phase diagram of the alkali-
doped fullerides violates the common belief that the phonon-
driven s-wave superconductivity and Mott-insulating state are
incompatible. Second, the appearance of an unconventional
Jahn-Teller metallic phase from a Jahn-Teller Mott-insulating
phase upon applying internal pressure. This unconventional
Jahn-Teller metallic phase shows both quasilocalized and
itinerant electronic behavior simultaneously. Upon decreasing
the internal pressure, this lattice distorted Jahn-Teller metallic
phase makes a crossover to Fermi-liquid phase. Third, the
phase diagram of the BCC structured fullerides show the evi-
dence of co-existence of superconductivity and antiferromag-
netism. These unexpected observations renew the fundamen-
tal question on the pairing mechanism of high-temperature
superconductors.

The recent exciting experimental findings can be summa-
rized as follows. At low temperatures, the A3C60 molecular
compounds show superconductivity with a dome-shaped crit-
ical temperature TC versus the lattice constant. The lattice
constant of both FCC and BCC lattices of C60 molecules,
thus the volume per C60 molecule is controlled by internal
pressure with different sizes of alkali-metal ions. At higher
temperatures, the compound is in either Fermi-liquid phase
or Mott-insulating phase, depending on the internal pressure.
The internal pressure can be quantified by the lattice constant
or the C60 molecular volume. While the compounds are con-
ventional metals for smaller values of lattice constant, they are
Mott insulators for larger values of lattice constant. By further
lowering the temperature from Mott-insulating phase, the
ADF’s show an antiferro magnetic phase transition at around
2.2 and 47 K for the FCC and BCC structured fullerides, re-
spectively [12–15]. In addition, the experiments show a lattice
distortion over a wide range of C60 molecular volume at lower
temperatures for the FCC lattice. The infrared spectroscopy
shows that the Jahn-Teller distortion survives well into metal-
lic phase and at antiferromagnetic transition [11,16–21].

In this paper, we propose an effective theoretical model
for the ADF’s. We use recent bare interaction parameters
calculated from ab initio calculations and a three-orbital Hub-
bard model as a basis for our proposed model. In order to
study the emergence of metallic, superconducting, and Mott-
insulating phases due to the competition between interaction
parameters at weak and intermediate interaction regimes, we
use a slave-rotor mean-field theory. For the spin and orbital
magnetic phase transitions at stronger interaction regimes, we
use an effective spin-orbital model to construct the two-order
parameter Landau energy functional. We find that the driving
force behind the unconventional exotic behavior of alkali-
doped fullerides is the orbital selective physics. The renor-
malization of on-site interactions and Hund’s coupling due to
the electron-phonon interactions induces orbital rich collec-
tive phenomena. This renormalization gives orbital dependent
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FIG. 1. Schematic experimental phase diagram of the FCC struc-
tured alkaline-doped fullerides. The phase diagram is constructed
in temperature-C60 molecular volume space. We use the same ab-
breviations used by the experiments [11]; MJI: Mott-Jahn-Teller
insulator, JTM: Jahn-Teller metal, M: conventional metal, and SC:
superconductor. All solid lines are phase transitions and the transition
between metal and Jahn-Teller metallic phase is a crossover.

behavior for electron dynamics. Our study shows that the
orbital ordering of pairs of electron in two orbitals drive the
Jahn-Teller distortion and the electron correlation in the re-
maining singly occupied degenerate orbital drives the Mott in-
sulator to metal transition. Further, we find that the emergence
of s-wave superconductivity due to the local pairing of elec-
trons in the same orbital critically depends on the Jahn-Teller
phonons. Based on these theoretical observations, we con-
clude that the orbital selective electronic behavior due to the
renormalization of on-site interaction parameters by electron-
phonon coupling causes Mott-insulator, Fermi-liquid, Jahn-
Teller metal, and s-wave superconducting phases proximity
to be each other in alkali-doped fullerides phase diagram.

We summarize our resulting theoretical phase diagram
for the FCC structured fullerides in Fig. 2 in comparison
with a schematic experimental phase diagram in Fig. 1. The
schematic experimental phase diagram is reproduced from
the experimental results from Ref. [11,19]. While Fig. 2 shows
the theoretical phase diagram as a function of scaled tempera-
ture and volume per C60 molecule, Fig. 1 shows the schematic
experimental phase diagram as a function of physical tem-
perature and volume per C60 molecule [11]. The theoretical
phase diagrams for the BCC structured fullerides are given
in Sec. VII. Notice that we constructed the theoretical phase
diagrams for the weak and strong coupling limits separately.
The realistic phase diagram at intermediate C60 molecular
volume range must result from merging of these two phase
diagrams. As a result, an orbital ordered Fermi liquid phase
and a mixed phase of superconducting and antiferromagnetic
can exist in the intermediate molecular volume range. If
a transition from the Mott insulating phase to the orbital
ordered Fermi liquid phase exists at intermediate molecular
volume, it may resemble the experimentally detected phase
transition from the Mott insulating phase to the Jahn-Teller
metallic phase. We dedicate rest of the paper to provide detail
derivation of this theoretical phase diagrams for both FCC and
BCC structured alkaline-doped fullerides.

The paper is organized as follows. In Sec. II, starting with a
three-orbital Hubbard model with electron-phonon interaction

FIG. 2. Theoretical phase diagrams of the FCC structured
alkaline-doped fullerides for weak coupling (a) and strong coupling
(b) limits. Both (a) and (b) has the same temperature scale in
vertical axis. The phase diagrams are constructed in temperature-
C60 molecular volume space. The temperature is scaled with the
hopping amplitude t f of the FCC structured fullerides. Following
abbreviations are used to classify different electronic phases; MI:
Mott insulator, FL: Fermi liquid metal, SC: s-wave superconductor,
AFO: antiferromagnetic orbital order, and AFM: antiferromagnetic
spin order.

term, we construct an effective model for the ADF’s. This
construction is mainly based on the recent ab initio calculation
of bare interaction parameters. In Sec. III, we use a slave-rotor
approach to convert our model Hamiltonain into a coupled
roton and spinon Hamiltonian. Using a mean-field theory, we
decouple the roton and spinon part of the Hamiltonian and
construct the phase boundaries between Fermi liquid metallic,
Mott-insulating, and superconducting phases. In Secs. IV
and V, we introduce an effective strong-coupling spin-orbital
model and construct the free energy using a variational mean-
field theory. In Sec. VI, we study the spin and orbital ordering
transitions by using a Landau energy functional constructed
from the free energy. Finally, we present our conclusions with
a discussion in Sec. VII.

II. THE EFFECTIVE MODEL

As the C3−
60 molecule has a quasi-spherical structure, its

electronic molecular states are spherical harmonics [22,23].
The icosahedral symmetry splits these states into icosahedral
representations [22,23]. The lowest unoccupied molecular
orbitals (LUMO) has three-fold degenerate orbitals. These
LUMO states are separated by about 1.5 eV from highest
occupied molecular orbitals (HOMO). As the next unoccupied
orbital is about 1.2 eV above the LUMO, the three electrons
donated by the alkali-metal ions go to the empty LUMO
states.

For these multiorbital fulleride systems, various types of
interactions between electrons at C60 molecular sites are pos-
sible. These include density-density type interactions such
as on-site and off-site Coulomb interactions, and nonden-
sity type interactions, such as the pair-hopping and spin-
flip interactions. In general, all these interaction terms must
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be included in the microscopic model. Based on ab initio
calculations [24], it has been shown that the off-site Coulomb
interaction strength is about 25% that of the on-site Coulomb
interactions. Further, spin-flip interaction is estimated to be
much smaller than that of the Coulomb interactions. It has
been shown that the off-site Coulomb interaction and the
spin-flip interaction do not play an essential role in driving the
superconductivity [25]. Therefore we neglect both off-site and
spin-flip interactions in our microscopic model. Therefore,
by neglecting both off-site and spin-flip interactions terms,
the electron dynamics of the alkali-doped fullerides can be
represented by a three-orbital Hubbard Hamiltonian with an
additional electron-phonon coupling term

H =
∑
〈i j〉

∑
m

∑
σ

[ti j + (εm − μ)δi j]a
†
imσ a jmσ

+ U

2

∑
i

∑
m

∑
σ

nimσ nim−σ

+ U ′ − J

2

∑
i

∑
m<m′

∑
σ

nimσ nim′σ

+ U ′ + J

2

∑
i

∑
m<m′

∑
σ

nimσ nim′−σ

+ J
∑

i

∑
m �=m′

a†
im↑aim′↑a†

im↓aim′↓ + He−p, (1)

where the electron-phonon coupling term is

He−p =
∑

i

∑
mm′

∑
ν

∑
M

λνV ν
mm′a†

imσ aim′σ [b†
iνM + biνM]. (2)

Here, a†
imσ (aimσ ) is the electronic creation (annihilation) oper-

ator in the orbital m = 1, 2, or 3 with spin σ =↑,↓ localized
at site i, and nimσ = a†

imσ aimσ is the particle number operator.
While ti j is the hopping integral between sites i and j, w = ηt
is the bandwidth, where the number of nearest neighbors η =
12 and 8 for the FCC and BCC lattices, respectively. We con-
sider only the nearest-neighbor hopping ti j = t f , tb between
nearest-neighbor sites on the FCC and BCC C60 molecular
lattices, respectively. The on-site intraorbital interaction U ,
interorbital interaction U ′, and on-site exchange interaction
(bare Hund’s coupling) J , all are related to the molecular
orbital Wannier functions and the bare on-site Coulomb re-
pulsion, as usual. The term He−p represents the interaction
between excess electrons and the Jahn-Teller phonons repre-
sented by the creation operator b†

iνM , where {ν = 0, M = 1, 2}
represents 2-Ag intramolecular Jahn-Teller phonons and {ν =
1, . . . , 5, M = 1, . . . , 8} represents the 8-Hg intramolecular
Jahn-Teller phonons [26–30]. The intramolecular Jahn-Teller
phonon coupling constants are given by λν . Here, V ν

mm′ are
the elements of coupling matrices V ν , which is determined by
icosahedral symmetry [31,32].

The Jahn-Teller coupling induced electron-phonon cou-
pling is extremely important for the ADF’s as it favors
formation of local electron-electron pairs at C60 molecular
sites [33,34]. On the other hand, the bare Hund’s coupling
favors high spin state at a given site. The competition be-
tween the Jahn-Teller coupling and the Hund’s rule determine
the total spin and the possibility of having local pairs at a

TABLE I. Bare interaction parameters for the FCC structured
fullerides taken from Ref. [24]. The units are given in meV.

Volume (Å
3
) w f U U ′ J Uph Jph

722 502 820 760 31 −152 −50
750 454 920 850 34 −142 −51
762 427 940 870 35 −114 −51
784 379 1020 940 33 −124 −51
804 341 1070 1000 36 −134 −52

molecular site. As the effective Coulomb repulsion decreases
due to the electron-phonon interactions, the local electron
pairing is favorable at C60 molecular sites in ADF’s. This
local pairing hypothesis is confirmed by a quantum Monte
Carlo simulations for two-band degenerate orbital Hubbard
model [35]. For the ADF’s, a dynamical mean-field theory
predicts local intraorbital s-wave pairing for larger values of
lattice constants at larger bare Coulomb interactions [25,36].
This double electron occupancy on each molecule at larger
U values, which opposed for usual Mott-Hubbard materials,
is due to the lower effective interaction due to the local
electron-phonon interactions. As the Hartree-Fock and many-
body perturbation theories unable to predict whether ADF
compunds are metallic or not, these studies conclude that
the ADF compounds are on the boarder of Mott-insulator
metal transition [28]. As the orbital degeneracy enhances the
effective hopping parameter, the conductivity depends on both
orbital degeneracy and the filling factors [26,37].

In the atomic limit and the absence of Jahn-Teller electron-
phonon coupling, the electron configuration of C3−

60 molecule
in the ADF’s has three parallel electrons in LUMO states,
favored by the Hund’s rule coupling. However, when the
electron-phonon coupling is present, the bare interaction pa-
rameters are modified by renormalizing them due to the
electron-phonon interactions. In the antiadiabatic limit, using
a standard perturbation theory, the phonon variables can be
eliminated and the resulting electron-phonon interaction term
can be written as [31,32]

He−p ⇒ Uph

2

∑
i

∑
m

nim↑nim↓

+ Jph

∑
i

∑
m �=m′

a†
im↑aim′↑a†

im↓aim′↓. (3)

Notice that the on-site intraorbital interaction and the bare
Hund’s coupling are modified by these phonon integrated
electron-phonon couplings. The bare interaction parameters,
t , U , U ′, J , Uph, and Jph, have already been estimated with ab
initio calculations as a function of lattice constant [24]. These
bare interaction parameters for the FCC and BCC structured
fullerides are tabulated in Tables I and II, respectively. In
Figs. 3 and 4, we plot the interorbital on-site interaction (U ′),
the effective intraorbital on-site interaction (Ue = U + Uph),
and the effective Hund’s coupling (Jeff = J + Jph) as a func-
tion of volume per C60 molecule, taken from Refs. [24]. Notice
that the electron-phonon bare interaction parameters for the
BCC structured fullerides are not available. As evidence from
the Table I, these have relatively weak sensitivity to the C60

155106-3



THEJA N. DE SILVA PHYSICAL REVIEW B 100, 155106 (2019)

TABLE II. Bare interaction parameters for the BCC structured
fullerides taken from Ref. [24]. The units are given in meV.

Volume (Å
3
) wb U U ′ J

751 740 930 870 30
774 659 1020 950 36
791 614 1070 990 36
818 535 1140 1060 37

molecular volume. Therefore we use same electron-phonon
interaction parameters for both FCC and BCC lattices. There
are three major important observations can be drawn from
Figs. 3 and 4. The effective intraorbital interaction Ue de-
creases due to the phonon coupling (Ue < U ) and it becomes
slightly smaller than the bare intraorbital interaction, Ue < U ′.
Due to the phonon-mediated negative exchange interaction,
the effective Hund’s coupling becomes negative, Jeff < 0 for
entire parameter region. This inverted Hund’s rule scenario for
the ADF’s has already been proposed before [38–40]. This
effective Hund’s coupling favors local pairing of electrons
as oppose to the high spin state. This effective parameter
interaction scenario suggests that the electron configuration of
a C60 molecular site is with two electrons in one orbital and the
other one is in one of the remaining two orbitals. As a result,
the net spin of a C60 molecular site is one-half. The size of the
local spin-1/2 state per C60 molecule in the Mott insulating
phase is confirmed by experiments [8,10]. Notice that the
effective intraorbital interaction Ueff curve in Fig. 3 crosses the
interorbital interaction U ′ at a low C60 molecular volume for
the FCC structured fullerides even without changing the sign
of the effective Hund’s coupling Jeff . This seems a violation of
the condition Ue = U ′ + 2Jeff below this molecular volume.
This is an artifact due to our independent interpolation of
the interaction parameters and the neglecting of the other

FIG. 3. The effective interorbital interaction U ′/w f (red,
squares) and effective intraorbital interaction Ue/w f (green, circles)
as a function of the C60 molecular volume for the FCC structured
fullerides. The inset shows the effective Hund’s coupling Jeff/w f , as
a function of C60 molecular volume. The symbols are the calculation
from bare interaction parameters taken from ab initio calculations
[24]. The lines are the interpolation curves that we used in our
calculations.

FIG. 4. The effective interorbital interaction U ′/wb (red,
squares) and effective intraorbital interaction Ue/wb (green, circles)
as a function of the C60 molecular volume for the BCC structured
fullerides. The inset shows the effective Hund’s coupling Jeff/wb, as
a function of C60 molecular volume. The symbols are the calculation
from bare interaction parameters taken from ab initio calculations
[24]. The lines are the interpolation curves that we used in our
calculations.

nondensity type interactions, such as the spin-flip term. Since
the intraorbital interaction U ′ and the effective interorbital
interaction Ue are approximately equal to each other in the en-
tire volume per C60 molecule range, by approximating Ueff ≡
U ′ 
 Ue, the effective Hamiltonian for the ADF systems can
be casted as

H =
∑
〈i j〉

∑
m

∑
σ

[ti j + (εm − μ)δi j]a
†
imσ a jmσ

+ Ueff

2

∑
i

[∑
m

a†
imσ aimσ − Ns

2

]2

+ Jeff

∑
i

∑
m �=m′

a†
im↑aim′↑a†

im↓aim′↓, (4)

where Ns = 6 is the total number of local spin-orbital states.
This is our approximated effective model for the system
that includes phonon contributions. We have neglected the
spin-flip and exchange terms as it has been shown that these
two terms have no effect on superconductivity [25,41]. The
effective interaction parameters as a function of C60 molecular
volume are given in Figs. 3 and 4. The model includes three
competing terms. While the hopping term favors the metallic
state, the effective on-site interaction and the effective Hund’s
coupling compete for the Mott-insulating state and the super-
conducting state, respectively. Notice that the effective Hund’s
coupling is negative due to the phonon contributions, thus
the mechanism of the on-site s-wave pairing is mediated by
the phonons. The tunneling of the pairs by the negative pair-
hopping interaction Jeff in our effective model known as the
Suhl-Kondo mechanism is responsible for the enhancement of
superconductivity due to the interband scattering [42–44]. In
ADF’s, the phonons are localized on own C60 molecular sites
and they do not propagate to neighboring molecules as much
as phonon propagation in usual metal [31]. Even though, the
momentum is well defined in the crystal, the phonons are
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Holstein phonons and their dispersion is flat. As a result, the
conservation of momentum as the electron move through the
lattice system mainly comes from the bare electrons. This in-
dicates that the electron-phonon interaction has a weak effect
on the mass renormalization of electrons. The renormalization
of the electron mass in ADF’s dominantly come from the
Coulomb interactions. We will treat this mass renormalization
through our slave-rotor approach below.

III. SLAVE-ROTOR MEAN-FIELD THEORY

As slave-particle approaches are computationally inexpen-
sive and capable of accounting particle correlations beyond
standard mean-field theories and variational techniques, they
are very popular in tackling strongly correlated particle sys-
tems. In general, the slave-particle transformation enlarges
the original local Fock space of the system onto a larger
local Fock space that contains more states due to the in-
troduction of auxiliary particles. These extra nonphysical
states are removed in enlarge Hilbert space by imposing
constraints in an average way. Based on the studies on the
first slave-particle approach [45], it has been argued that slave-
particle approaches are equivalent to a statistically consistent
Gutzwiller approximation [46–48]. Recently, a constraint-
free, invertible canonical slave-spin transformation has been
proposed for strongly correlated systems [49,50]. This slave-
spin transformation is more effective than other slave-particle
transformations as the basis states of the Hilbert spaces of a
particle on a single site has one-to-one mapping. This one-
to-one mapping excludes the additional constraint equations
in this slave-spin scheme [50]. Instead of slave-particle or
slave-spin approaches, here we use the slave-rotor approach
as it’s mean-field theory is economical for strongly correlated
multi-orbital systems and it is constraint free at half-filling
[51–58]. In this approach, the particle operator is decoupled
into a fermion and a bosonic rotor that carries the spin and the
charge degrees of freedom, respectively. The plan is to find a
simpler description of the strongly correlated nature in terms
of new effective degrees of freedom.

First, the electron operator aimσ that annihilate an electron
with spin σ =↑,↓ in orbital m = 1, 2, 3 at site i is expressed
as a product

aimσ = e−iθi fimσ , (5)

where fimσ represents six auxiliary fermions. This auxiliary
fermion annihilates a spinon with spin σ in orbital m and the
local phase degree of freedom θi conjugates to the total charge
through the “angular momentum” operator Li = −i∂/∂θi,

[θi, Lj] = iδi j . (6)

In this representation, while the rotor operator e−iθi reduces
the site occupation by one unit, the eigenvalues of the Li

correspond to the possible number of electrons on the lattice
site. Notice that the name “angular momentum” is given due
to the conservation of O(2) variable θi ∈ [0, 2π ] but nothing
to do with physical angular momentum of the electrons.
Using the fact that rotons and spinons commute, one can show
that the number operator of the physical particles coincide

with that of spinons;

nimσ = a†
imσ aimσ = f †

imσ fimσ = n f
imσ . (7)

As the eigenvalues of the angular momentum operator l
can have any integer values, one must impose a constraint to
truncate the enlarge Hilbert space to remove unphysical states,

Li =
∑
σ,m

n f
imσ − 3. (8)

This constraint glues charge and spin degrees of freedom
and can be taken into account by introducing a Lagrange mul-
tiplier in the formalism. Notice that the angular momentum
operator Li measure the particle number at each site relative
to the half-filling. In terms of new variables, our Hamiltonian
in Eq. (4) becomes

H = −t
∑

〈i j〉,m,σ

f †
iσ f jσ ei(θi−θ j ) +

∑
imσ

(εm − μ − h) f †
imσ fimσ

+ Ueff

2

∑
i

L2
i + +Jeff

∑
i,m �=m′

a†
im↑aim′↑a†

im↓aim′↓, (9)

where we assume nearest neighbor only hopping ti j = t for i
and j nearest neighbors. Notice that the constraint is treated
on average so that Lagrange multiplier h is site independent.
While one of the effective on-site interaction term simply
becomes the kinetic energy for the rotons, the other on-site ef-
fective interaction term is still quartic. The hopping term now
becomes quartic in spinon and rotor operators as well. As the
slave-rotor transformation is completed, we can now decouple
the effective Hamiltonian using a mean-field description [52].
We defined three mean-field parameters:

�m = Jeff

N

∑
im′ �=m

〈 fi,m′↓ fi,m′↑〉 f , (10)

Qθ =
∑
mσ

〈 f †
imσ f jmσ 〉 f , (11)

Q f = 〈ei(θi−θ j )〉θ ≡ 〈X †
i Xj〉θ , (12)

where i and j are nearest-neighbor sites and Xi = eiθi . We will
impose the condition |Xi|2 = 1 using a Lagrange multiplier
later. The subscript f or θ means that the quantum and thermal
expectation values must be taken with respect to the spinon
and roton sectors, respectively. Here we make the assumptions
that these expectation values are real and independent of bond
directions. This mean-field decoupling allows us to transform
H → Hf + Hθ , where Hθ represents an interacting quantum
XY model and Hf represents an interacting f -particle spinon
part. As the ADF’s are half-filling electronic systems, the
chemical potential μ = 0 and the particle-hole symmetry re-
quires Lagrange multiplier h = 0. Without loss of generality,
we can assume on-site energy is independent of the orbital and
set εm = 0, thus �m ≡ �. The mean-field decoupling scheme
leads the spinon and rotor part of the Hamiltonian to be

Hf = −tQ f

∑
〈i j〉,mσ

( f †
imσ f jmσ + H.c.)

+
∑
im

(�†
m f †

im↑ f †
im↓ + H.c.), (13)
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Hθ = −tQθ

∑
〈i j〉

(X †
i Xj + H.c.) − λ

∑
i

X †
i Xi

− 1

2Ueff

∑
i

(i∂τ X †
i )(−i∂τ Xi ), (14)

where λ is the Lagrange multiplier to impose the condition
|Xi|2 = 1. Notice that the Hamiltonian is now decoupled and
the mean-field parameter Q f renormalizes the hopping term
and related to the renormalized effective mass m∗ = mQ f .
The expectation value of pairing operator, �m represents the
pairing of spinons. Notice that the transformed decoupled
Hamiltonians posses two bosonic fields, X bosons, and pair
of spinons. As both of these fields can undergo Bose-Einstein
condensation, it is possible to have two global U(1) broken
symmetries, one with respect to the roton field and the other
with respect to the spinon field. While the metallic phase
corresponds to the ordering of rotors and thus spontaneously
break the O(2) symmetry, the superconducting phase corre-
sponds to the ordering of both rotons and pair of spinons
simultaneously. The simultaneous disordered rotor and the
pair of spinons corresponds to the Mott-insulating phase.

As the spinon part of the transformed Hamiltonian Hf is
quadratic in f fermions, it can easily be diagonalized. After
performing Fourier transform into the momentum space and
then usual Bogoliubov transformation, the spinon Hamilto-
nian Hf has the form

Hf =
∑
k,m

Ekη
†
kmηkm, (15)

where ηkm represents the Bogoliubov quasiparticle in
the spinon sector and Ek =

√
ε2

k + �2 is the degenerate
eigenvalues.

Here, we defined the bare electronic energy dispersion
for the electron sitting at C60 molecular sites on the FCC
and BCC lattices, εk = −Q f γk , where γk = 4t f [cos(kxa/2)
cos(kya/2) + cos(kxa/2) cos(kza/2) + cos(kya/2) cos(kza/

2)] and γk = 8tb[cos(kxa/2) cos(kya/2) cos(kza/2)], respec-
tively. Notice that we set lattice constant to be a and we have
dropped the unimportant constant term in Hamiltonian Hf .
The Bogoliubov quasiparticle dispersion Ek is independent of
the orbital index at half-filling, as we set εm = 0.

The quantum and thermal expectation value of the Eq. (10)
with respect to the Hamiltonian Hf leads to the gap equation

1

2Jeff
= − 1

N

∑
k

tanh(βEk/2)

2Ek
, (16)

where N is the total number of lattice sites and β = 1/kBT
is the dimensionless inverse temperature with Boltzmann
constant kB and physical temperature T . Summing over
nearest-neighbors and then calculating the expectation value
in Eq. (11) with respect to Hf gives

ηtQθ = 6

N

∑
k

γk

[
1

2
− εk

2Ek
tanh(βEk/2)

]
, (17)

where η = 12, 8 is the number of nearest-neighbor C60 molec-
ular sites of the FCC and BCC lattices, respectively. The
expression in the square bracket is the average electronic
occupation number.

The final self-consistent equation Q f = 〈X †
i Xj〉θ , can eas-

ily be calculated using functional integral approach to the
roton part of the Hamiltonian with the constraint equa-
tion |Xi|2 = 1 [52]. Introducing the rotor Green’s function
Gθ (k, τ ) = 〈Xk (τ )X †

k (0)〉, the constraint equation becomes

1

N

∑
k

1

β

∑
n

Gθ (k, iνn) = 1, (18)

where νn = 2nπ/β are the bosonic Matsubara frequencies. In
coherent state path integral representation, the rotor Green’s
can be written as

Gθ (k, τ ) =
∫ ∏

ki
dXkidX ∗

ki
2π i X (τ )X ∗

k (0)e−Sθ∫ ∏
ki

dXkidX ∗
ki

2π i e−Sθ

, (19)

where time index i labeling runs from 0 to ∞ corresponding to
τ = 0 and β, respectively. The action in the momentum space
associates with the rotor part of the Hamiltonian is given by

Sθ =
∫ β

0
dτ

∑
k

X ∗
k

(
− 1

2Ueff
∂2
τ − λ − Qθγk

)
Xk . (20)

Following the standard path integral formalism, the rotor
Green’s function for the nonzero wave vector is given by

Gθ (k, iνn) = [
ν2

n/Ueff + λ − Qθγk
]−1

. (21)

Notice that following the Ref. [51], a renormalization
of Ueff → Ueff/2 has been performed to preserve the exact
atomic limit. Then writing

1

β

∑
n

Gθ (k, iνn) = Ueff

β

∑
n

1

iνn + √
Ueff (λ − Qθγk )

× 1

−iνn + √
Ueff (λ − Qθγk )

(22)

and performing a suitable contour integration, we find

1

β

∑
n

Gθ (k, iνn) = Ueff

2
√

Ueff (λ − Qθγk )

× coth

[
β

2

√
Ueff (λ − Qθγk )

]
. (23)

Combining this with Eq. (18) and separating k = 0 term in
metallic phase leads the constraint equation to be

1 = Z + 1

2N

∑
k

√
Ueff

λ − Qθγk
coth

[
β

2

√
Ueff (λ − Qθγk )

]
,

(24)

where 0 � Z � 1 is the rotor condensate amplitude which
represents the quasiparticle weight. As the rotor condensa-
tion indicates the transition into the metallic phase, nonzero
quasiparticle weight Z represents the metallic state. In the
noninteracting limit, Z → 1. Finally, summing over nearest
neighbors of Eq. (12) and transforming into Fourier space
leads to

ηtQ f = ηtZ + 1

N

∑
k

γk

β

∑
n

Gθ (k, iνn). (25)
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Completing the contour integration, our final self consistent
equation becomes

ηtQ f = ηtZ − 1

2N

∑
k

γk

√
Ueff

λ − Qθγk

× coth

[
β

2

√
Ueff (λ − Qθγk )

]
. (26)

This Q f is the mass enhancement factor of the quasiparticle,
thus it is proportional to the effective mass of the quasi-
particle m∗ = Q f m, where m is the bare mass of the bare
electrons. As the second term in Eq. (26) is negative, mass
enhancement is always greater than the quasiparticle weight,
Q f > Z at the saddle point level, and remains finite even at
rotor disordered phase where Z = 0 [52]. The self-consistent
equations (16), (17), (24), and (26) allow us to find four
unknown self-consistent parameters, �, λ, Q f , and Qθ as a
function of temperature for given interaction parameters at
different C60 molecular volume. As there are two possible
global U(1) symmetry breaking for the roton and spinon
sectors of the Hamiltonian, the slave-rotor theory for the
ADF’s predicts four distinct electronic phases. These four
different phases can be characterized by two order parameters,
the rotor condensate amplitude Z and the spinon pairing
amplitude �. While the rotor condensate amplitude Z repre-
sents the quasiparticle weight, the spinon pairing amplitude
� represents the phase coherence of spinons. In the metallic
phase, rotors are condensed and the macroscopic fraction of
rotor occupy the lowest energy El = −ηtQθ . As a result, the
quasiparticle weight Z is nonzero and the Lagrange multiplier
or the rotor chemical potential λ = −El is a constant in the
metallic phase. The metallic electronic phase emerges in this
rotor approach is the usual Fermi liquid phase. The quantum
and the thermal phase transition between Fermi liquid and
Mott-insulating phase is then characterized by the vanishing
quasiparticle weight Z at zero spinon pairing amplitude. In the
Mott-insulating phase, the quasiparticle weight Z is zero and
the rotor chemical potential λ > ηtQθ must be determined by
self consistently. As the superconducting phase requires both
metallic behavior and the phase coherence, the superconduct-
ing phase is characterized by simultaneous nonzero values of
Z and �. In addition to the Fermi liquid, Mott-insulating, and
superconducting phases, another distinct phase can exist for
Z = 0 and � �= 0. This additional phase may be similar to the
pseudogap phase seen in cuprate systems as it shows phase
coherent, but insulating behavior [52]. However, we find this
additional phase does not exist for the ADF systems in our
present study, as it becomes antiferromagnetic phase when we
use strong coupling model in Sec. IV.

The metal-insulator boundary line. The Fermi liquid-
Mott insulator boundary in temperature-C60 volume parameter
space is determined by setting � = 0, Z = 0, and λ = ηtQθ

in self-consistent equations. We determine three unknown
parameters; temperature, Q f , and Qθ from Eqs. (17), (24),
and (26). The volume dependence enters in our calculation
through the interaction parameters presented in Figs. 3 and 4.
The solid black line shows this metal-insulator boundary line
in panel (a) of Fig. 2 and panel (a) of Fig. 5 for the FCC and
BCC lattices, respectively.

FIG. 5. Theoretical phase diagrams of the BCC structured
alkaline-doped fullerides for weak coupling (a) and strong coupling
(b) limits. Both (a) and (b) has the same temperature scale in
vertical axis. The phase diagrams are constructed in temperature-
C60 molecular volume space. The temperature is scaled with the
hopping amplitude tb of the BCC structured fullerides. Following
abbreviations are used to classify different electronic phases; MI:
Mott insulator, FL: Fermi liquid metal, AFO: antiferromagnetic
orbital order, and AFM: antiferromagnetic spin order.

The metal-superconductor boundary line. The Fermi
liquid-superconductor boundary is determine by setting � =
0 and λ = ηtQθ in self-consistent equations. We then deter-
mine four unknown parameters; temperature, Q f , Qθ , and Z
from Eqs. (16), (17), (24), and (26). The solid green line
shows this metal-superconductor boundary line in panel (a)
of Fig. 2 for the FCC lattice. The Fermi liquid superconductor
boundary line for the BCC structured fullerides is shown in
Fig. 6.

When we solve our self-consistent equations for the bound-
ary lines, we converted momentum summation into an in-
tegral over the first Brillouin zone by introducing a three-
dimensional density of states, D(ε) = 1

N

∫
d3k

(2π )3 δ(ε + γk ).
The van Hove singularity of the FCC lattice at the band edge
has no effect on our calculation as the integration is truncated
just before the band edge. In addition, in order to construct
smooth boundary lines, we use the interpolation curves for
each volume in Figs. 3 and 4 in our calculations.

FIG. 6. The low-temperature Fermi liquid superconductor tran-
sition for the BCC structured alkaline-doped fullerides in the weak
coupling limit.
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Notice that the self-consistent equations derived in this sec-
tion are valid only for the weak and intermediate interaction
parameters. In the following section, we will use an effective
strong coupling model to construct the phase diagram at larger
C60 molecular volume.

IV. STRONG INTERACTION LIMIT: AN EFFECTIVE
SPIN-ORBITAL MODEL

Using a second-order perturbation approach, an effective
spin-orbital model has been derived for the half-filled three
orbital Hubbard model relevant for the ADF compounds [59].
In this derivation, it is assumed that the exchange process for
singly occupied orbital on neighboring sites are negligible.
For the case of Jeff < 0, the physics is dominated by the
same orbital single occupied sites at neighboring sites. The
remaining two orbitals are either empty or doubly occupied
by the other two electrons at half-filling. Therefore a orbital
pseudospin operator �τi has been introduced to represent the
double occupation at site i. The orbital operator τi at a given
site represents an orbital configuration where one orbital is
doubly occupied, one orbital is singly occupied, while the
remaining one is empty. Thus τ z

i = 1/2 when the given orbital
is doubly occupied and τ z

i = −1/2 when the other one is dou-
bly occupied [59]. In the derivation of effective spin-orbital
model in Ref. [59], the pair-hopping term and spin-flip terms
are neglected. As a result, in the second-order perturbation
theory, the exchange between double-occupied and empty
orbitals does not exist so that τ x

i or τ
y
i terms do not exist in the

effective spin-orbital model. Therefore, by replacing τ z
i → �τi,

the effective spin-orbital model for the stronger coupling limit
can be written as [59]

Heff =
∑
〈i j〉

[
Js �Si · �S j + Jτ �τi · �τ j + Jsτ (�τi · �τ j )S

z
i Sz

j + τszS
z
i Sz

j

]
.

(27)

Notice that this Hamiltonian is a simplified version of the
Hamiltonian derived in Ref. [59]. Here we have neglected
the coupling between projection operators Pi at neighboring
sites. When the coupling between projection operators at
neighboring sites is negative, the expectation value of Pi’s
are uniform. In this case, the spin-orbital structures of the
system is dominated by the Hamiltonian represented by Eq.
(27). Using ab initio calculations for the bare interaction pa-
rameters [24], we calculate the exchange parameters derived
in Ref. [59] as a function of C60 molecular volume.

For the entire molecular volume range, we find the orbital-
orbital exchange parameter Jτ is larger than the spin-spin
exchange parameter Js (Jτ > Js). Further, we find that the
other exchange parameters (Jsτ and τsz) are much smaller
than the orbital-orbital and spin-spin exchange parameters. As
Jsτ , τsz � Js, Jτ , the physics in the strong coupling limit deter-
mines by Js and Jτ . Notice that Jτ > Js for the entire range of
C60 molecular volume, thus one can expect orbital ordering
before the spin ordering as one lowers the temperature.

Notice that the symmetry breaking of the orbital pseudo
spin τ represents the orbital ordering from the orbital disor-
dered phase to an orbital ordered phase where neighboring
sites have the same single orbital occupation and one of the
remaining orbitals have a double occupation. In addition to the

spin sector symmetry breaking state, we are seeking for this
orbital sector symmetry breaking state in the strong coupling
limit. In the following two sections, we construct a two-
order parameter Landau energy functional using a variational
approach to study the magnetic phase diagram of the ADF
molecular compounds.

V. VARIATIONAL MEAN-FILED THEORY
AT STRONG CORRELATION LIMIT

First, we use a variational mean-field approach to de-
termine the magnetic ground state of a generic spin-orbital
Hamiltonian in the form of Heff . Once we identify the
ground state magnetic structure of ADF’s, we then construct
a two-order parameter Landau energy functional to study
the magnetic phase diagram, originating from the competi-
tion between exchange terms in the Hamiltonian Heff and
temperature. Experimentally, a weak long ranged ordered
antiferromagnetic phase has been observed below the Neel
temperature TN ∼ 2 K for the FCC structured fullerides [11].
In contrast, a strong two-sublattice antiferromagnetic phase
has been observed at a higher temperature TN ∼ 47 K for
the BCC fullerides [13,14]. In order to study these magnetic
transitions, we wish to break up the original C60 molecular
lattices into two sublattices A and B, such that the molecules
in each sublattices are only connected to the molecules on
the other sublattice through the nearest-neighbor connections.
For bipartite lattices, the molecular lattice can be divided into
two sublattices such that the molecules in each sublattices are
only connected to the molecules on the other sublattice. In this
notion, the BCC lattice is a bipartite, however, the FCC lattice
is traditionally nonbipartite. For the FCC lattice structure, we
can still divide the lattice into two nontraditional sublattices
as follows. We treat the molecules sitting at vortices of the
FCC lattice belong to the A sublattice and those sitting at the
center of the faces belong to the B sublattice. As a result, our
variational mean-field theory seeks for a strong two-sublattice
magnetism for the BCC structured fullerides and a weak
nonbipartite magnetism for the FCC structured fullerides.
Once we divide the molecular lattice into two sublattices,
we take our normalized variational density matrices for the
sublattices A and B as ρX

sτ = ρs,X ⊗ ρτ,X , where

ργ ,i = 1

2
+ mγ

2

(
sin αγ σ x

γ ±
√

2 cos αγ cos βγ σ z
γ

)
, (28)

where σγ ’s are components of usual Pauli matrices for spin
and orbital sectors, γ = s and τ , and 1 is the identity matrix.
The upper sign is for the sublattice i ∈ A and the lower sign is
for the sublattice i ∈ B.

This choice of density matrix gives us the sublat-
tice spin magnetization (mγ=s) and orbital magnetiza-
tion (mγ=τ ) for sublattices i ∈ A (upper sign) and i ∈
B (lower sign), mγ ,i = Tr(ρ i

sτ �σγ ) ≡ ±ξγ±
√

2mγ cos αγ ẑ +
mγ sin αγ x̂, where ξγ+ = cos βγ , ξγ− = sin βγ . Here, Tr(L)
represents a trace of a matrix L. The four variational parame-
ters αγ and βγ are determined by minimizing the energy E =
Tr(ρs,τ Heff ). The different combination of these variational
parameters provide 16 different combinations for the spin-
orbital model, depending on the set of four variational values
of the each sector γ = s, τ . These 16 different combinations
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provide four distinct ordering patterns for each spin and
orbital sectors. While mγ = 0 represents the disordered or
para-γ ordering, nonzero γ -order parameter mγ represents
a γ -ordering phase. The three γ -ordered pases are XY -
ferromagnetic-γ ordering (αγ = π/2), z-antiferromagnetic-
γ ordering (αγ = 0 and βγ = π/4), and z-ferromagnetic-γ
ordering (αγ = 0 and βγ = −π/4). The values of the vari-
ational parameters depend on the ground state energy that
determines by the exchange interaction parameters in the
effective spin-orbital Hamiltonian Heff .

E = Nη

8

[
Jsm

2
s [sin2 αs − cos2 αs sin(2βs)]

+ Jτ m2
τ [sin2 ατ − cos2 ατ sin(2βτ )]

− Jszm
2
s cos2 αs sin(2βs) + Jsτ

4
m2

s m2
τ cos2 αs cos2 ατ

× sin(2βs) sin(2βτ )

]
. (29)

The entropy contribution to the free energy −T S =
kBT ρs,τ ln ρs,τ ≡ kBT

∑
aγ

λaγ
ln λaγ

, where the four eigen-
values of the density matrix is given by

λaγ
= 1

2
± mγ

2

√
1 + cos2 αγ cos(2βγ ). (30)

In general, the minimization of Helmholtz free energy F =
E − T S for given exchange interaction parameters allows one
to determine the variational parameters, thus the spin and
orbital structures on the FCC and BCC lattices.

VI. LANDAU ENERGY FUNCTIONAL FOR
MAGNETIC AND ORBITAL ORDERS

For the exchange interaction parameters relevant for the
FCC and BCC structured fullerides, we find that the ground
state of ADF compounds are antiferromagnetic-spin (AFM-S)
and antiferromagnetic-orbital (AFM-O). The ground-state en-
ergy for this both spin and orbital AFM ordered state is given
by

E = Nη

8

[
− (Js + Jsz )m2

s − Jτ m2
τ + Jsτ

4
m2

s m2
τ

]
. (31)

The entropy contribution to the free energy −T S =
kBT

∑
aγ

λaγ
ln λaγ

is then determines using the eigen values

of the density matrix, λaγ
= 1

2 (1 ± mγ ). The free enegy F =
E − T S is now a function of two-order parameters, ms and
mτ for AFM-spin order and AFM-orbital order. In order to
find the critical temperatures for the spin and orbital ordering,
we construct a Landau energy functional by expanding the
free energy in powers of ms and mτ and keeping only the
powers upto quartic order. The two-order parameter Landau
energy functional or the free energy per site f = F/N up to
the quartic order is then given by

f = 1
2 Asm

2
s + 1

2 Aτ m2
τ + 1

4 Bsm
4
s + 1

4 Bτ m4
τ + 1

2 Gm2
s m2

τ , (32)

where the temperature dependent constants are given by As =
−η(Js + Jsz )/4 + 2kBT , Aτ = −ηJτ /4 + kBT , Bs = Bτ =
2kBT/3, and G = ηJsτ /16. The spin-orbital phase diagram
can be constructed analytically by minimizing the Landau

energy functional for order parameters ms and mτ . By defining
three new variables, Xs = As/

√
Bs, Xτ = Aτ /

√
Bτ , and � =

G/
√

BsBτ , we find the paramagnetic phase is stable when both
Xs > 0 and Xτ > 0. The AFM-spin and paramagnetic-orbital
phases require Xs to be negative. Similarly, the AFM-orbital
and paramagnetic-spin phases require Xτ to be negative.
The AFM-S and para-O phases require � > Xτ /Xs or � <

max(−1, Xs/Xτ ) when Xτ > 0 and � < min(Xs/Xτ , Xτ /Xs)
or � < −1 with X 2

s > X 2
τ when Xτ < 0. Likewise, the

para-S and AFM-O phase require � > Xs/Xτ or � <

max(−1, Xτ /Xs) when Xs > 0 and � < min(Xs/Xτ , Xτ /Xs)
or � < −1 with X 2

s < X 2
τ when Xs < 0. If none of the above

conditions satisfy, we find both AFM-spin and AFM-orbital
phases, simultaneously. The simultaneous spin and orbital
ordered phases require both or one of the parameters Xs or Xτ

to be negative. Using this criteria for the exchange interaction
parameters, we construct the magnetic phase boundaries for
the ADF’s. These boundary lines are shown in panel (b)
of Fig. 2 and Fig. 5. While the dashed red line shows the
paramagnet to antiferro-orbital transition, the dashed blue
line represents the transition into antiferro-spin state.

VII. CONCLUSIONS AND DISCUSSION

The phase diagrams obtained by solving the weak/

intermediate coupling effective Hamiltonian and the strong
coupling effective Hamiltonian are shown in Figs. 2, 5, and 6.
Our phase diagrams show all the features seen in experimental
phase diagrams [8,11,13,14].

As we have discussed above, both s-wave superconductiv-
ity and orbital ordering originate from the double occupation
of electrons in two-degenerate orbital. The metal-insulator
behavior originates from the singly occupied electron in the
remaining orbital. As a result, the metallic behavior can
survive even below the orbital ordering temperature. Even
though, ADF compounds show Jahn-Teller distortion, there is
no evidence for structural transition across the metal-insulator
transition [7,8,10]. Based on our understanding on transition
metal oxides, when there is an orbital ordering, it accompa-
nies by the Jahn-Teller distortion [60]. The two co-operative
phenomena in transition metal oxides; electronic orbital or-
dering and structural Jahn-Teller distortion are concurrent
[61,62]. In other words, both Jahn-Teller distortion and orbital
ordering occurs simultaneously in transition metal oxides.
It is, therefore, extremely difficult to distinguish the cause
and effect. The parent compound of the colossal magneto-
resistance manganites LaMnO3 and the cubic perovskites
KCuF3 are considered as two classic text-book examples for
these co-operative simultaneous phenomena [63–66]. Here we
argue that the Jahn-Teller distortion detected in experimen-
tal phase diagram is a result of the double electron orbital
ordering in FCC ADF’s. However, unlike transition metal
oxides, single occupied electron in one of the orbitals does not
participate in the orbital ordering. Therefore the ADF systems
can show metallic behavior in the Jahn-Teller distorted phase
too. In this notion, the Jahn-Teller metallic phase in experi-
mental phase diagram resembles our antiferro-orbital ordered
metallic phase. As our strong coupling theory is not valid
for the weak coupling regime, we are unable to find the
crossover transition from the orbital ordered metallic phase
to the usual Fermi liquid phase. On a different note, one can
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argue that the interpretation of Jahn-Teller metal phase is due
to the fact that the timescale of lattice dynamics. When the
timescale of lattice dynamics becomes slow, the molecules
can look distorted within the timescale of experimental probe.
In addition to antiferro-orbital order, we find antiferro-spin
ordering transition at a lower temperature. As a result, the
ADF systems at stronger coupling limit is in a both spin and
orbital ordered phase. Experimentally, the antiferromagnetism
for the FCC ADF’s has been observed at extremely low tem-
peratures [12]. Even below the Neel temperature TN ∼ 2 K,
the specific heat measurements suggest that the suppression of
antiferromagnetism, thus the weak long-range magnetic order
[67]. This suppression of Neel’s order may be partly attributed
to the frustration caused by the nonbipartite nature of the FCC
lattice and the orbital ordering. As our sublattice division for
the FCC lattice is not a traditional sublattice division due to
the nonbipartite nature of the FCC lattice, the antiferromag-
netism in our theory is a weak one, but not well defined
two-sub lattice antiferromagnetism. On the other hand, the
well defined two sublattice antiferromagnetism for the BCC
ADF’s has been observed at a higher temperatures [13,14].
This observation is consistent with our strong coupling theory
for the BCC structured ADF’s.

Surprisingly with our mean-field approaches, we find that
when the s-wave superconducting states ends at the metal-
insulator transition line for the FCC structure, the system be-
comes orbital ordered antiferromagnet. Notice that these two
different states are discovered by using two different effec-
tive Hamiltonians with different approximate theoretical ap-
proaches. As our theoretical scheme is incapable of detecting,
we cannot rule out the simultaneous existence of supercon-
ductivity and antiferromagnetism around the superconductor-
AFM transition line. Indeed, the experimental results suggest
that the simultaneous co-existence of antiferromagnetism and
superconductivity in the BCC structured fullerides [8,13].
Further, based on our investigation, it is not surprising to see
both s-wave superconductivity and Mott-insulator proximity
in the phase diagrams. This is because these two phases
emerge due to the electron occupation of orbital selective
scenarios. Using our effective theoretical model and its so-
lution, we were able to recover all four electronic phases
discovered in experimental phase diagram [11]. In addition
to the common Fermi liquid metallic phase and s-wave su-
perconducting phase, the experimental Jahn-Teller metallic
(JMT) and Jahn-Teller Mott-insulating (MJI) phases resemble
our orbitally ordered Fermi liquid phase and orbitally ordered
Mott insulator, respectively. Moreover, we discover two more
additional phases in the temperature-C60 molecular volume
space. The high-temperature Mott-insulator (MI) and the
low-temperature orbitally ordered antiferromagnetic (AFM)
phases discovered in our theoretical phase diagram have
not been extensively investigated in experimental phase dia-
grams [8,11,13]. However, it is not surprising to expect high-
temperature regular Mott-insulator for the ADF compounds.
The low-temperature antiferromagnetic phase at larger C60

molecular volumes has already been detected in experiments
[12–14]. Notice that we have neglected the possible charge
density wave stabilization in our study as the strong on-site
Coulomb repulsion dominates over the weak off-site Coulomb
repulsion in ADF’s. The absence of charge density wave state

is experimentally confirmed by the NMR studies [13]. Further,
the absence of the instability in the charge sector can be
justified by the existence of Mott-insulating phase due to the
strong on-site Coulomb repulsion where the charge degrees of
freedom is frozen and the total electronic occupation per site
is fixed to be at three. As the effective interorbital interaction
U ′ is greater than the effective intraorbital interaction Ue, the
ADF compounds show orbital instability.

The boundary lines between different phases in
temperature-C60 molecular volume space are also in
qualitative agreement with experiments. Notice that the
we have scaled temperature in our theoretical phase diagrams
with the hopping amplitudes t f and tb for the FCC and BCC
structured fullerides, respectively. In addition to the Coulomb
interaction parameters, the hopping amplitudes also changes
upon applying the internal pressure [24]. This is the reason
why we have constructed our theoretical phase diagrams as
a function of dimensionless temperature kBT/t f and kBT/tb.
In order to a get a quantitative comparison, we use few
specific known t f values for the FCC structured fullerides
from Ref. [24] and calculate the physical temperatures on the
metal-insulator line. We find our theory slightly over estimate
the transition temperature. For example, the metal-insulator
transition occurs at about 860 and 563 K at the C60 molecular
volumes 750 and 762 Å

3
, respectively. The overestimation of

the theoretical metal-superconductor transition temperature
is bit higher than that of the metal-insulator transition
temperature. Several factors, such as the crudeness of
mean-field theories, the renormalization of electron mass
due to the phonon contribution which we assumed to be
negligible, and the longer-range orbital dependent hopping
may be attributed to this overestimation. Regardless the
quantitative agreement of the critical temperature, we manage
to recover all other features in experimental phase diagrams
using our effective theoretical model. We are unable to make
a quantitative comparison for the BCC structured fullerides as
some bare interaction parameters, such as phonon mediated
couplings are not known. Note that we use the same phonon
mediated coupling parameters for both FCC and BCC
structured fullerides. Therefore our weak coupling phase
diagram for the BCC structured fullerides must be considered
as qualitative.

In conclusion, by using recently calculated ab initio inter-
action parameters we have proposed an effective theoretical
model for the alkali-doped fullerides compounds. Employing
a slave-rotor and an effective spin-orbital mean-field theories,
we recovered all the dominant features in experimental phase
diagrams. We find that the proximity of various electronic
phases including the Mott-insulator, the s-wave superconduc-
tor, and the Fermi liquid and the existence of Jahn-Teller
metallic phase trigger from the orbital selective electronic
occupations.
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