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Low-energy dynamics of the Affleck-Kennedy-Lieb-Tasaki model in the one- and two-triplon basis

Jintae Kim , Rajarshi Pal, and Jung Hoon Han*

Department of Physics, Sungkyunkwan University, Suwon 16419, Korea

(Received 16 June 2019; revised manuscript received 22 September 2019; published 3 October 2019)

The elementary excitation in the antiferromagnetic spin-1 model known as the Affleck-Kennedy-Lieb-Tasaki
(AKLT) Hamiltonian has been described alternatively as magnons or kinklike solitons (triplons). The latter,
which we call the triplon throughout this paper, has been proven equivalent descriptions of the same magnon
excitation and not an independent branch of excited states. On the other hand, no careful examination of
multimagnon and multitriplon equivalence was made in the past. In this paper we prove that two-magnon and
two-triplon states are also identical descriptions of the same excited states and furthermore that their energies
break down as the sum of one-triplon energies exactly for the AKLT Hamiltonian. The statement holds despite
the fact that the model is nonintegrable. Such magnon/triplon dichotomy is conjectured to hold for arbitrary
n-magnon and n-triplon states. The one- and two-triplon states form orthogonal sets that can be used to span the
low-energy Hilbert space. We construct an effective version of the AKLT Hamiltonian within such a subspace
and work out the correction to the one-triplon energy gap that finds excellent agreement with the known exact
value.
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I. INTRODUCTION

A one-dimensional chain of quantum-mechanical spins
of size S has proven a rich source of insights regarding
the nature of low-dimensional quantum spin states and their
(sometimes) exotic excitations. The method by which to solve
the S = 1/2 antiferromagnetic chain problem was laid out by
Bethe [1] in the early days of quantum mechanics, but it was
not until 1981 that the exotic elementary excitations of the
ground state known as spinons—fermions with spin quantum
number 1/2—were discovered by Faddeev and Takhtajan [2].
At around the same time, Haldane [3,4] and soon afterwards
Affleck, Kennedy, Lieb, and Tasaki (AKLT) [5,6] pioneered
the physics of S = 1 antiferromagnetic spin chain and its
crucial differences with the S = 1/2 chain.

In a variational approach, Arovas, Auerbach, and Haldane
proposed a spin wave excitation carrying the spin quantum
number �S = 1 and computed its energy within the single-
mode approximation (SMA) scheme [7]. The one-magnon
spectrum thus obtained matched the excitation spectrum cal-
culated from the exact diagonalization of the S = 1 spin chain
model around the momentum k = π [8]. Arovas [9] subse-
quently came up with ways to construct “exact excited states”
of the AKLT Hamiltonian with the total spin �S = 1, and 0,
respectively, and Regnault et al. [10] made exact excited states
for higher total spins. These are quite high-energy excitations,
however, that presumably have little relevance to low-energy
dynamics of the integer spin chain. Soon it began to emerge
that a stringlike triplon construction of the excited state was
also possible but that it gave rise to the identical excitation
spectrum within SMA as the magnon construction because
their respective wavelike superpositions actually resulted in

*hanjemme@gmail.com

the same wave function [8,11–13]. In recent years, sophisti-
cated numerical implementation of the matrix product state
(MPS) algorithm has shed light on the physics of spin-1
chain [14–18]. In the meantime, the challenging problem of
constructing a two-magnon or two-triplon wave function and
calculating their energies has never been taken up. Here we
address these problems explicitly for the AKLT Hamiltonian,
motivated by the classic work by Dyson on the multimagnon
construction for the ferromagnet [19]. One of the innovations
made in Dyson’s paper is the construction of mutually orthog-
onal multimagnon basis states that are also nearly free, in the
sense that the scattering matrix elements between magnons
become vanishingly small in the long-wavelength limit.

Following the spirit of Dyson’s analysis, we construct
two-magnon and two-triplon excited states atop the AKLT
ground state and work out their properties. First we show
that the two constructions of the excited states are identical
and extend the previously known equivalence of one-magnon
and one-triplon excited states [8,12] to the two-magnon case.
Employing the SMA scheme, we compute the two-triplon
energy using the AKLT Hamiltonian to find that its energy is
the sum of the one-triplon energies without further correction
from interaction effects. Finally we prove that one- and two-
triplon states are orthogonal and can be used to construct a
low-energy subspace of the AKLT Hamiltonian. The effective
Hamiltonian of the AKLT model within such a subspace is
constructed for future use in the investigation of dynamics
in the AKLT chain. As a preliminary example of such an
investigation, we compute the one-triplon energy gap using
the effective AKLT Hamiltonian and find improved agreement
with the exact value.

Due to the long history of literature on the AKLT model
and its excited states, we find it convenient to review important
past findings in Sec. II and develop our own contributions
from there on. Construction of two-magnon and two-triplon
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states and the proof of their equivalence is given in Sec. III.
Calculation of their energies is performed as well. Orthogo-
nality of the one- and two-triplon states and the construction
of effective Hamiltonian within such a subspace are presented
in Sec. IV. Our paper contains an extensive amount of compu-
tations of matrix elements and other technical details, which
can be found in several appendices.

II. ONE-MAGNON/ONE-TRIPLON
DICHOTOMY IN THE AKLT MODEL

Schwinger boson formalism provides a great advantage
in understanding the ground state and the low-lying excited
states of the AKLT model Hamiltonian [7,9]. The boson
substitution of the spin operator takes place as

Sz
i = 1

2 (a†
i ai − b†

i bi ) S+
i = a†

i bi S−
i = b†

i ai (2.1)

with a pair of bosons ai and bi at every site i. For S = 1, the
three allowed spin-1 states are

1√
2

(a†
i )2 |v〉 = |1〉 a†

i b†
i |v〉 = |0〉 1√

2
(b†

i )2 |v〉 = |−1〉

where |v〉 is the vacuum of the Schwinger bosons, and
+1, 0,−1 are the three allowed orientations of spin-1. The
AKLT state has an intuitive expression [7] in the boson
language

|A〉 =
(∏

i

S†
i,i+1

)
|v〉 . (2.2)

The operator S†
i,i+1 = a†

i b†
i+1 − a†

i+1b†
i creates a singlet pair on

the neighboring 〈i, i + 1〉 sites. The AKLT Hamiltonian HA =∑
i Hi is given as the sum of projectors

Hi = 1
24 [Si + Si+1]2([Si + Si+1]2 − 2)

= 1
24

(
[S†

i,i+1]2S2
i,i+1 − 6S†

i,i+1Si,i+1 + 24
)
. (2.3)

The last line follows from the easily verified identity Si ·
Si+1 = − 1

2S
†
i,i+1Si,i+1 + 1.

Now, rather than having a singlet, the (i j) bond may have
one of the triplet states given by

T 0
i j = aib j + a jbi

T 1
i j = aia j

T −1
i j = bib j . (2.4)

The superscript refers to the quantum numbers of the triplet
excitation. In the subsequent notation we will use T ± inter-
changeably with T ±1. The one-triplon state |T α

i 〉 is defined
as the one in which the singlet bond S†

i,i+1 in the AKLT
state is replaced by one of the triplet creation operators
[T α

i,i+1]†. The one-triplon states are orthogonal to the AKLT
state, 〈A|T α

i 〉 = 0, as can be proven by explicit calculation
or through the symmetry argument that the two states carry
different quantum numbers. For a pair of one-triplon states

when i > j one can prove [8]:〈
T α1

i

∣∣T α2
j

〉
= δα1,α2

1 + δα1,0

2

(
(−1)N

(
− 1

3

)−i+ j

+ 3N

(
− 1

3

)i− j
)

.

(2.5)

The method by which this overlap and many other overlaps in
this paper have been tabulated is the transfer matrix method,
and one can find its details in Appendix A. In the above, N
stands for the length of the chain.

The one-triplon state, which seems like a local excitation in
the bond operator language, is actually a highly nonlocal ex-
citation in the spin language as the following identity testifies
[8,11,12]: ∣∣T α

i

〉 =
∑
j�i

2
∣∣Sα

j

〉
(α = x, y, z). (2.6)

Here |Sα
j 〉 ≡ Sα

j |A〉 is a shorthand for local spin excitation
at site j. The x, y components of the triplet excitation
are defined by |T ±

i 〉 = ∓(|T x
i 〉 ± i|T y

i 〉)/2, hence |T ±
i 〉 =

∓∑
j�i |S±

j 〉 (S± = Sx ± iSy). The z component of the triplet
is a re-definition: |T z〉 = |T 0〉. Clearly, the triplon is a soli-
tonic operator affecting all spins to the left of its site of
creation.

An interesting consequence follows from forming the
triplon wave, with momentum k,∣∣T α

k

〉 =
∑

i

eikxi
∣∣T α

i

〉
. (2.7)

By a simple calculation one can show∣∣Sα
k

〉 ≡
∑

i

eikxi
∣∣Sα

i

〉 = 1

2
(1 − eik )

∣∣T α
k

〉
(α = x, y, z),

|S±
k 〉 = ∓(1 − eik ) |T ±

k 〉 . (2.8)

Hence, the one-magnon wave and the one-triplon wave states
are identical [8]. The energy of either of these states is
computed as [7]

ω1(k) =
〈
T α

k

∣∣HA

∣∣T α
k

〉
〈
T α

k

∣∣T α
k

〉 = 5

27
(5 + 3 cos k), (2.9)

in the SMA. The one-magnon (one-triplon) energy is inde-
pendent of α due to the spin-rotation invariance of the Hamil-
tonian. The excitation is triply degenerate. The one-magnon
(one-triplon) SMA spectrum describes the exact excited state
spectrum near k = π with high accuracy [8].

We leave this section with a minor comment. At k = 0,
Eq. (2.8) becomes ill defined and we also have |Sα

k=0〉 =∑
i |Sα

i 〉 = 0 because the AKLT state is a spin singlet. As a
result, we may apply the k → 0 limiting procedure to (2.8) to
obtain the k = 0 triplon state as

∣∣T α
k=0

〉 = lim
k→0

∑
i eikxi Sα

i |A〉
eik − 1

=
∑

i

xi

∣∣Sα
i

〉
. (2.10)

Despite the appearance of position coordinate xi, this is a
translationally invariant state due to the periodic boundary
condition of the lattice i + N ≡ i.
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III. TWO-MAGNON AND TWO-TRIPLON EXCITATIONS

In the previous section we mentioned that the one-magnon
spectrum computed in the SMA describes the energies of the
exact excited states fairly well around k = π . It was also
known for some time that the k ≈ 0 spectrum is reasonably
well described as two independent one-magnon excitations at
the respective momenta π + k/2 and −π + k/2 [9]:

ω2(k) = ω1(π + k/2) + ω1(−π + k/2)

= 10

27

(
5 − 3 cos

k

2

)
. (3.1)

If the magnons were truly independent and devoid of interac-
tions, the multimagnon energy is naturally given as the sum
of the one-magnon energies, but such assumptions must be
subject to careful scrutiny, especially given the fact that the
AKLT model is nonintegrable. We address the question of
two-magnon energy by first constructing a two-magnon state,
then evaluating its energy in the manner of SMA. Specifi-
cally, we show that the two-magnon wave states at momenta
(k1, k2) have the SMA energy given exactly as the sum of two
one-magnon energies, ω2(k1, k2) = ω1(k1) + ω1(k2), devoid
of any further corrections. The formula (3.1) is a special case
of this general conclusion. The other accomplishment of this
section is the proof that the two-triplon wave state, appropri-
ately constructed, is again identical to the two-magnon wave
states at the same momenta (k1, k2).

A. Equivalence of two-magnon and two-triplon wave states

First of all, let us define the two-magnon and the two-
triplon states, respectively. The two-triplon state replaces two
of the singlet bonds in the AKLT state by triplets, at the
(i, i + 1) and ( j, j + 1) bonds. When the two sites coincide
i = j the wave function vanishes automatically as it violates
the constraint of the total spin S = 1 at the site. The two-
triplon states are denoted |T α

i T β
j 〉. The pair of indices α, β =

±, 0 refers to the spin quantum number. We will also refer
to them as angular momentum quantum numbers from time
to time. The two-magnon state, on the other hand, is defined
as a pair of spin operators acting on two sites: |Sα

i Sβ
j 〉 =

Sα
i Sβ

j |A〉. As is clear from their respective definitions, they
are very different kinds of excitations, one being nonlocal
and the other being local in nature. Now we wish to ask if
some correspondence exists between their respective wavelike
states given as follows:∣∣Sα1

k1
Sα2

k2

〉 =
∑
i, j

eik1xi+ik2x j
∣∣Sα1

i Sα2
j

〉
∣∣T α1

k1
T α2

k2

〉 =
∑
i, j

eik1xi+ik2x j
∣∣T α1

i T α2
j

〉
. (3.2)

We dub them as two-magnon waves and two-triplon waves,
respectively.

By application of identities such as

S−
i |T +

i 〉 = 1
2

∣∣T 0
i

〉 − 1
2 |A〉 − |T −

i−1T +
i 〉

S−
i+1 |T +

i 〉 = 1
2

∣∣T 0
i

〉 + 1
2 |A〉 − |T +

i T −
i+1〉

S+
i+1 |T +

i 〉 = − |T +
i T +

i+1〉
S+

i |T +
i 〉 = |T +

i−1T +
i 〉 (3.3)

one can work out the relation between the two-magnon and
two-triplon wave states. Introducing a mnemonic R(k1, k2) =
(eik1 − 1)(eik2 − 1), we find a set of exact relations between
two-magnon and two-triplon waves∣∣S±

k1
S±

k2

〉 = R(k1, k2)
∣∣T ±

k1
T ±

k2

〉
∣∣Sz

k1
Sz

k2

〉 = 1

4
R(k1, k2)

( ∣∣T 0
k1
T 0

k2

〉 + Nδk1,−k2 |A〉 )
∣∣S±

k1
S∓

k2

〉 = −R(k1, k2)

(∣∣T ±
k1
T ∓

k2

〉 ± 1

2

eik1 + 1

eik1 − 1

∣∣T 0
k1+k2

〉

− 1

2
Nδk1,−k2 |A〉

)
∣∣S±

k1
Sz

k2

〉 = ∓1

2
R(k1, k2)

(∣∣T ±
k1
T 0

k2

〉 ± eik1 + 1

eik1 − 1

∣∣T ±
k1+k2

〉)
∣∣Sz

k1
S±

k2

〉 = ∓1

2
R(k1, k2)

(∣∣T 0
k1
T ±

k2

〉 ∓ eik1 + 1

eik1 − 1

∣∣T ±
k1+k2

〉)
. (3.4)

In general the right-hand side consists of two-triplon, one-
triplon, and AKLT states. However, one must be care-
ful to note that the states in these equations are un-
normalized. In fact, a careful calculation of the overlaps
shows 〈T α1

k1
T α2

k2
|T α1

k1
T α2

k2
〉 ∼ O(3N · N2) but the single-triplon

and AKLT overlaps are only

〈
T α

k

∣∣T α
k

〉 = 2(1 + δα,0)

5 + 3 cos k
3N N (3.5)

and 〈A|A〉 = 3N , respectively. Due to the factor N multiplying
the AKLT wave function in Eq. (3.4), the two-triplon and
AKLT components are of comparable weights, but the one-
triplon component has vanishing weight in the thermody-
namic limit N → ∞. If we neglect the one-triplon part for
such a reason, the above formula simplifies to∣∣S±

k1
S±

k2

〉 = R(k1, k2)
∣∣T ±

k1
T ±

k2

〉
∣∣Sz

k1
Sz

k2

〉 = 1
4 R(k1, k2)

( ∣∣T 0
k1
T 0

k2

〉 + Nδk1,−k2 |A〉 )
∣∣S±

k1
S∓

k2

〉 = −R(k1, k2)
( ∣∣T ±

k1
T ∓

k2

〉 − 1
2 Nδk1,−k2 |A〉 )

∣∣S±
k1

Sz
k2

〉 = ∓ 1
2 R(k1, k2)

∣∣T ±
k1
T 0

k2

〉
∣∣Sz

k1
S±

k2

〉 = ∓ 1
2 R(k1, k2)

∣∣T 0
k1
T ±

k2

〉
. (3.6)

The appearance of the AKLT component in Eq. (3.6) is
not alarming but simply reflects the nonorthogonality of the
two-magnon or two-triplon state to the AKLT ground state
when k1 + k2 = 0 and α1 + α2 = 0. The proper excited state,
labeled with the subscript ⊥ below, is easily constructed by
taking away the ground state component from the right side
for these cases:∣∣T 0

k1
T 0

k2

〉
⊥ = ∣∣T 0

k1
T 0

k2

〉 + Nδk1,−k2

1 + 3 cos k1

5 + 3 cos k1
|A〉

∣∣T +
k1
T −

k2

〉
⊥ = ∣∣T +

k1
T −

k2

〉 − N

2
δk1,−k2

1 + 3 cos k1

5 + 3 cos k1
|A〉. (3.7)

One can check that these new states are orthogonal to the
ground state: 〈A|T 0

k1
T 0

k2
〉⊥ = 〈A|T +

k1
T −

k2
〉⊥ = 0. Orthogonal-

ized two-magnon states are also easily derived, by referring
to Eqs. (3.6) and (3.7).
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One can view Eq. (3.6) as general statements for the iden-
tity of arbitrary two-magnon and two-triplon wave functions
of momenta (k1, k2). Furthermore, since the two-triplon states
have the commuting property |T α1

k1
T α2

k2
〉 = |T α2

k2
T α1

k1
〉 (easily

verified from its definition), it follows that the two-magnon
wave function on the left must also share the same property:
|Sα1

k1
Sα2

k2
〉 = |Sα2

k2
Sα1

k1
〉.

The proof of equivalence of one-magnon and one-triplon
wave states in the previous section has been extended to the
case of two-magnon and two-triplon wave states. It is obvi-
ously tempting to expect the correspondence to continue to
multimagnon and multitriplon wave functions. In Appendix B
we present the proof of the exact identity between n-magnon
and n-triplon states for the spin-polarized case α1 = · · · = αn.
For the more general multimagnon cases we leave such a
statement as a conjecture.

B. Single-mode calculation of the two-triplon energy spectrum

The magnon and the triplon descriptions proved to be com-
pletely equivalent, at least at the one- and two-magnon levels,
and it becomes a matter of convenience to choose either de-
scription as the excited states. For the calculation of energy it
is definitely more convenient to use the triplon representation
because of the equivalence of Schwinger boson representation
and the matrix product state representation, and the ability
to use the latter scheme to perform the overlap calculation
as that of the transfer matrix familiar from one-dimensional
statistical mechanics. The procedures are described carefully
in Appendix A, to which interested readers are referred.

The SMA evaluation of the two-triplon energy involves the
expression

ω
α1α2
2 (k1, k2) =

〈
T α1

k1
T α2

k2

∣∣HA

∣∣T α1
k1

T α2
k2

〉
〈
T α1

k1
T α2

k2

∣∣T α1
k1

T α2
k2

〉 . (3.8)

To the extent that the triplon-triplon interactions can be ne-
glected, the outcome of such a calculation is expected to be
a sum of one-triplon energies, ω1(k1) + ω1(k2), with ω1(k)
found in the one-triplon SMA. Mathematically speaking, such

a factorized outcome for the energy will be guaranteed pro-
vided both the numerator and the denominator could factorize
as follows:〈

T α1
k1

T α2
k2

∣∣HA

∣∣T α1
k1

T α2
k2

〉 ?= 〈
T α1

k1

∣∣HA

∣∣T α1
k1

〉〈
T α2

k2

∣∣T α2
k2

〉
+〈

T α2
k2

∣∣HA

∣∣T α2
k2

〉〈
T α1

k1

∣∣T α1
k1

〉
〈
T α1

k1
T α2

k2

∣∣T α1
k1

T α2
k2

〉 ?= 〈
T α1

k1

∣∣T α1
k1

〉〈
T α2

k2

∣∣T α2
k2

〉
. (3.9)

As it turns out, both expectations are borne out by explicit
calculations of both the numerator and the denominator, for all
possible pairs of magnetic quantum numbers (α1, α2), leading
to an extremely simple, factorized form of the two-triplon
energy:

ω
α1α2
2 (k2, k2) = ω1(k1) + ω1(k2). (3.10)

The interaction effect, as one might call the correction to the
factorized form of energy, is therefore completely absent, at
least at the level of SMA.

According to our SMA calculation, the two-magnon spec-
trum will be ninefold degenerate without suffering energy-
splitting corrections. It is fair to suspect that such a lack of
interaction effects and level repulsion among the degenerate
states might be an artifact of the SMA. Interestingly, the
authors of Refs. [20,21] have found an almost complete
degeneracy of all two-magnon channels with total spins S =
2, 1, 0—ninefold degeneracy in total—in the numerical eval-
uation based on the Heisenberg spin chain. The model is
different from the AKLT Hamiltonian, but still both of their
ground states are known to belong to the same Haldane phase.
If the correspondence should extend to excited state properties
as well, the strict ninefold degeneracy predicted by our SMA
two-magnon energy calculation, valid for the AKLT model,
is in line with those numerical observations made on the
Heisenberg model.

Let us now discuss the details of SMA calculation for
the case α1 = α2 = +. Most of the details of the overlap
derivation are delegated to the two Appendices C and D. It
can be shown,

〈
T +

k1
T +

k2

∣∣T +
k1
T +

k2

〉 = 〈
T −

k1
T −

k2

∣∣T −
k1
T −

k2

〉 = 4(1 + δk1,k2 )

(5 + 3 cos k1)(5 + 3 cos k2)
3N N2.

〈
T +

k1
T +

k2

∣∣HA

∣∣T +
k1
T +

k2

〉 = 〈
T −

k1
T −

k2

∣∣HA

∣∣T −
k1
T −

k2

〉 = 20

27

(
1

5 + 3 cos k1
+ 1

5 + 3 cos k2

)
(1 + δk1,k2 )3N N2. (3.11)

On taking their ratio, we recover the two-triplon energy in the factorized form: ω++
2 (k1, k2) = ω1(k1) + ω1(k2). Other cases

follow suit in a similar fashion:〈
T +

k1
T 0

k2

∣∣T +
k1
T 0

k2

〉 = 〈
T −

k1
T 0

k2

∣∣T −
k1
T 0

k2

〉 = 8

(5 + 3 cos k1)(5 + 3 cos k2)
3N N2

〈
T +

k1
T 0

k2

∣∣HA

∣∣T +
k1
T 0

k2

〉 = 〈
T −

k1
T 0

k2

∣∣HA

∣∣T −
k1
T 0

k2

〉 = 40

27

(
1

5 + 3 cos k1
+ 1

5 + 3 cos k2

)
3N N2. (3.12)

In the remaining cases (α1, α2) = (0, 0), (+,−), (−,+) one needs to use the orthogonalized excited states given in (3.7) to
compute the overlaps: 〈

T 0
k1
T 0

k2

∣∣T 0
k1
T 0

k2

〉 = 16(1 + δk1,k2 )

(5 + 3 cos k1)(5 + 3 cos k2)
3N N2

〈
T 0

k1
T 0

k2

∣∣HA

∣∣T 0
k1
T 0

k2

〉 = 80

27
(1 + δk1,k2 )

(
1

5 + 3 cos k1
+ 1

5 + 3 cos k2

)
3N N2
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〈
T +

k1
T −

k2

∣∣T +
k1
T −

k2

〉 = 4

(5 + 3 cos k1)(5 + 3 cos k2)
3N N2

〈
T +

k1
T −

k2

∣∣HA

∣∣T +
k1
T −

k2

〉 = 20

27

(
1

5 + 3 cos k1
+ 1

5 + 3 cos k2

)
3N N2. (3.13)

The subscripts ⊥ are dropped here for notational simplicity. In
all cases, the factorized two-triplon energy form in Eq. (3.10)
follows.

All of this is not to say that the two-triplon state is the
eigenstate of the AKLT Hamiltonian. Even the one-triplon
state is not the eigenstate, as the action of HA on the one-
triplon state is given by

HA

∣∣T 1
k

〉 =
(

1 + 2

3
cos k

) ∣∣T 1
k

〉
+ 1

6

∑
i

eikxi
( ∣∣T 1

i−1T 0
i+1

〉 − ∣∣T 0
i−1T 1

i+1

〉 )
. (3.14)

The action of HA on the one-triplon wave generates additional
two-triplon states shown in the second line. The action of HA

on the two-triplon wave is, for instance,

HA

∣∣T 1
k1
T 1

k2

〉 =
(

2 + 2

3
cos k1 + 2

3
cos k2

) ∣∣T 1
k1
T 1

k2

〉
+ 1

6

∑
i, j;i �= j

(eik1xi+ik2x j + eik1x j+ik2xi )
∣∣T 1

i−1T 0
i+1T 1

j

〉

− 1

6

∑
i, j;i �= j

(eik1xi+ik2x j + eik1x j+ik2xi )
∣∣T 0

i−1T 1
i+1T 1

j

〉
.

(3.15)

In both instances, the factorized energy form is recovered on
taking the overlap with the ket. The same thing happens with
all other two-triplon wave states.

IV. CONSTRUCTION OF EFFECTIVE HAMILTONIAN

The one- and two-triplon wave states we have constructed
are not the eigenstates of the AKLT Hamiltonian, but they may
still serve as good basis states spanning the low-energy excited
modes. Indeed, systematic construction of general n-magnon
wave states as the basis states (not necessarily eigenstates)
which span the excitation spectrum in a ferromagnet was at
the heart of Dyson’s program [19]. Here, due to technical
challenges, we are limited to including only the one- and
two-triplon wave basis states in constructing the low-energy
manifold, but given that the n-triplon waves are likely to have

energies about n times that of a one-triplon, this may not be
a harsh restriction. The program we carry out here is, first
of all, the construction of properly orthogonalized one- and
two-triplon wave states, and secondly the construction of an
effective Hamiltonian within such a subspace. (See Ref. [22]
also for a general one-particle and two-particle MPS ansatz
for one-dimensional spin chains and related effective particle
construction, based on numerical implementation of the MPS
algorithm.)

First of all, the nine two-triplon states |T α1
k1

T α2
k2

〉 are further
classified according to their total angular momentum being 2,
1, and 0. Invoking the usual Clebsch-Gordon argument, we
list the five quintuplet as∣∣T 2,2

k1,k2

〉 = ∣∣T 1
k1
T 1

k2

〉
∣∣T 2,1

k1,k2

〉 = 1√
2

( ∣∣T 1
k1
T 0

k2

〉 + ∣∣T 0
k1
T 1

k2

〉 )
∣∣T 2,0

k1,k2

〉 = 1√
6

( ∣∣T 1
k1
T −1

k2

〉
⊥ + ∣∣T −1

k1
T 1

k2

〉
⊥ + 2

∣∣T 0
k1
T 0

k2

〉
⊥

)
∣∣T 2,−1

k1,k2

〉 = 1√
2

( ∣∣T −1
k1

T 0
k2

〉 + ∣∣T 1
k1
T −1

k2

〉 )
∣∣T 2,−2

k1,k2

〉 = ∣∣T −1
k1

T −1
k2

〉
(4.1)

where the overline means a normalized state. The subscript ⊥
was introduced earlier in Eq. (3.7) to define the orthogonalized
two-triplon wave state having zero overlap with the one-
triplon state. The singlet combination is given by∣∣T 0,0

k1,k2

〉 = 1√
3

( ∣∣T −1
k1

T 1
k2

〉
⊥ + ∣∣T 1

k1
T −1

k2

〉
⊥ − ∣∣T 0

k1
T 0

k2

〉
⊥
)
. (4.2)

To verify the angular momentum properties of the above
states, one can first show that the two-magnon waves can
be organized as total angular momentum eigenstates with
S = 0, 1, 2, and subsequently invoking the triplon-magnon
equivalence via Eq. (3.4) to argue the same for the two-triplon
waves. The final conclusion is, after all, exactly what one
expects from the Clebsch-Gordon algebra.

Neither the quintuplet nor the singlet should have any
mixing with the triplet state of one-triplons |T α

k 〉, by virtue
of angular momentum mismatch. Therefore, the only kind of
one- and two-triplon mixing one needs to worry about is with
the triplet combination of the two-triplons, given by

∣∣T 1,1
k1,k2

〉 = 1√
2

(∣∣T 1
k1
T 0

k2

〉 − ∣∣T 0
k1
T 1

k2

〉)
∣∣T 1,0

k1,k2

〉 = 1√
2

(∣∣T 1
k1
T −1

k2

〉
⊥ − ∣∣T −1

k1
T 1

k2

〉
⊥
)

∣∣T 1,−1
k1,k2

〉 = 1√
2

(∣∣T 0
k1
T −1

k2

〉 − ∣∣T −1
k1

T 0
k2

〉)
. (4.3)
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The only nonzero matrix elements between the one- and two-triplon sector is then 〈T α
k1+k2

|T 1,α
k1,k2

〉 and 〈T α
k1+k2

|H |T 1,α
k1,k2

〉, both of
which can be worked out through explicit calculations. The results are〈

T α
k1+k2

∣∣T 1,α
k1,k2

〉 = − 3i

2
√

N

3 sin(k1 − k2) + 13 sin k1 − 13 sin k2√
2(5 + 3 cos k1)(5 + 3 cos k2)(5 + 3 cos(k1 + k2))

〈
T α

k1+k2

∣∣H ∣∣T 1,α
k1,k2

〉 = − 1√
N

5i

6
(3 sin(k1 − k2) + 5 sin k1 − 5 sin k2)

√
5 + 3 cos(k1 + k2)√

2(5 + 3 cos k1)(5 + 3 cos k2)
. (4.4)

The overlap factors are of order 1/
√

N and vanishing in
the thermodynamic limit, but it does not imply that they
make negligible contribution to physical quantities, as we will
shortly show.

There is one more piece of preparatory work required
before one can declare the completion of the effective Hamil-
tonian construction within the one- and two-triplon subspace.
The two-triplon triplet state constructed in Eq. (4.3) is not
properly orthogonalized with respect to the singlet-triplon
states while, generically, the effective Hamiltonian must be
constructed in the basis of orthogonal states. To that end, we
implement the Gram-Schmidt orthogonalization procedure
and introduce the properly orthogonalized two-triplon triplet
basis states∣∣T 1,α

k1,k2

〉
⊥ = ∣∣T 1,α

k1,k2

〉 − 〈
T α

k1+k2

∣∣T 1,α
k1,k2

〉∣∣T α
k1+k2

〉
. (4.5)

The required matrix element 〈T α
k1+k2

|T 1,α
k1,k2

〉 is already given in
Eq. (4.4). In this basis the Hamiltonian matrix element reads,
instead of the second line of Eq. (4.4), 〈T α

k1+k2
|H |T 1,α

k1,k2
〉⊥ =

−i f (k1, k2)/
√

N with the form factor

f (k1, k2) = 5
√

2

18
(sin k1 − sin k2 + 3 sin (k1 − k2))

×
√

5 + 3 cos (k1 + k2)√
(5 + 3 cos k1)(5 + 3 cos k2)

. (4.6)

Finally, the matrix elements within the two-triplon triplet
sector are〈

T 1,α
k3,k4

∣∣
⊥H

∣∣T 1,α
k1,k2

〉
⊥

= (ω1(k1) + ω1(k2))
(
δk1,k3δk2,k4 − δk1,k4δk2,k3

)
. (4.7)

There is a subleading factor of order 1/N that takes place
when k1 �= k3, which can be ignored because it falls with
a faster power than 1/

√
N and does not contribute in the

physical quantities. The relative minus sign between the two
delta functions on the right side can be understood from the
antisymmetry of the wave function: |T 1,α

k1,k2
〉 = −|T 1,α

k2,k1
〉.

In the end, we have a quite simple structure of the effective
Hamiltonian consisting of the following matrix elements:〈

T α
k

∣∣H ∣∣T α
k

〉 = ω1(k)〈
T α

k1+k2

∣∣H ∣∣T 1,α
k1,k2

〉
⊥ = −i f (k1, k2)/

√
N〈

T 1,α
k1,k2

∣∣
⊥H

∣∣T 1,α
k1,k2

〉
⊥ = ω1(k1) + ω1(k2). (4.8)

We no longer place a bar to indicate normalized states; all
one- and two-triplon states are by now assumed properly
normalized and orthogonalized. An immediate consequence
of the effective Hamiltonian is the level repulsion between the

“bare” one-triplon energy ω1(k) and the “bare” two-triplon
energy ω2(k1, k2) = ω1(k1) + ω1(k2) worked out in the SMA
calculation of the previous section. The one-triplon energy
shift is given by

�ω1(k) = −
∑

k1+k2=k

∣∣〈T 1,α
k1,k2

∣∣H ∣∣T α
k

〉∣∣2

ω1(k1) + ω1(k2) − ω1(k)

= − 1

N

∑
k1+k2=k

[ f (k1, k2)]2

ω1(k1) + ω1(k2) − ω1(k)

→ −
∫ π− k

2

−π+ k
2

dq

2π

[ f (k/2+q, k/2−q)]2

ω1(k/2+q)+ω1(k/2−q)−ω1(k)
.

(4.9)

The correction formula �ω1(k) is valid as long as we are
sufficiently removed from k = 0.452π , where the crossing
of the single- and two-triplon bare energies occurs and the
denominator in the perturbative formula vanishes. The one-
triplon states are best defined near k = π after all, and this is
where the perturbative scheme should work most excellently.
The bare and the corrected single-triplon energies are shown
in Fig. 1 near k = π . The bare energy at k = π is 0.370,
compared to the exact numerical value 0.350 [13,23] (for a
full 10 digit precision of the magnon gap, see Ref. [24]). After
the perturbative correction, the energy becomes 0.347, much
closer to the exact one.

On the other hand, the correction in the two-triplon energy
is

�ω2(k1, k2)= 1

N

[ f (k1, k2)]2

ω2(k1, k2)−ω1(k1)−ω1(k2)
. (4.10)

FIG. 1. SMA energy with perturbative second-order correction.
The vertical axis is renormalized by the exact energy gap at k = π ,
which is designated as � and shown as a triangle at k = π .
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This factor is vanishing in the thermodynamic limit and
does not lift the ninefold degeneracy of the two-triplon SMA
energy. What happens is obviously that the one-triplon state
couples to many two-triplon states with a small amplitude
∼1/

√
N , with a net effect that remains finite, while the two-

triplon state couples to only one state in the one-triplon sector
with amplitude 1/

√
N and negligible effects. In conclusion,

there is no lifting of either the one-triplon energy or the two-
triplon energy worked out from SMA. The former conclusion
is of course expected from symmetry, but the protection of the
ninefold two-triplon energy is nontrivial.

In regard to the wave function, the correction to the two-
triplon wave function can be neglected in the large-N limit, but
not the one on the one-triplon wave function. We have, after
the hybridization, the modified one-triplon wave function

∣∣T α
k

〉 → ∣∣T α
k

〉 − i√
N

∑
k1+k2=k

f (k1, k2)
∣∣T 1,α

k1,k2

〉
. (4.11)

One can make use of the low-energy space of one and two
triplons and the effective Hamiltonian constructed within
such a space to explore various dynamic and thermodynamic
responses. Such a task will be taken up in a subsequent
calculation, as the bulk of the calculation one has to digest
in this publication alone is already very heavy.

V. SUMMARY

The previously known equivalence of one-magnon and
one-triplon excited states of the AKLT chain model has been
extended to that of two-magnon and two-triplon excited states
in this work. In some cases, exact correspondence of n-
magnon and n-triplon states has been established as well.

By exploiting the equivalence of the Schwinger boson and
matrix product state representations of the spin-1 chain state,
and the subsequent transfer matrix formalism, we were able
to compute the two-triplon energies in the single-mode ap-
proximation. The two-triplon energy is proven to break down
exactly as the sum of two one-triplon energies, without cor-
rections. Although the two-triplon states are not themselves
the exact eigenstates of the AKLT Hamiltonian, the complete
lack of interaction effects among triplon waves at respective
momenta k1 and k2 in the SMA calculation is interesting. It
reminds one of several numerical studies showing almost per-
fect ninefold degeneracy of two-magnon excited states in the
Heisenberg spin Hamiltonian. Furthermore, we constructed
an effective Hamiltonian within the one- and two-triplon
subspace and computed perturbative corrections to the energy
and the one-triplon states. The value of the corrected energy
gap was within 1% of the actual value, reaching the same
accuracy as that obtained in Ref. [13] using solitonic ansatz
with smeared out domain walls. Our effective Hamiltonian
scheme can serve purposes beyond that of calculating energy
correction, though, and opens up the possibility to compute a
wide range of dynamical properties.

The program initiated by Dyson provided a useful basis for
treating the many-body magnon dynamics and thermodynam-
ics of ferromagnets. It was, in a sense, a program carried out in
a “noninteracting” picture where the ground state is a simple
product state (all spins pointing in the same direction), and the

n-magnon states constructed on top of it were approximately
orthogonal. Here we have dealt with an analogous program,
trying to build orthogonal sets of excited states on top of a
“correlated” ground state, i.e., the AKLT state. Surprisingly,
despite the complications brought by the correlated nature of
the ground state, construction of mutually orthogonal excited
states was proven to be possible. The effective Hamiltonian
constructed in the low-energy magnon (triplon) space revealed
only weak interaction matrix elements between one- and
two-magnon (one- and two-triplon) basis states. Extending
the scheme to higher-magnon states remains a challenge.
Application of the scheme developed in this paper to the
calculation of various dynamic and thermodynamic quantities,
and comparison of such results to numerical simulations,
remains as future work.
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APPENDIX A: OVERLAP CALCULATION OF MPS STATES

The Schwinger boson representation of the AKLT ground
state |A〉 allows an equivalent matrix product state (MPS)
expression [25]. Schematically, the correspondence can be
expressed as

|A〉 =
[∏

i

Si,i+1

]
|v〉

↔ (−1)N
∑
{s}

Tr
[
M (s1 )

0 M (s2 )
0 · · · M (sN )

0

]|{s}〉. (A1)

The summation over all possible spin orientations {s} =
{s1, · · · , sN } is performed in the second line. The 2 × 2 ma-
trices defined here for each spin orientation s = 1, 0, −1 are
given by

M (1)
0 =

(
0 −√

2
0 0

)
M (0)

0 =
(

1 0
0 −1

)

M (−1)
0 =

(
0 0√
2 0

)
. (A2)

Such one-to-one correspondence extends well beyond the
AKLT state and in fact covers an arbitrary state in which
one replaces the Schwinger boson singlet Si,i+1 by one of the
triplets T α

i,i+1.
First introduce an additional set of matrices

M (1)
1 =

(
0 0
0 0

)
M (0)

1 =
(

0 1
0 0

)
M (−1)

1 =
(

0 0
0

√
2

)

M (1)
2 =

(
0

√
2

0 0

)
M (0)

2 =
(

1 0
0 1

)
M (−1)

2 =
(

0 0√
2 0

)

M (1)
3 =

(√
2 0

0 0

)
M (0)

3 =
(

0 0
1 0

)
M (−1)

3 =
(

0 0
0 0

)
.

(A3)

The upper index s still refers to the spin orientation of the basis
state. The three lower indices 1, 2, 3 correspond to the α =
−1, 0, 1 components of the triplet operator T α

i,i+1. Whenever
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a particular singlet Si,i+1 in the AKLT state is replaced by the
triplet T α

i,i+1, one replaces M (si )
0 by M (si )

α+2, where α + 2 runs
through 1, 2, 3 as in (A3). For instance, a one-triplon state has
the MPS representation∣∣T α

i

〉 = (−1)N−1
∑
{s}

Tr
[
M (s1 )

0 · · · M (si )
α+2 · · · M (sN )

0

] |{s}〉 .

(A4)
A nice way to account for the sign factors in (A1) and (A4) is
to remember the replacement rule

[Si,i+1]† → −M (s)
0

[
T α

i,i+1

]† → M (s)
α+2. (A5)

Now that every Schwinger boson state has an equivalent
MPS representation, their overlaps can also be evaluated by
invoking their MPS forms. For two arbitrary MPS states |ψ〉
and |ψ ′〉, their overlap is

|ψ〉 =
∑
{s}

Tr
[
A(s1 )

1 A(s2 )
2 · · · A(sN )

N

] |{s}〉

|ψ ′〉 =
∑
{s}

Tr
[
B(s1 )

1 B(s2 )
2 · · · B(sN )

N

] |{s}〉

〈ψ ′|ψ〉 =
∑
{s}

Tr
[
B(s1 )

1 B(s2 )
2 · · · B(sN )

N

]
Tr

[
A(s1 )

1 A(s2 )
2 · · · A(sN )

N

]
(A6)

where Ai, Bi = M0, M1, M2, M3.
Employing some matrix identities

Tr[A]Tr[B] = Tr[A ⊗ B]

ABC ⊗ DEF = (A ⊗ D)(B ⊗ E )(C ⊗ F ) (A7)

one can rewrite the overlap

〈ψ ′|ψ〉 =
∑
{s}

Tr
[(

B(s1 )
1 B(s2 )

2 · · · B(sN )
N

) ⊗ (
A(s1 )

1 A(s2 )
2 · · · A(sN )

N

)]

=
∑
{s}

Tr
[(

B(s1 )
1 ⊗ A(s1 )

1

)(
B(s2 )

2 ⊗ A(s2 )
2

) · · ·

× (
B(sN )

N ⊗ A(sN )
N

)]
= Tr

[(∑
s1

B(s1 )
1 ⊗ A(s1 )

1

)(∑
s2

B(s2 )
1 ⊗ A(s2 )

1

)
· · ·

×
(∑

sN

B(sN )
1 ⊗ A(sN )

1

)]
. (A8)

Since there are four possibilities for each matrix, there are
16 cases of the direct product

∑
si

B(si )
i ⊗ A(si )

i in all. Define
a matrix Mi j and overlap MPS form of 〈ψ ′|ψ〉

Mi j =
∑

s

M (s)
i ⊗ M (s)

j

〈ψ ′|ψ〉 = Tr
[
Mi1 j1 Mi2 j2 · · · MiN jN

]
. (A9)

The sixteen Mi j matrices are given by

M00 =

⎛
⎜⎝

1 0 0 2
0 −1 0 0
0 0 −1 0
2 0 0 1

⎞
⎟⎠ M01 =

⎛
⎜⎝

0 1 0 0
0 0 0 0
0 0 0 −1
0 2 0 0

⎞
⎟⎠

M02 =

⎛
⎜⎝

1 0 0 −2
0 1 0 0
0 0 −1 0
2 0 0 −1

⎞
⎟⎠ M03 =

⎛
⎜⎝

0 0 −2 0
1 0 0 0
0 0 0 0
0 0 −1 0

⎞
⎟⎠

M10 =

⎛
⎜⎝

0 0 1 0
0 0 0 −1
0 0 0 0
0 0 2 0

⎞
⎟⎠ M11 =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 2

⎞
⎟⎠

M12 =

⎛
⎜⎝

0 0 1 0
0 0 0 1
0 0 0 0
0 0 2 0

⎞
⎟⎠ M13 =

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞
⎟⎠

M20 =

⎛
⎜⎝

1 0 0 −2
0 −1 0 0
0 0 1 0
2 0 0 −1

⎞
⎟⎠ M21 =

⎛
⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 2 0 0

⎞
⎟⎠

M22 =

⎛
⎜⎝

1 0 0 2
0 1 0 0
0 0 1 0
2 0 0 1

⎞
⎟⎠ M23 =

⎛
⎜⎝

0 0 2 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞
⎟⎠

M30 =

⎛
⎜⎝

0 −2 0 0
0 0 0 0
1 0 0 0
0 −1 0 0

⎞
⎟⎠ M31 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

⎞
⎟⎠

M32 =

⎛
⎜⎝

0 2 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞
⎟⎠ M33 =

⎛
⎜⎝

2 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠.

(A10)

Now the overlap calculation 〈ψ ′|ψ〉 reduces to taking the
trace of a long product of matrices. Such tasks are performed
in statistical mechanics by the transfer matrix method, and we
can adopt the same strategy here to compute overlaps. Starting
with the simplest case of 〈A|A〉, we find

|A〉 = (−1)N
∑
{s}

Tr
[
M (s1 )

0 · · · M (sN )
0

]
〈A|A〉 = Tr

[
MN

00

] = 3N . (A11)

First of all, the M00 matrix can be diagonalized through the
unitary rotation P.

P−1M00P =

⎛
⎜⎝

3 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠

P =

⎛
⎜⎝

−1 −1 0 0
0 0 0 1
0 0 1 0

−1 1 0 0

⎞
⎟⎠ (A12)

Among the four diagonal values, 3 becomes 3N after the
matrix multiplication and dominates over all other factors of
order (−1)N , hence 〈A|A〉 = 3N in the N → ∞ limit.

In the case of 〈T α
j |T α

i 〉 overlap, one replaces M (si )
0 and

M
(s j )
0 by M (si )

α+2 and M
(s j )
α+2, respectively, in the MPS form. We
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have the transfer matrix form of the overlap when i > j〈
T α

j

∣∣T α
i

〉 = Tr
[
M0,α+2Mi− j−1

00 Mα+2,0MN−1−i+ j
00

]
= 1 + δα,0

2

(
(−1)N

(
−1

3

)−i+ j

+ 3N

(
−1

3

)i− j
)

.

(A13)

This leads to Eq. (2.5).
The overlap of two-triplon state with another two-triplon

state 〈T α
k T β

m |T γ
i T δ

j 〉 which appears a lot in Appendix C and
D has the MPS form〈

T α
k T β

m

∣∣T γ

i T δ
j

〉 = Tr
[
M0,α+2Mi−k−1

00 Mγ+2,0Mm−i−1
00 M0,β+2

× M j−m−1
00 Mδ+2,0MN− j+k−1

00

]
(A14)

for the k < i < m < j case. Again, one can employ the trans-
fer matrix method to compute the overlap in the thermody-
namic limit.

APPENDIX B: EQUIVALENCE OF n-MAGNON
AND n-TRIPLON EXCITATIONS

We can prove the following equivalence of n-magnon
|S+

k1
S+

k2
· · · S+

kn
〉 and the n-triplon |T 1

k1
T 1

k2
· · · T 1

kn
〉 wave functions

by the method of induction:∣∣S+
k1

S+
k2

· · · S+
kn

〉 = [

n

j=1Pj
] ∣∣T 1

k1
T 1

k2
· · · T 1

kn

〉
. (B1)

The phase factor Pj = eik j − 1 is introduced as abbreviation.
In the case of n = 1, it is easily shown∣∣S+

k

〉 =
∑

i

eikxi S+
i |A〉

=
∑

i

eikxi
∣∣T 1

i−1

〉 − ∑
i

eikxi
∣∣T 1

i

〉
= (eik − 1)

∣∣T 1
k

〉
. (B2)

Assuming that the equivalence holds between the n-
magnon and n-triplon states with momenta k2 through kp+1,
i.e., |S+

k2
· · · S+

kp+1
〉 = [
p+1

j=2Pj] |T 1
k2

· · · T 1
kp+1

〉, the n = p + 1
magnon state is defined as∣∣S+

k1
S+

k2
· · · S+

kp+1

〉
=

∑
i1

eik1xi1 S+
i1

∣∣S+
k2

· · · S+
kp+1

〉

= [



p+1
j=2Pj

] ∑
i1,··· ,ip+1

e
∑p+1

j=1 ik j xi j S+
i1

∣∣T 1
i2 · · · T 1

ip+1

〉
. (B3)

The operator S+
i1

acting on |T 1
i2 · · · T 1

ip+1
〉 becomes

S+
i1

∣∣T 1
i2 · · · T 1

ip+1

〉 = ∣∣T 1
i1−1T 1

i2 · · · T 1
ip+1

〉 − ∣∣T 1
i1 T

1
i2 · · · T 1

ip+1

〉
(B4)

when none of the indices from i2 through ip+1 coincides with
i1 or i1 − 1. Since arbitrary permutation of the indices in the
n-triplon state |T 1

i2 · · · T 1
ip+1

〉 gives the same state, we only need
to consider the following three situations: i2 = i1 − 1, i2 = i1,

and i2 = i1 − 1, i3 = i1. In each case, we have

S+
i1

∣∣T 1
i1−1 · · ·〉 = − ∣∣T 1

i1−1T 1
i1 · · ·〉

S+
i1

∣∣T 1
i1 · · ·〉 = ∣∣T 1

i1−1T 1
i1 · · ·〉

S+
i1

∣∣T 1
i1−1T 1

i1 · · ·〉 = 0. (B5)

Using Eqs. (B4) and (B5), Eq. (B3) becomes

(B3) = [



p+1
j=2Pj

]⎛⎝ ′∑
{i}

e
∑p+1

j=1 ik j xi j
∣∣T 1

i1−1T 1
i2 · · · T 1

ip+1

〉

−
′′∑
{i}

e
∑p+1

j=1 ik j xi j
∣∣T 1

i1 T
1

i2 · · · T 1
ip+1

〉

+
∑

i1,··· ,ip+1

p+1∑
m=2

e
∑p+1

j=1 ik j xi j
(
δim,i1

∣∣T 1
i1−1T 1

i2 · · · T 1
ip+1

〉

− δim,i1−1

∣∣T 1
i1 T

1
i2 · · · T 1

ip+1

〉 )⎞⎠. (B6)

In the first sum
∑′

{i}, indices i2, · · · , ip+1 run through all
sites except i1. In the second sum

∑′′
{i}, indices i2, · · · , ip+1

overlapping with i1 − 1 are excluded. Remarkably the third
and the fourth term can be merged with the first and the second
term and become triplon wave states, respectively. Therefore,

(B6) = [



p+1
j=2Pj

] ∑
i1,··· ,ip+1

e
∑p+1

j=1 ik j xi j
( ∣∣T 1

i1−1T 1
i2 · · · T 1

ip+1

〉

− ∣∣T 1
i1 T

1
i2 · · · T 1

ip+1

〉 )
= [



p+1
j=1Pj

] ∣∣T 1
k1
T 1

k2
· · · T 1

kp+1

〉
. (B7)

In the same way one can prove the equivalence of
|S−

k1
S−

k2
· · · S−

kn
〉 and |T −

k1
T −

k2
· · · T −

kn
〉.

APPENDIX C: DENOMINATOR OF
THE TWO-TRIPLON SMA

To begin, let us consider the simplest case with α1 = α2 =
1. We are trying to compute〈

T 1
k1
T 1

k2

∣∣T 1
k1
T 1

k2

〉 =
∑

i, j,k,m

eik1(xi−xk )+ik2(x j−xm )
〈
T 1

k T 1
m

∣∣T 1
i T 1

j

〉
.

(C1)

The main idea we use is to break the above unrestricted
sum over indices into sums over indices satisfying inequal-
ity constraints. The MPS overlap method as detailed in
Appendix A then allows us to compute 〈T 1

k T 1
m |T 1

i T 1
j 〉 for a

particular ordered quadruple i, j, k, m and the Fourier sum
can then be exactly computed. The following symmetries of
the overlap can be exploited to reduce the number of required
computations.

Since in general we have |T 1
i T 1

j 〉 = |T 1
j T 1

i 〉, the overlap
must satisfy〈

T 1
k T 1

m

∣∣T 1
i T 1

j

〉 = 〈
T 1

mT 1
k

∣∣T 1
i T 1

j

〉
= 〈

T 1
k T 1

m

∣∣T 1
j T 1

i

〉 = 〈
T 1

mT 1
k

∣∣T 1
j T 1

i

〉
. (C2)
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As a result, we can assume k < m and i < j without loss
of generality. Furthermore, there is another identity of the
overlap, 〈

T 1
k T 1

m

∣∣T 1
i T 1

j

〉 = 〈
T 1

i T 1
j

∣∣T 1
k T 1

m

〉
, (C3)

which allows us to restrict ourselves to k � i without loss of
generality. There are then only three cases to consider: (i) both
(i, j) lie inside the [k, m] interval, (ii) both (i, j) lie outside the
[k, m] interval, and (iii) only i lies inside the [k, m] interval. In
the actual calculation below, we reorganize this to four cases
for computational facility.

The overlaps computed by the transfer matrix method as
described in Appendix A for the different cases relevant to the
denominator of the two-triplon SMA for the α1 = α2 = 1 case
are given by

Case 1: k � i < m < j: In this case only i lies inside the
[k, m) interval. We have in the thermodynamic limit,

〈
T 1

k T 1
m

∣∣T 1
i T 1

j

〉 = 1

4
3N

((
−1

3

)i+ j−k−m

−
(

−1

3

) j−k
)

. (C4)

Case 2: k < i < j � m: This is the situation where both i and
j lie inside the interval (k, m]. We obtain

〈
T 1

k T 1
m

∣∣T 1
i T 1

j

〉 = 1

4
3N

((
−1

3

)i− j−k+m

−
(

−1

3

)−k+m
)

.

(C5)
Case 3: k < m � i < j: This is the case where both (i, j)
lie outside the [k, m) range. The overlap vanishes in the
thermodynamic limit.

Case 4: k = i < m = j: In this case, there are only two
independent indices. We obtain

〈
T 1

k T 1
m

∣∣T 1
k T 1

m

〉 = 1

4
3N

[
1 −

(
−1

3

)−k+m
]
. (C6)

The summation in Eq. (C1) can be broken up into 24 sum-
mations over inequalities like k < i < m < j, k < i < j < m
and so on. In addition, one has to consider situations when
some of these indices become equal. The overlap formulas
mentioned above cover all the distinct types of overlap cal-
culations by the transfer matrix method that we need to do.
The overlap required for any other case, not belonging to the
four cases above, can be obtained from one of the formulas
above by interchanging some indices due to the symmetries
we mentioned before. We refer to such inequalities as sub-
cases within a case. Because of the presence of the phase in
Eq. (C1), the results of the sums for subcases within a case are
different. There are eight subcases for cases 1, 2, and 3, and
four subcases for case 4 considering different permutations of
the indices i, j, k, m. Let us define the sums over subcases as

S1
abcd =

∑
a�b<c<d

eik1(xi−xk )+ik2(x j−xm )
〈
T 1

k T 1
m

∣∣T 1
i T 1

j

〉

S2
abcd =

∑
a<b<c�d

eik1(xi−xk )+ik2(x j−xm )
〈
T 1

k T 1
m

∣∣T 1
i T 1

j

〉

S3
abcd =

∑
a<b�c<d

eik1(xi−xk )+ik2(x j−xm )
〈
T 1

k T 1
m

∣∣T 1
i T 1

j

〉

S4
abcd =

∑
a=b<c=d

eik1(xi−xk )+ik2(x j−xm )
〈
T 1

k T 1
m

∣∣T 1
i T 1

j

〉
. (C7)

On using the overlaps computed above for case 1 we get, to
the leading order,

S1
kim j = −3

8

eik2

(3 + eik1 )(3 + eik2 )
3N N2

S1
ik jm = −3

8

eik1

(1 + 3eik1 )(1 + 3eik2 )
3N N2

S1
mik j = S1

k jmi = −3

8

eik1

(3 + eik1 )2
δk1,k2 3N N2

S1
jkim = S1

im jk = −3

8

eik1

(1 + 3eik1 )2
δk1,k2 3N N2. (C8)

S1
m jki and S1

jmik can be obtained, respectively, from S1
kim j and

S1
ik jm after interchanging k1 and k2. For case 2 we have,

S2
ki jm = −3

8

ei(k1+k2 )

(3 + eik1 )(1 + 3eik2 )
3N N2

S2
ikm j = −3

8

1

(1 + 3eik1 )(3 + eik2 )
3N N2

S2
mi jk = S2

k jim = −3

8

e2ik1

(3 + eik1 )(1 + 3eik1 )
δk1,k2 3N N2

S2
imk j = S2

jkmi = −3

8

1

(1 + 3eik1 )(3 + eik1 )
δk1,k2 3N N2. (C9)

S2
m jik and S2

jmki can be obtained, respectively, from S2
ki jm and

S2
ikm j after interchanging k1 and k2. For case 4, we obtain

S4
kim j = S4

m jki = 1
8 3N N2

S4
k jmi = S4

mik j = 1
8δk1,k2 3N N2. (C10)

All the other subcases in case 1, case 2, and case 4 contribute
lower order terms and also all subcases in case 3. On adding
all these contributions and assuming N is large, we get

〈
T 1

k1
T 1

k2

∣∣T 1
k1
T 1

k2

〉 ≈ 4(1 + δk1,k2 )

(5 + 3 cos k1)(5 + 3 cos k2)
3N N2. (C11)

In the case of α �= β, there is only one symmetry we can
use, 〈

T α
k T β

m

∣∣T α
i T β

j

〉 = 〈
T α

i T β
j

∣∣T α
k T β

m

〉
. (C12)

Therefore, we can say k � i without breaking generality. The
rest of the steps for other spin indices are similar to the
α = β = 1 case, although we have to compute more overlaps
compared to the latter due to reduced symmetry.

APPENDIX D: NUMERATOR OF THE TWO-TRIPLON SMA

The numerator of the two-triplon SMA is given by〈
T 1

k1
T 1

k2

∣∣HA

∣∣T 1
k1
T 1

k2

〉
=

∑
i, j,k,m

eik1(xi−xk )+ik2(x j−xm )
〈
T 1

k T 1
m

∣∣HA|T 1
i T 1

j

〉
. (D1)

On using the fact that Hi annihilates any triplon state with a
singlet operator at site i in the Schwinger boson
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representation, we obtain〈
T 1

k T 1
m

∣∣HA|T 1
i T 1

j

〉 = 〈
T 1

k T 1
m

∣∣(Hi + Hj )
∣∣T 1

i T 1
j

〉 = (δk,i + δm,i )
〈
T 1

k T 1
m

∣∣Hi

∣∣T 1
i T 1

j

〉 + (δm, j + δk, j )
〈
T 1

k T 1
m

∣∣Hj

∣∣T 1
i T 1

j

〉
. (D2)

Putting this expression for 〈T 1
k T 1

m |HA|T 1
i T 1

j 〉 back to Eq. (D1) we have

〈
T 1

k1
T 1

k2

∣∣HA

∣∣T 1
k1
T 1

k2

〉 =
∑

i, j,k; j,k �=i

(eik2(x j−xk ) + eik1(xi−xk )+ik2(x j−xi ) )
〈
T 1

i T 1
k

∣∣Hi

∣∣T 1
i T 1

j

〉

+
∑

i, j,k; j,k �=i

(eik1(x j−xk ) + eik2(xi−xk )+ik1(x j−xi ) )
〈
T 1

i T 1
k

∣∣Hi

∣∣T 1
i T 1

j

〉
. (D3)

The numerator can now be calculated by performing the Fourier sum in the same way as the denominator after computing the
overlaps 〈T 1

i T 1
m |Hi|T 1

i T 1
j 〉. We also require the following results of the action of the AKLT Hamiltonian on the two triplon states

computed using standard Schwinger-Boson techniques,

Hi

∣∣T 1
i T 1

j

〉 = 1
24

(
4
∣∣T 1

i−1T 0
i+1T 1

j

〉 + 8
∣∣T 1

i−1T 1
j

〉 + 8
∣∣T 1

i+1T 1
j

〉 − 4
∣∣T 0

i−1T 1
i+1T 1

j

〉 + 24
∣∣T 1

i T 1
j

〉
), j �= i − 1, i + 1

Hi

∣∣T 1
i T 1

i+1

〉 = 1
2

∣∣T 1
i−1T 1

i+1

〉 + ∣∣T 1
i T 1

i+1

〉
Hi

∣∣T 1
i T 1

i−1〉 = 1
2 |T 1

i−1T 1
i+1〉 + |T 1

i T 1
i−1〉. (D4)

An important point to note is that when computing overlap between two states with even and odd number of triplons,
respectively, or vice versa, an extra negative sign has to be considered in addition to the transfer matrix result [see Eq. (A5)].
Moreover the term with the second summation sign on the right hand side of Eq. (D3) can be derived from the term with the first
summation sign after exchanging k1 and k2.

As before with the denominator, the strategy is to break the summation
∑

i, j,k; j,k �=i into different sums
∑

i< j<k +∑
j<k<i and

so on, six terms in total and an equality case in addition. This gives rise to the cases described below.
Let us define φ(i, j, k) as

φ(i, j, k) = eik1(xi−xk )+ik2(x j−xi ) + eik2(x j−xk ) (D5)

and ψn as 〈T 1
k T 1

i |Hi|T 1
i T 1

j 〉 for case n. For each case, we put equations of ψn below for {i, j, k} belonging to disjoint sets. Since
the matrix element 〈T 1

k T 1
i |Hi|T 1

i T 1
j 〉 is real we have

〈
T 1

k T 1
i

∣∣Hi|T 1
i T 1

j

〉 = 〈
T 1

k T 1
i

∣∣Hi|T 1
i T 1

j

〉∗ = 〈
T 1

i T 1
j

∣∣Hi

∣∣T 1
i T 1

k

〉
. (D6)

Hence for a subcase such as j < i < k, the relevant overlaps can be obtained from the overlaps computed below for the case
k < i < j by interchanging j and k. The rest of the calculation will proceed in an exactly similar manner.

Case 1: k < i < j
As the transfer matrix calculation 〈T 1

k T 1
i |Hi|T 1

i T 1
j 〉 becomes different for k = i − 1 or j = i + 1 we need to consider these

terms separately. We have∑
k<i< j

φ(i, j, k)ψ1(i, j, k) =
∑

k<i< j; k �=i−1, j �=i+1

φ(i, j, k)ψ1(i, j, k) +
∑

i< j−1

φ(i, j, i − 1)ψ1(i, j, i − 1)

+
∑

k<i−1

φ(i, i + 1, k)ψ1(i, i + 1, k) +
∑

i

ei(k1+k2 )ψ1(i, i + 1, i − 1). (D7)

We have on calculating the overlaps using Eq. (D4) in the large-N limit,

ψ1(i, j, k) = 1
54 (−1) j−k+13− j+k+N+3

ψ1(i, j, i − 1) = 1
6 (−1) j−i3i− j+N

ψ1(i, i + 1, k) = 1
6 (−1)i−k3−i+k+N

ψ1(i, i + 1, i − 1) = − 1
18 3N . (D8)

Case 2: i < j < k
We have ∑

i< j<k

φ(i, j, k)ψ2(i, j, k) =
∑

i< j<k; j �=i+1

φ(i, j, k)ψ2(i, j, k) +
∑

i<k−1

φ(i, i + 1, k)ψ2(i, i + 1, k). (D9)
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The necessary overlaps calculated by using Eq. (D4) in the large-N limit are given by

ψ2(i, j, k) = 1

54
3N

(
−15

(
−1

3

)k−i

+ 10

(
−1

3

)k− j
)

ψ2(i, i + 1, k) = 1

6
3N

(
−5

(
−1

3

)k−i
)

. (D10)

Case 3: k < j < i
We have ∑

k< j<i

φ(i, j, k)ψ3(i, j, k) =
∑

k< j<i; j �=i−1

φ(i, j, k)ψ3(i, j, k) +
∑

k<i−1

φ(i, i − 1, k)ψ3(i, i − 1, k). (D11)

The necessary overlaps calculated using Eq. (D4) in the large-N limit are given by

ψ3(i, j, k) = 1
54 3N

( − 15
( − 1

3

)i−k + 10
( − 1

3

) j−k)
ψ3(i, i − 1, k) = 1

6 3N
( − 5

( − 1
3

)i−k)
. (D12)

Case 4: j = k
We have∑

i, j �=i

φ(i, j, j)ψ4(i, j, k) =
∑

i, j �=i,i−1,i+1

φ(i, j, j)ψ4(i, j, j) +
∑

i

(
ei(k1−k2 )ψ4(i + 1, i, i) + e−i(k1−k2 )ψ4(i − 1, i, i)

)
. (D13)

The necessary overlaps calculated using Eq. (D4) in the large-N limit are given by

ψ4(i, j, j) = 1
54 3N

(
−15

(− 1
3

) j−i + 10
)
. (D14)

It also turns out after calculation that ψ4(i, j, j) for j < i can
be obtained from above by interchanging i, j.

Let us now describe our results. It turns out that only∑
i, j,k; j,k �=i eik2(x j−xk )〈T 1

i T 1
k |Hi|T 1

i T 1
j 〉 for case 1, 2, 3 produce

O(3N N2) terms. This is perhaps not surprising since already in
the denominator calculation we saw that the contributing sums
are those which have substantial overlap between the triplonic
bonds, i.e., between i, k and i, j in this case. The results of the
remaining sums at points where the denominator of the sums
are nonzero are found to be

Ii jk = I jki = − 5

54(1 + 3eik2 )
3N N2

Iik j = Ik ji = − 5eik2

54(3 + eik2 )
3N N2

Ieq = 5

27
3N N2. (D15)

Combining and considering terms coming from the second
term of Eq. (D3) we have the numerator (for k1 �= k2) equal
to ( 20

81 cos (k2 )+135 + 20
81 cos (k1 )+135 )3N N2.

Earlier we found that the denominator of the two-triplon
SMA have discontinuities at k1 = k2. The numerator also

becomes exactly double its value at k1 = k2 compared to
other points in the vicinity, as the two phases within the first
(second) summation in the right hand side of Eq. (D3) become
equal to each other. The calculation for other values of α, β

proceeds in a similar way, but as before with the denominator
we have to compute more overlaps due to reduced symmetry.
For example for α = 1, β = 0 we need to compute〈
T 1

k1
T 0

k2

∣∣HA

∣∣T 1
k1
T 0

k2

〉 =
∑

i, j,m; j,m �=i

(
eik2(x j−xm )

〈
T 1

i T 0
m

∣∣Hi

∣∣T 1
i T 0

j

〉
+ eik1(x j−xm )

〈
T 1

mT 0
i

∣∣Hi

∣∣T 1
j T 0

i

〉
+ eik1(xi−xm )+ik2(x j−xi )

〈
T 1

mT 0
i

∣∣Hi

∣∣T 1
i T 0

j

〉
+ eik2(xi−xm )+ik1(x j−xi )

〈
T 1

i T 0
m

∣∣Hi

∣∣T 0
i T 1

j

〉)
.

(D16)

As in other cases, only the first two terms of the last line of the
above equation contribute to the result mentioned in the main
text. However, unlike for α = β cases there is no discontinuity
at k1 = k2, as the first (second) term of Eq. (D16) does not be-
come equal to the third (fourth) term, even though the phases
both become equal to eik2(x j−xm ), because 〈T 1

i T 0
m |Hi|T 1

i T 0
j 〉 �=

〈T 1
mT 0

i |Hi|T 1
i T 0

j 〉.
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