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Geometrical matching and its influence on the melting transition of confined vortices in a
mesoscopic triangle of Bi2Sr2CaCu2O8+y superconductor
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To study the melting transition of a vortex crystal (or cluster) consisting of a small number of vortices confined
in a mesoscopic-scale superconductor, c-axis magnetoresistance in the highly anisotropic high-Tc superconductor
Bi2Sr2CaCu2O8+y (Bi2212) has been measured using a triangle-shaped stack of intrinsic Josephson junctions,
which was trimmed out from a single-crystal flake of Bi2212 via a double-sided etching process using a focused
ion beam. We observed oscillations of the melting transition line, in which the oscillating part of the melting
temperature has sharp peaks when the number of vortices N exactly coincides with the triangular number
n(n + 1)/2 (n is an integer number), at least for N < 50. This is in contrast to the case of square shapes where
the enhancements appeared as broad peaks around N = n2. Furthermore, the field ranges of the N-vortex state
expand at the triangular numbers of N , suggesting that the triangular number of vortices has a more stable
configuration than the others. Numerical studies on the configuration of vortices in a triangle shape show
that geometrical matching with no defect structures is realized at the triangular numbers, whereas an edge
dislocation often appears in the other nonmatching cases. The degree of suppression of the melting temperatures
at nonmatching numbers is reasonably consistent with the value estimated from the increase in free energy with
the introduction of an edge dislocation.

DOI: 10.1103/PhysRevB.100.144509

I. INTRODUCTION

In general, spatially confined interacting elements self-
organize various structures depending on the functional form
of interaction, the boundary condition or potential for the con-
finement, the dimensionality, quantum or classical behavior,
etc. For instance, electrons in an atom have a shell structure
in which they are confined in a three-dimensional spherically
symmetric Coulomb potential of a positively charged atomic
nucleus. In this case, the quantum nature of electrons is es-
sential to understanding the periodicity with an increase in the
atomic number, i.e., the periodic table of elements. Regarding
two-dimensionally confined macroscopic elements, spatial ar-
rangements such as shell structures have been observed in var-
ious systems: vortices in superconductors [1], superfluid He
[2] and Bose-Einstein condensate of cold atoms [3,4], dusty
plasma [5], magnetized colloids [6], and even millimeter-sized
charged or magnetized beads [7–9]. Moreover, a fluctuation
applied by the tuning temperature, strength of the interaction,
or artificial agitation can induce melting transition of these
confined solid phases [6,8,10]. The configurations of confined
interacting particles and their phase transitions were exten-
sively studied through numerical simulations [11,12].

Among them, vortices in mesoscopic-scale superconduc-
tors have been investigated extensively in the past two
decades. As the confinement effect of a screening current
circulating along the edges is relatively stronger in smaller
superconductors, unique vortex arrangements, e.g., giant vor-
tex, symmetrically induced antivortex, and shell structures,
were expected to be formed in microfabricated thin films
of conventional superconductors [1,13–15]. Particularly, shell
structures were observed in rather larger disk-shaped samples

and directly visualized through the Bitter decoration method
[1] or a scanning superconducting quantum interference de-
vice microscope [16]. Moreover, there are studies on vortex
configurations in other shapes such as equilateral triangles,
squares, and pentagons [17–22]. Although it is interesting to
determine whether the evolution of the configuration with the
addition of vortices and stable (magic) numbers of vortices are
thoroughly explained by the concept of “shell,” the definition
of shell itself is not always decisive if the number of vortices
N is quite large or if the sample shape is far from a disk,
especially a triangle [20,23].

The stability of spatial configurations influences thermo-
dynamic quantities such as melting temperature. Because the
first-order melting transition of a vortex solid to a liquid
is observed in bulk crystals of Bi2Sr2CaCu2O8+y (Bi2212)
high-Tc superconductors in easily accessible field ranges [24],
microfabricated Bi2212 crystals can be utilized to study the
melting transition of confined vortex crystals or clusters,
which would demonstrate the stability and evolution of vortex
configurations with an increase in N . We have reported an
oscillating behavior of the melting transition line in square-
shaped Bi2212 single crystals of lateral size μm through
c-axis magnetoresistance measurements using a stack of in-
trinsic Josephson junctions (IJJs) [25]. The oscillating part
of the melting temperature was at a broad maximum around
the number of vortices N = n2 (n is an integer number),
suggesting that the vortex states containing a square num-
ber of vortices are stabilized owing to geometrical matching
of confined vortex crystals and the square boundary shape.
However, in the case of the square, frustration with respect
to the symmetries between the square boundary and vortex
lattice, which prefer to form a hexagonal lattice in an infinite
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FIG. 1. Temperature dependence of c-axis resistance Rc for a
fabricated triangle-shaped stack of Bi2212 IJJs. Inset: SIM image of
the same sample (top view). Three Bi2212 electrodes are extended
from the top or bottom of the stack.

bulk, makes the problem of the stabilities of N-vortex states
complex. Therefore, the use of triangle-shaped samples can
mitigate this problem.

In this paper, we present experimental results of the melt-
ing transition of vortex crystals (or clusters) confined in a
triangle-shaped mesoscopic Bi2212. The oscillating behavior
of melting temperatures is confirmed in the triangle as well
as in the squares. By comparing with numerical calcula-
tions for the configurations of N-vortex states, we conclude
that the two-dimensional geometrical matching of hexago-
nal vortex crystals in the triangle shape is realized at the
triangular number N = n(n + 1)/2, whereas suppression of
melting temperatures in nonmatching states is mainly caused
by geometrically induced defect structures, which are edge
dislocations in many cases.

II. EXPERIMENTS

High-quality single crystals of Bi2212 were grown using
the traveling-solvent floating-zone method [26]. A triangle-
shaped stack of IJJs was fabricated via a double-sided etching
process using a focused ion beam (FIB) without adhesives,
which is very similar to the method proposed by Latyshev
et al., in which narrow trenches were formed on the top and
bottom surfaces using FIB by a flipping of whiskers [27]. The
only difference from their method is the shape of the starting
crystal; a cleaved flake of single crystal was used instead
of whiskers. In addition, parts of electrodes were fabricated
by separating each Bi2212 electrode using FIB milling. A
scanning ion microscope (SIM) image of the triangular stack
sample is shown in the inset of Fig. 1. An electrode for current
and another for voltage are directly placed at the bottom of the
stack, and a top electrode is commonly used for current and
voltage. The length l of the side of the equilateral triangular
stack is ∼8 μm, and the thickness of the stack is ∼100 nm,
which is estimated from room-temperature resistance using

FIG. 2. Color maps of (a) log Rc and (b) d log Rc/dT on H -T
planes for the triangular sample of Bi2212. The applied current is
45 μA.

the typical Bi2212 c-axis resistivity of 10 � cm. The c-axis
resistance Rc was measured using a current source (Keithley
6430) and a nanovoltmeter (Keithley 2182) in a chamber
containing a sample stage cooled by a Solvay-type cryocooler.
As shown in Fig. 1, Rc shows typical up-turn behavior in the
normal state. The superconducting transition temperature was
89 K at the midpoint of the resistance drop. A magnetic field
was applied parallel to the c axis of Bi2212, i.e., normal to
the image in Fig. 1. All the data of Rc were acquired through
repeated field scans from negative to positive at various fixed
temperatures.

III. EXPERIMENTAL RESULTS

To reveal the phase diagram of vortices confined in the
triangular sample, we repeatedly measured Rc as a function
of magnetic field with an applied current of 45 μA at a fixed
temperature, which was changed from 63 to 88 K in incre-
ments of 0.1 K. It is possible to detect the melting transition by
the Rc measurements as a steep increase of Rc with increasing
temperature or magnetic field [28,29]. Since the melting of
the vortex lattice in Bi2212 is accompanied by a decoupling
of pancake vortices along the c axis [30,31], flow of Josephson
vortices connecting the misaligned pancake vortices in the
liquid phase can bring about the increase of Rc.

Figures 2(a) and 2(b) show color maps of log Rc and its
temperature differentiation d log Rc/dT on an H-T plane,
respectively. Note that d log Rc/dT represents d log(Rc +
δR)/dT , in which a small offset δR was added to Rc. This
is the same procedure as that used in our previous study to
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FIG. 3. (a) Zoomed-in map of d log Rc/dT in a gray scale, which
is the part of the white box in Fig. 2(b). The number of vortices
N obtained by counting the number of slash lines from the zero
field is shown for some N in the regions between the slashes. Tm

is extracted from the points of the red circles. The yellow dashed line
is calculated from the decoupling theory (see the main text), which is
used as a smooth background TBG(H ) to extract the oscillating part
of Tm, i.e., �Tm = Tm − TBG. The definition of �Tm is also illustrated
by a yellow arrow. (b) Line profile of d log Rc/dT on the red line in
(a).

reduce noise in d log Rc/dT in the zero-resistance region [25].
A steep increase in log Rc with an increase in the temperature
is represented by a peak in d log Rc/dT , corresponding to
bright colors from red to yellow in Fig. 2(b). The three
features observed in squared Bi2212 [25] are also reproduced
in this triangular Bi2212: (1) an upper bright line from the top
center to the bottom right, indicating that the critical current of
IJJs becomes smaller than the applied current at this point, (2)
an oscillating bright line below the first line, corresponding to
the melting transition line of vortex crystals, and (3) almost
equally separated fine horizontal slashes caused by each vor-
tex entry into the sample, particularly clear around the melting
line in lower fields.

The first feature is extrinsic because it strongly depends on
the applied current. We extracted the melting temperatures Tm

and fields Hm from the oscillating line of the second feature.
The extracted melting points at low fields are shown by red
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FIG. 4. (a) Vortex-number dependence of the melting transition
temperature Tm(N ). Tm for N < 13 is not plotted because the melting
line is not well determined in Fig. 2(b) or Fig. 3(a) owing to the lim-
itation of the critical current of IJJs. (b) Vortex-number dependence
of �Tm, i.e., the oscillating part of Tm(N ), whose definition is shown
in the main text and the caption of Fig. 3.

circles in a zoomed-in d log Rc/dT map of Fig. 3(a). Fig-
ure 3(b) shows a line profile of d log Rc/dT in 23 Oe, where
the melting transition is observed as a peak. The number of
vortices involved in the melting transition is determined by
counting the number of slashes from the lowest one, whose
details can be seen in Fig. 3(a).

The vortex-number dependence of the melting transition
temperature is plotted with vertical grids indicating triangular
numbers Ntri = n(n + 1)/2 in Fig. 4(a). Clear enhancements
of Tm at the triangular numbers are observed as sharp peaks
for smaller vortex numbers, whereas they become broad
maxima above N ∼ 50. Figure 4(b) shows an oscillating
component of Tm (�Tm), which is evaluated by subtracting a
background curve expressed by TBG(H ) = Tc(H0/(H0 + H ))
of the decoupling theory [32], where H0 = 310 Oe and
Tc = 89.0 K. The amplitude of the oscillations reaches
approximately 1 K at lower N , whereas it gradually decreases
with an increase in N . Between the maxima of the oscillations,
dips are also well defined even when the peak becomes broad
at larger numbers. Similar dip structures were also observed
in the case of the squared Bi2212, where the dips are much
sharper than the broad peaks for the entire N [25], although
the reason is still unclear.

From the intervals between the nearest-neighbor slash
lines, we can evaluate the field range �H of the N-vortex
state, where the number of vortices is maintained. Since
changes of �H were very small especially at higher fields,
to increase the resolution Rc(H ) measurements with much
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FIG. 5. Details of (a) d log Rc/dT and (b) d log Rc/dH maps in
an intermediate field range. �H are extracted at three temperatures:
T1 = 74.75, T2 = 75.8, and T3 = 79.0 K. In (b), the color markers
indicate the positions of the slash lines at each temperature, which
are used to evaluate �H . The number of vortices N and an example
of the definition of �H are also shown.

finer steps of temperature and field were conducted in an
intermediate field range. The obtained maps of d log Rc/dT
and d log Rc/dH are shown in Fig. 5(a) and 5(b), respectively.
It is more convenient to use the field-derivative map to count
the number of vortices, because it makes the slash lines
clearer, compared with the temperature-derivative map. �H
are extracted from Fig. 5(b), and Fig. 5(a) is used to evaluate
the melting transition line.

In Fig. 6, �H as a function of N is plotted at three
temperatures labeled by T1, T2, and T3 in Fig. 5. As shown in
Fig. 6(a), �H is nonuniform in vortex solid phase (N < 48).
Particularly, significant enhancements are observed at Ntri of
36 and 45. While the same feature can also be observed in
the solid phase (N < 41) in Fig. 6(b) for a slightly higher
temperature, �H becomes almost constant in the liquid phase
[N � 41 in Fig. 6(b) and N � 29 in Fig. 6(c)]. In the sim-
ulations by Cabral et al., it is expected that �H reflects the
stability of vortex configuration at each N and is enhanced
at the triangular numbers [23]. Our findings experimentally
confirm that the configuration of vortex crystals at Ntri is more
stable than those at the other numbers, which is consistent
with the aforementioned simulations [23]. As mentioned in
Ref. [23], the configurations at Ntri are analogous to the “noble
gas.” Moreover, in their simulations, excess suppression of
�H was observed in the “halogen” states of Ntri − 1, which
is also observed in Fig. 6 (N = 35 and 44). Contrary to the
solid state, the liquid state of each N does not have a distinct
difference in �H , suggesting its homogeneous nature.

IV. NUMERICALLY SIMULATED
VORTEX CONFIGURATIONS

Vortex configurations in an equilateral-triangle mesoscopic
superconductor have already been investigated theoretically
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FIG. 6. Vortex-number dependence of field range �H at three
different temperatures [(a)–(c)]. The two vertical grids show the
triangular numbers of 36 and 45, respectively.

based on the London or Ginzburg-Landau (GL) approach
for a limited number of vortices [17,23,33–35]. Cabral et al.
calculated the ground-state configurations up to N = 37 in the
simulations and tried to classify them [23]. To compare our
experimental results with theoretical configurations for larger
numbers of vortices, we numerically calculated configurations
with the number of vortices more than 60. Vortex entries
into an equilateral superconducting triangle were simulated
using the GL equations with the finite element method (COM-
SOL Multiphysics®[36]), according to the procedures and
implementations of time-dependent GL equations developed
by Alstrøem et al. [37]. Solutions of steady states were
obtained for each dimensionless magnetic field Ba with its
parametrical increments. In our simulations, to reduce the
number of meshes and the calculation time, the GL parameter
κ was set to 10, which is sufficient to determine the vortex
configurations, whereas it is known to be ∼100 in high-Tc

cuprate superconductors. The length l of a side of the triangle
was fixed to 10 times of the penetration depth λ, which
is not significantly different from the size of our sample.
The resultant configurations almost reproduced the previous
studies in the London limit [23], although thermodynamic
quantities, i.e., free energy or magnetization, show a hysteretic
behavior in our calculations depending on the field-sweep
process owing to the Bean–Livingston barrier [38]. To avoid
multivortex entries at once, a tiny notch is introduced on one
side, which promotes one-by-one vortex entries.

The obtained configurations were analyzed using Delaunay
triangulation to identify the locations of topological defects.
The coordination number ni of a vortex i is defined as the
number of bonds connected to it in the triangulated configura-
tion. In the case of an Abrikosov hexagonal lattice, ni is 6 for
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FIG. 7. Calculated vortex configurations from N = 1 to 10. Ge-
ometrical matching realized at the triangular numbers Ntri = 1, 3, 6,
..., n(n + 1)/2 (n is an integer). Resembling the periodic table of
elements, the evolution of the configuration with vortex number has
a periodicity and is arranged in terms of Ntri in the present case. In
each row, the configuration at the right end of Ntri corresponds to the
“noble gas” state.

vortices in bulk and ni is 4 for vortices on straight boundaries.
Therefore, a vortex with ni �= 6 is considered as a topological
defect in bulk. The charge of topological defects is defined by
Qi ≡ 6 − ni in bulk and Qi ≡ 4 − ni on the boundary. In this
study, topological defects in bulk with Qi = 3, 2, 1, and −1 are
marked by black, orange, red, and blue circles, respectively,
in Figs. 7–9. Optionally, those located close to boundaries are
marked by dotted circles if necessary. The summation of the
charges for all vortices is 6, i.e.,

∑
i Qi = 6 owing to Euler’s

28 29 30

31 32 33

34 35 36

FIG. 8. Simulated vortex configurations for a matching number
of N = 28 and for the eighth period, i.e., from N = 29 to 36. At the
nonmatching numbers except N = 29, the defect structures are edge
dislocations, which are indicated by the pairs of red and blue circles.

37 38 39

40 41 42

43 44 45

FIG. 9. Simulated vortex configurations for the ninth period.
Similar to Fig. 8, in most cases, the observed defect in the nonmatch-
ing state is an edge dislocation.

polyhedron theorem. An adjacent pair of +1 and −1 charges
corresponds to an edge dislocation.

Figure 7 shows the obtained configurations for N = 1 to
10. To clarify the periodicity with Ntri, the configurations at
Ntri are arranged along the rightmost column, like noble gases
in the periodic table of elements. In this arrangement, we refer
to the first row as the first period,..., and the nth row as the nth
period. Only the configuration for N = 9 is different from the
ground state obtained by Cabral et al., but it is the same as one
of two metastable states obtained by them [23].

For N = 11 to 36, our configurations are the same as the
results obtained by Cabral in many cases except for N = 14,
23, 24, 27, 29–32. Particularly, the configurations at Ntri of 15,
21, 28, and 36 are Abrikosov hexagonal lattices in both cases.
It appears trivial that perfect geometrical matching occurs at
Ntri, because the symmetry of the hexagonal lattice coincides
with that of the equilateral triangle. Our simulations provide
the perfect hexagonal lattice up to 45 (the ninth triangular
number), but fail at 55 (the tenth triangular number). Vortex
configurations from N = 28 to 36 and from 37 to 45 are shown
in Figs. 8 and 9, respectively.

V. DISCUSSION

In our simulations, particularly with larger number of
vortices, we observed an interesting evolution in the config-
urations where the nonmatching states contain an edge dislo-
cation in many cases and only the positions of the dislocations
differ with the change in N . This is observable in the eighth
and ninth periods as shown in Figs. 8 and 9, respectively.
With an increase in N from Ntri, excess vortices induce defect
structures. Except for N = Ntri + 1, the defect is identical to
an edge dislocation, and the position changes for different
N . When N is one before the next Ntri, the edge dislocation
appears on a boundary, and then disappears at the next Ntri.
Hence, it is most likely that the periodical appearance of an
edge dislocation between Ntri causes the oscillations of the
melting transition temperature.
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Suppression of the melting field or temperature by the
introduction of a geometrically induced dislocation is roughly
estimated as follows. The energy of an elementary edge
dislocation in the vortex lattice is db2c66/2π ln(Rs/R0), where
d is the thickness, b is the Burgers vector, c66 is the shear
modulus, and Rs, R0 are the sample and dislocation core
radii, respectively [39]. c66 is approximately �0B/(8πλ)2.
As the Burgers vector and the core radius are expected to
be comparable to lattice spacing a0 (for hexagonal lattice,
a2

0 = 2�0/
√

3B), the dislocation energy per unit volume edis

can be expressed by

edis = ε0

4
√

3πS
ln

(
Rs

a0

)
, (1)

where ε0 = (�0/4πλ)2 is the basic energy scale of vortex
system and S is the sample area. To estimate the suppression
of melting temperature by the introduction of an edge dis-
location, we consider a case where a dislocation-free vortex
configuration with N vortices in an arbitrary sample shape is
modified to a configuration with an edge dislocation for the
same N by transforming the sample shape to a triangle. If
the melting field Hm0 of the dislocation-free configuration is
reduced to Hm0 − δH by the introduction of the dislocation at
a fixed temperature, the free energy of the crystal and liquid
states in both cases fulfills

gcr (Hm0) = gl (Hm0), (2)

gdis
cr (Hm0 − δH ) = gl (Hm0 − δH ), (3)

at the melting point. Expanding Eq. (3) to the first order in
δH ,

gdis
cr (Hm0) − gl (Hm0) �

(
∂gdis

cr

∂H

∣∣∣∣
Hm0

− ∂gl

∂H

∣∣∣∣
Hm0

)
δH (4)

= − 1

4π

(
Bdis

cr − Bl
)
δH. (5)

Assuming that the magnetization jump of the melting transi-
tion Bdis

cr − Bl for the configuration with a dislocation does not
change considerably from the value observed in bulk crystals
(−�B), the enhancement of free energy by the introduction
of a dislocation is given by gdis

cr − gcr ∼ (�B/4π )δH . Using
Eq. (1) for the energy of the dislocation, we obtain

δH = ε0(T )√
3S�B

ln

(
Rs

a0

)
. (6)

For S = 27.7 μm2, λ ∼ 700 nm at 75 K, �B = 0.1 G,
and ln(R/a0) ∼ 1, δH is estimated to be 1.2 Oe. Using
dTm/dH ∼ 0.2 [K/Oe] as a slope of the melting transition
line, the expected suppression of the melting temperature is
0.24 K, whose order is comparable to the experimental result
in Fig. 4. Therefore, it is highly possible that the emergence of
an edge dislocation induced by the geometrical confinement
is the origin of the melting-temperature suppression in the
nonmatching states.

Although Eq. (6) indicates an increase in the oscillation
amplitude at higher fields and lower temperatures, the exper-
imental results appear contrary and the oscillations almost
disappear above N > 100 as shown in Fig. 4. There is a
possibility that unintended imperfections of the sample such
as accuracy of the equilateral triangle or bulk pinning by
quenched disorder smear the geometrical matching phenom-
ena, particularly for large N . Nevertheless, as our estimation
only considers the energy of an edge dislocation and does not
consider the entire influence of the screening current, more
precise calculations may resolve this discrepancy.

In conclusion, to reveal the influence of confinement effect
on the melting transition of vortex crystals or clusters, we
have investigated the melting transition in a μm-sized triangle
of the superconducting Bi2212 single crystal using c-axis
magnetoresistance measurements with a stack of IJJs. As in
the case of the square samples, an oscillating behavior of the
melting transition line was observed in the triangle. Sharp
peaks of the melting temperatures appear at the triangular
numbers of vortex N = n(n + 1)/2, at least for N < 50. Two-
dimensional geometrical matching of the hexagonal vortex
crystal with the triangle shape is the origin of the peaks.
Through a comparison with our numerical studies on the vor-
tex configuration for each N , it is observed that suppression
of the melting temperature in the nonmatching states mainly
originates from defect structures such as edge dislocations.
Further studies with different sample shapes or by using
other experimental methods such as direct vortex imaging
or thermodynamic magnetization measurement would allow
a deeper insight into the melting phenomenon in confined
vortex crystals.
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