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Braiding of anyons such as Majoranas or parafermions provides only Clifford gates which do not form a
universal set of quantum gates. We propose a robust and resource-efficient scheme to perform non-Clifford
gates on logical qudits encoded in parafermionic zero modes via the Aharonov-Casher effect. This gate can
be implemented by moving a half-flux quantum around the pair of parafermionic zero modes. The parafermion
modes can be realized in a two-dimensional setup via existing proposals, and a half-fluxon can be created as a part
of half-fluxon/anti-half-fluxon pair in a spin-triplet Josephson junction. We provide evidence that the half-fluxon
can be braided robustly around the parafermions and hence this is a reliable proposal for the implementation of
the non-Clifford gate without magic state distillation. Supplementing this gate with the braiding of parafermions
provides the avenue for universal quantum computing with parafermions.
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I. INTRODUCTION

The Gottesman-Knill theorem [1] states that the quantum
gates from the Clifford group can be efficiently simulated
on a classical computer. Thus, in order to access the full
computational power of quantum computers, one needs to
go beyond the Clifford gates. In fact, one needs just a single
non-Clifford gate [2] in order to densely generate the universal
set of quantum gates. In the topological quantum computation
(TQC) scheme [3], quantum information is stored in the
nonlocal Hilbert space spanned by the so-called non-Abelian
anyons that can emerge in topological phases of matter and
manipulated via the quantum gates generated by braiding of
anyons. Examples of non-Abelian excitations include the Ma-
jorana zero modes (MZMs) [4–9], their generalizations called
parafermions (PFs) [10–14], or even more exotic anyons
called Fibonacci anyons [15]. Braiding of MZMs or PFs pro-
vides only the gates in the Clifford group. While braiding of
Fibonacci anyons can provide the universal set of gates, their
experimental realizations remain a major challenge [15–19].
On the other hand, experimental signatures for MZMs have
been reported [20–22] and proposals made for braiding and
error -correction [23,24]. Instead of physical braiding, one can
perform measurement-based braiding [25–28], i.e., effective
braiding via topological charge measurements with possible
assistance from software [29,30] for improved efficiency.

Topologically protected parafermionic zero modes can be
engineered as extrinsic defects in “conventional” Abelian
topological phases [31], e.g., superconducting trenches in
fractional quantum Hall (FQH) [10] or fractional Chern in-
sulator (FCI) systems, edge domain walls in fractional topo-
logical insulators [12], fractional topological superconductors
[32], lattice defects [14,33,34], or genons in bilayer FQH
systems [13,35]. A pair of PFs, for example, in the FQH-based
setup, has a composite topological charge that is a fraction
1
N of 2e electric charge where N is an integer greater than 2.

Hence, the associated qudit is immune to conventional quasi-
particle poisoning, which adds an integer multiple of e to the
system. This is unlike the systems for MZMs where N is equal
to 2 and hence suffer from quasiparticle poisoning [36–40].
Thus, if the fractional quasiparticle poisoning is suppressed,
the PFs would hold an advantage over MZMs for the Clifford
gates done via charge measurements. But still, like MZMs,
gates based on braiding or topological charge measurements
of PF modes lie in the Clifford group [41].

A key question for MZM/PF-based TQC is implementa-
tion of a non-Clifford gate in order to have a universal gate set.
For MZMs, there have been several proposals to implement
the simplest qubit non-Clifford gate that belongs to the third
level of the Clifford hierarchy [42], the π

8 gate, via magic
state distillations [43], tuning interactions between MZMs
[3,44], interferometry [45], and universal geometric phase
engineering [46]. For PFs, the question is largely unexplored.
It still remains an outstanding question to find a resource-
efficient and robust protocol to implement a non-Clifford gate.

Qudit versions of the qubit non-Clifford gate like the π
8

gate have been proposed [42], and performance of magic state
distillation protocols has been studied [2,47]. In this work,
we propose a robust method to implement a non-Clifford
gate on a logical qudit encoded in PFs via the Aharanov-
Casher (AC) effect. Implementation of single-qubit unitary
rotations for Majorana qubits using the AC effect has been
discussed [48,49]. In Ref. [50] the current-phase relation for a
Josephson junction made of spin-triplet superconductors has
been calculated. We show that for such a Josephson junction,
a half-fluxon (HF) is a solution for the order parameter phase
difference across the junction. Braiding the HF around a pair
of PF modes implements a non-Clifford gate on the associated
qudit with dimension N > 2. We investigate the HF solution
for an annular spin-triplet Josephson junction and HF/anti-
half-fluxon(AHF) pair creation in the presence of a localized
dipole current defect and calculate the bias current threshold
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for moving the HF. A pair configuration of localized HF
(LHF) and free AHF (FAHF) is considered. A bias current
pulse which ensures that the FAHF completes a single loop
around the annular Josephson junction is constructed. Last,
we discuss the robustness of the pair configuration and steps
used in the gate implementation.

II. NON-CLIFFORD GATE AND IMPLEMENTATION
USING AHARONOV CASHER EFFECT

In this section, we first define the particular non-Clifford
gate of interest and then discuss its implementation using the
AC effect.

A. Non-Clifford gate for qudits and PFs

The Pauli group [2] for a single qudit of dimension N is
defined as

P1
N = {

X a
N Zb

N

∣∣a, b ∈ 0, 1, . . . , N − 1
}
, (1)

and the Pauli group for m N-dimensional qudits is defined as
Pm

N = (P1
N )⊗m, where

XN =
N−1∑
j=0

| j ⊕ 1〉〈 j|, ZN =
N−1∑
j=0

ω j | j〉〈 j|. (2)

Here ⊕ is addition modulo N , ω = e
i2π
N , and j labels the

computational basis. The Clifford group for m qudits is de-
fined as Cm

N = {U | UPU −1 ∈ Pm
N ∀P ∈ Pm

N } as it preserves
the Pauli group under conjugation. We define UHF,N in the
N-dimensional computational basis as a particular choice of
the square root of ZN :

UHF,N = diag(1, ei π
N , ei2 π

N , . . . , ei(N−1) π
N ). (3)

Here HF denotes the HF since we use a HF to implement
this gate. Conjugation of XN = ( 01,N−1 1

1N−1,N−1 0N−1,1
) [51] by UHF,N

gives

UHF,NXN (UHF,N)−1 = e
iπ
N

(
01,N−1 −1

1N−1,N−1 0N−1,1

)
, (4)

which doesn’t lie in the single-qudit Pauli group for all N >

2 [we excluded N = 2 because in that case, the RHS of (4)
reduces to σy ∈ P1

2 ]. Therefore, UHF,N is a non-Clifford gate
for N > 2.

B. Aharonov-Casher effect

The Aharonov-Bohm (AB) effect [52] in which a charge
moving in a field-free region in a path enclosing a magnetic
flux picks up a geometric phase has a “dual” effect called the
Aharonov-Casher (AC) effect [53]. In the AC effect, a neutral
particle with a magnetic moment as it encircles an infinite line
of charge picks up a phase proportional to the linear charge
density.

In a type-2 superconductor, if a charge q braids around a
localized fluxon in the bulk, it gets an AB phase. Aharonov
and Reznick [54] asked if it is possible to braid the fluxon
around the charge q instead to get an AC effect. Indeed,
braiding a fluxon around a charge q leads to accumulation
of a geometric phase on the quantum state of the charge and
the fluxon. In order to demonstrate the nonlocality of the AC

effect [54], the fluxon was considered to be in a force-free
region, i.e., a superconductor in which the electric field due to
the charge is screened.

Starting from a quantum state of a charge q and flux tube
with flux �, |q〉 ⊗ |�〉, braiding the flux tube with flux �

around the charge q gives a phase ei �q
h̄ on the state. For a

quantum state that is a charge superposition, each charge state
gets a different AC phase leading to the implementation of a
diagonal gate that is not proportional to identity. Consider an
example with Z3 PFs. An arbitrary initial charge state of a pair
of these PFs can be written as

|ψi〉 = a0|0〉 + a1

∣∣∣∣2e

3

〉
+ a2

∣∣∣∣4e

3

〉
, (5)

where |q〉 is a fractional charge state. The state after braiding
a half-flux quantum � around the PF pair due to gain of AC
phase, φAC = q�

h̄ , on the fractional charge states {|q〉} is

|ψ f 〉 = a0|0〉 + ei 2e�
3h̄ a1

∣∣∣∣2e

3

〉
+ ei 4e�

3h̄ a2

∣∣∣∣4e

3

〉
. (6)

Choosing � to be a half-flux quantum h
4e implements the non-

Clifford gate UHF,3 given in Eq. (3), on |ψi〉.

III. PARAFERMIONIC SETUP

Since our goal is to implement a non-Clifford gate using
PFs, we consider proposals for parafermionic defects from
Refs. [10,12]. As discussed in these proposals, the first main
ingredient is two adjacent fractional quantum Hall (FQH)
wells or, equivalently, two fractional Chern insulators as
shown in Fig. 1, each with the same filling fraction ν = 1

k
where k is an integer. The counterpropagating helical edge
modes from the two quantum wells with opposite spins can be
seen at the interface. For purposes of this paper, we would use
FCI layers (or a single fractional topological insulator [12])
in order to avoid the complications due to a strong magnetic
field in the case of FQH wells. An s-wave superconductor is
placed on top of a section of the interface to allow a pairing
gap to open in that section. A spin-orbit coupled insulator
or ferromagnet is used to create an insulating/magnetic gap
in the neighboring sections. The domain walls between the
pairing gap region and the insulating gap region form the
parafermionic defects or zero modes. The tunneling of frac-
tional charges between the domain walls is suppressed due to
the pairing and insulating gaps. The zero mode operator ζ1 at
the domain wall between the pairing region that ends at x1 and
insulating region that starts at x1 + l1, is expressed as follows
[10,16]:

ζ1 =
∫ x1+l1

x1

dx[ψ†
R(x) + ψ

†
R(x1 + l1)ψL(x1 + l1)ψ†

L (x)

+ψ
†
R(x1)ψ†

L (x1)ψ†
R(x1 + l1)ψL(x1 + l1)ψR(x)

+ψ
†
R(x1)ψ†

L (x1)ψL(x)]

=
∫ x1+l1

x1

dx(eiφR (x) + ei[φR (x1+l1 )−φL (x1+l1 )]eiφL (x)

+ ei[φR (x1 )+φL (x1 )]ei[φR (x1+l1 )−φL (x1+l1 )]e−iφR (x)

+ ei[φR (x1 )+φL (x1 )]e−iφL (x) ), (7)
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FIG. 1. (a) Fractional Chern insulator based setup
for parafermionic defects shown by black patches at the
superconductor-insulator interface. (b) Spin-triplet Josephson
junction with a localized dipole current that facilitates LHF-FAHF
pair creation. The shaded ring-shaped regions present the
superconductors, while the region between them is the insulator.
The bias current is shown as Ib, dipole current as I , and the
distance between the injection and collection leads is marked as
D. (c) Josephson junction setup combined with the FCI-based
parafermionic setup [10] such that the free AHF’s flux can go around
the pair of parafermionic defects to implement

√
ZN gate. Josephson

junction has been placed on top of the setup with parafermionic zero
modes. Here the current injection leads as shown in panel (b) are not
shown for simplicity.

FIG. 2. Processes that contribute to the parafermionic zero mode
operator. Blue and orange arrows correspond to up and down spin,
while black and white circles correspond to quasiparticles and quasi-
holes, respectively. l1 is the length of the domain wall between the
pairing and insulating region. (a) Right-moving quasiparticle from
pairing to insulating region. The insulator with spin-orbit coupling
(SOC) or ferromagnet reflects the quasiparticle back with down spin
in (b). (c) Andreev reflection from the pairing region sends back
a quasihole with spin reversed back to up spin. (d) Quasihole gets
reflected back from the insulating region to the pairing region with
down spin.

where ψ
†
R(x) and ψ

†
L (x) are the creation operators for the

right and left moving e/m charges, respectively, at position
x on the edge of the FCI and in a bosonized framework,
expressed as ψ

†
R/L(x) ∼ eiφR/L (x) in terms of the fields φR(x)

and φL(x). These fields obey the commutation relations
[φR/L(x), φR/L(x′)] = ±i π

m sgn(x − x′), and [φL(x), φR(x′)] =
i π

m . φR/L(x1) and φR/L(x1 + l1) are pinned due to the pair-
ing and insulating gap terms, respectively. The zero mode
operator arises as a superposition [8] of different processes,
described by each of the terms in Eq. (7) and shown in
Fig. 2. The first term in Eq. (7), ψ

†
R(x) corresponds to the

right-moving quasiparticle with up spin. The second term
describes the reflection from the insulating region on which
the quasiparticle reflects back to the pairing region with
inverted spin. The third term describes the Andreev reflec-
tion from the pairing region due to which the left-moving
down spin quasiparticle gets converted into a right-moving
quasihole with up spin, whose creation operator is ψR(x).
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The fourth term describes the quasihole reflected from the
insulating region with inverted spin. When this quasihole
converts, on Andreev reflection from the pairing region, to
the right-moving quasiparticle, the state we started with is
reached. The implementation of braiding of PFs at the domain
walls of a chain of superconducting and ferromagnetic islands
is explained in Ref. [11] and equivalently in Ref. [10].

IV. SPIN-TRIPLET SUPERCONDUCTORS AND
SPIN-TRIPLET JOSEPHSON JUNCTION

In this section, we first discuss the background on the
spin-triplet superconductors and then the long spin-triplet
Josephson junction. We show that for the long spin-triplet
Josephson junction, there exists a HF solution.

A. Spin-triplet superconductors

The spin-triplet superconductors are described by an order
parameter matrix in spin and momentum space [55–58] that
can be expressed as

�(k) =
(�↑↑(k) �↑↓(k)

�↓↑(k) �↓↓(k)

)
, (8)

where k is the momentum and ↑ or ↓ indicates the z compo-
nent of spin. In general, we have

�σσ ′ (k) = −
∑

k′
Vk,k′ 〈G| f †

k′σ f †
−k′σ ′ |G〉, (9)

where |G〉 is the ground state and the expression comes from
applying mean field theory to the quartic fermionic interaction
term

∑
k,k′ Vk,k′ f †

kσ
f †
−kσ ′ fk′σ f−k′σ ′ where σ indicates up or

down spin component, f †
kσ

are fermionic creation operators
in momentum space, and Vk,k′ is the Fourier coefficient of the
interaction term. Thus, the superconducting order parameter
�σσ ′ (k) is a wave function of a Cooper pair formed by
two quasiparticles whose momenta and spins are (k, σ ) and
(−k, σ ′). For a p + ip superconductor, we can choose a spin
coordinate system in which �↑↓(k) = �↓↑(k) = 0 for all k.
For more details, see Appendix A. In this new coordinate
system, we can write the Hamiltonian of the spin-triplet px +
ipy superconductor as

H =
∑
kσ

ξkσ f †
kσ fkσ

+ 1

2
[�̃σσ (k)� f−kσ fkσ + �̃σσ (k) f †

kσ f †
−kσ ], (10)

where ξkσ is the single-particle kinetic energy. �̃σσ (k) are
the components of the order parameter matrix for the new
choice of spin-quantization axis and given by ��

↑↑(k) =
�0√

2
e−i�↑

p (kx − iky), and ��
↓↓(k) = �0√

2
e−i�↓

p (kx − iky). Here

�0 is a constant and �↑(↓)
p are the order parameter phases

corresponding to the ↑(↓) spin component. The ground state
of the above Hamiltonian (10) can be written as

|G〉 =
∏
k↑

(uk↑ + vk↑ f †
k↑ f †

−k↑)
∏
k′↓

(uk′↓ + vk′↓ f †
k′↓ f †

−k′↓)|0〉.

(11)

Here vkσ

ukσ
= − (Ekσ −ξkσ )

��
σσ (k) where Ekσ =

√
ξkσ + |�σσ (k)|2.

B. Spin-triplet Josephson junction

The Hamiltonian for a conventional long Josephson junc-
tion [59,60] can be generalized to the spin-triplet case as

H =
∑

σ=↑,↓

∫
dx

[
1

2
cnσ

n2
σ + 1

2
cσσ (∂x�

σ )2

+ 1

2
c↑↓(∂x�

↑)(∂x�
↓) + Jσ (1 − cos �σ ) − Ib

2
�σ

]
,

(12)

where x is the coordinate along the length of the junction, nσ is
the number charge density for spin σ , and Ib is the bias current.
c↑↑ and c↓↓ are the coefficients of the magnetic terms [59],
and c↑↓ is the coefficient of an allowed coupling term between
the variation of �↑ and �↓. The last two terms are Josephson
energy contributions from up and down spin sectors. Jσ set the
characteristic Josephson energy scales for the σ spin compo-
nent, and cnσ

is the coefficient of the capacitive term. �σ are
differences of the order parameter phases across the junction
“seen” by the σ spin component. Under the assumptions
c↑↓ = 0, cn↑ = cn↓ = cn, c↑↑ = c↓↓ = c� and J↑ = J↓ = J ,
the equations of motion for this Hamiltonian can be written as

∂2
t �↑(↓)

cn
= Ib − J sin �↑(↓) + c�∂2

x �↑(↓). (13)

For zero bias current, equations of motion are

∂2
t̄ �↑(↓) + sin �↑(↓) = ∂2

x̄ �↑(↓), (14)

where x̄ = J
c�

x and t̄ = Jcnt . These equations have a traveling

wave solution, i.e., of the form �↑(↓) = �↑(↓)(x̄ − ut̄ ) given
by

�↑ = 4 arctan
(
e
± x̄−ut̄√

1−u2
)
, �↓ = 0, (15)

where the parameter u represents an arbitrary constant
velocity of propagation. This is a HF solution since only �↑
jumps by 2π . In Appendix B we show that this solution is
associated with a magnetic flux of a half-flux quantum.

In Sec. VI, we discuss how a localized dipole current defect
can help facilitate tunnel creation of HF-AHF pair such that
one of them, either HF or AHF, is localized at the dipole while
the other one is free to move along the length of the junction.
The localized dipole defect has an associated magnetic flux
that is pinned, and if the magnitude of this pinned flux
attains the half-flux quantum, it will be energetically favorable
to have this pinned flux compensated by a negative half-flux
quantum. Depending on the relative orientation of dipole and
HF/AHF, either HF and AHF can compensate the pinned flux.
We choose a convention in which the compensating half-flux
quantum is carried by HF. This would imply that an HF-AHF
pair can be created in the junction such that HF’s negative
flux compensates the flux pinned at the defect, while along
the length of the junction at a distance z from the defect, free
AHF appears. Applying the bias current Ib moves the free
AHF along the length of the junction. We consider the defect
potential in Sec. VI in more detail.
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V. BRAIDING OF HALF-FLUXON AROUND THE PFs

In order to braid an HF (or equivalently AHF) around
the PF pair, the setup supporting the PF defects should be
combined with the device supporting the HF solution. In
Fig. 1(b) we show a schematic of the Josephson junction
that supports the HF and its superposition with the FCI-based
setup having parafermionic defects [10]. The superposition
means putting the ring-shaped spin-triplet Josephson junction
on top of the PF setup such that the flux due to the HF in
the junction can penetrate the insulating region and circle
around the PFs. The HF goes through the insulators and is
sufficiently far from the superconductor so that the associated
flux is not screened by it. Note that the superconductor in the
Josephson junction is a p-wave spin triplet superconductor
and the superconductor used for proximity effect in the PF
setup is an s-wave superconductor. It is the localized magnetic
flux of the HF in the Josephson junction that braids around the
pairing region leading to the following consequences.

A. HF winding around the s-wave superconductor

As the HF winds around the PF defects at the ends of a
pairing region in the FCI setup, the associated flux passes
around both the parafermionic modes, the pairing region
of the FCI edges as well as the s-wave superconductor. When
the HF completes a loop around the s-wave superconductor,
the order parameter phase of the superconductor, �s, changes
by π due to the AC effect. This follows from the fact that
when a half-flux quantum h

4e is taken around a Cooper pair

of charge 2e, there is an AC phase of
h
4e 2e

h̄ = π accumulated
on the superconducting ground state. The BCS ground-state
wave function is given by

|GBCS〉 =
∏

k

(uk + ei�s eiφkvk f †
k↑ f †

−k↓)|0〉, (16)

where �s is the order parameter phase, |0〉 is the vacuum state,
and uk

vk
is determined by the BCS Hamiltonian. Due to the AC

phase of π on the Cooper pair part under winding by HF, the
ground state becomes

|G′
BCS〉 =

∏
k

(uk + ei�s+πeiφk vk f †
k↑ f †

−k↓)|0〉, (17)

where the order parameter phase is now �s + π .

B. Non-Clifford gate via braiding of half-fluxon around PF pair

Moving a half-flux quantum around a pair of ZN PFs
(here, ZN refers to the symmetry group associated with the
PF pair whose charge can take values in ZN) effectively
implements the UHF,N gate of (3). We use the example of Z3

PFs discussed before but keeping the FCI based setup in mind.
An arbitrary initial charge-state superposition of the pairing
region supporting Z3 PFs can be written as

|ψi〉 = α0|0〉�s
+ α1

∣∣∣∣2e

3

〉
�s

+ α2

∣∣∣∣4e

3

〉
�s

, (18)

where the fractional charge state |q〉�s
is the state of the

FCI edges in the pairing region and can be expressed as

|q〉�s
= ∑

n∈Z ei�sn|q + 2en〉, which shows the dependence
on the s-wave superconductor’s order parameter phase �s.

Besides the AC phase gain as shown in Eq. (6), under HF
winding, the order parameter phase �s defined above also
changes by π due to the AC effect as shown in the next
subsection. Hence, the state after braiding can be written as

|ψ f 〉 = α0|0〉�s+π + ei π
3 α1

∣∣∣∣2e

3

〉
�s+π

+ ei 2π
3 α2

∣∣∣∣4e

3

〉
�s+π

,

(19)

where the action of the unitary UHF,N along with phase shift of
�s by π takes the system to a different ground-state manifold.

C. Non-Clifford gate that restores the order parameter

We assume that the gate UHF,N described above uses braid-
ing of the HF in the clockwise direction. Braiding the HF in
the anticlockwise direction implements the unitary (UHF,N)−1

but also shifts the order parameter phase of the s-wave su-
perconductor �s by −π . Using this, we find that an overall
non-Clifford operation that restores the order parameter phase
on the s-wave superconductor can be achieved by inserting be-
tween the two HF braidings in opposite directions, a particular
braiding operation, UB. The combined evolution preserves the
ground state manifold and is given by

(UHF,N)−1UBUHF,N,

which is a non-Clifford operation (for N > 2). The braiding
operation UB works for the new ground-state manifold just
like the original ground manifold because the operator content
of the zero mode operators, in terms of which the braiding
operation is defined, remains the same if the fields in the
pairing and insulating region are still perfectly pinned, i.e., the
quasiparticle tunneling between the PF modes is suppressed
because of the gap in the insulating region. For a logical qudit
composed of four PFs with fixed parity and the qudit state
defined by the parity of first two PFs γ1 and γ2, the operation
UB can be chosen to be the braiding of PFs γ2 and γ3. This is
diagrammatically shown in Fig. 3.

VI. MANIPULATION OF HALF-FLUXON

In this section, we discuss how to create an HF/AHF pair in
a spin-triplet Josephson junction such that the HF is localized
and the AHF is free to move around under the application
of the bias current. We then find a bias current threshold
below which the localized HF (LHF) remains localized. Sub-
sequently, we design a bias current pulse such that the HF is
free to move around.

A. Setup design with defect potential to create HF/AHF pair

We use the setup as described in Ref. [61] but with an
annular spin-triplet Josephson junction instead of the conven-
tional Josephson junction. In this setup, in addition to the bias
current Ib considered earlier, we have an extra defect potential
due to the injected localized dipole current I as shown in
Fig. 1(a). The potential due to the current dipole or defect
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t1

t2

t3

t4

Φs

Φs + π

Φs + π

Φs

FIG. 3. Gate sequence composed of HF braidings in opposite di-
rections (at time steps t1 and t3) with a PF braiding operation (at time
step t2 and shown in green) implements a non-Clifford operation.
Red circle denotes the HF, and blue circles denote the PFs. The first
HF braiding induces a change of the s-wave superconductor’s order
parameter phase from �s to �s + π . The overall operation restores
the order parameter phase back to �s and hence acts on the original
ground-state manifold.

located near x = 0 is given by

V (x, φ) = I

λJ
[δ(x − a) − δ(x + a)]φ, (20)

where φ = �↑+�↓
2 is the phase that couples to the magnetic

vector potential as shown in Appendix B. In the limit of a →
0, the potential given by (20) becomes V (x, φ) = −εδ′(x)φ.
Here a = D

λJ
where D is the spacing between injection and

collection leads and λJ is the Josephson penetration depth
for the spin-triplet Josephson junction. ε = 2 I

λJ
a is the defect

strength where I is the injection current. Such an interac-
tion was studied in Ref. [62] where the defect represented
an Abrikosov vortex crossing the long Josephson junction.
As mentioned in the previous section, the defect facilitates
creation of an HF-AHF pair such that the HF compensates
the magnetic flux of the pinned defect while the AHF is free
to move along the length of the junction. We consider the
creation of such an HF-AHF pair via under-barrier tunneling,
starting from a vacuum configuration. In the absence of the
defect due to localized current, the vacuum configuration is
simply �↑(↓) = 0. However, in the presence of the defect, due
to the boundary conditions for the phases �↑ and �↓ across
the junction, shown in Eq. (21), one of the vacuum configura-
tions mentioned in Appendix C 1 can be achieved depending
on the defect strength. Starting from the inhomogeneous vac-
uum configuration, we consider an instanton pair solution that
under imaginary time evolution, i.e., under the energy barrier,
ends up on the mass shell as a pair configuration of HF and
AHF. We find a critical value of separation between HF and
AHF, z, at which the pair configurations appear on the mass

shell. Since applying a bias current moves the free HF around
and increases the separation between HF and AHF, we expect
that the bias current makes the pair creation more favorable.
We discuss the tunnel creation of HF-AHF pair and critical
separation for on-shell condition in Appendix C 2. Now we
discuss the bias current threshold and the bias current pulse
such that the free AHF makes a single loop around the annular
junction.

B. Bias current threshold

The boundary conditions for �↑(↓) and �↑(↓), found by
integrating the equations of motion (C1) from Appendix C 1,
are

�↑(↓)(x = +0) − �↑(↓)(x = −0) = −ε,

∂x�
↑(↓)(x = +0) − ∂x�

↑(↓)(x = −0) = 0. (21)

As mentioned before, the spin-triplet Josephson junction we
consider has an annular shape as shown in Fig. 1(b). For an
annular Josephson junction, the Hamiltonian density H obeys
the periodic boundary condition in the angular coordinate x as

H[�↑(↓)(x = −0)] = H[�↑(↓)(x = +0)], (22)

where �↑(↓)(x = −0) is the value of �↑(↓) to the left of
defect’s location x = 0. Note that in the presence of the defect,
the HF solution is modified to a localized HF solution shown
in Eq. (C6) in Appendix C 1. This solution is periodic modulo
2π along the length of the annular junction and obeys the
above boundary conditions. Denoting �↑(↓)(x = −0) as �

↑(↓)
−

and �↑(↓)(x = −0) = �↑(↓)(x = +0) as �
↑(↓)
+ , Eq. (22) gives

J (1 − cos �
↑
−) + J (1 − cos �

↓
−) − Ib

2
(�↑

− + �
↓
−),

= J (1 − cos �
↓
+) + J (1 − cos �

↓
+) − Ib

2
(�↑

+ + �
↓
+).

(23)

Using Eq. (21) in Eq. (23) gives

Ib = ε−1
∑

σ

J[cos(�σ
− − ε) − cos �σ

−]. (24)

The threshold value for the bias current, I th
b is found by

varying Ib w.r.t. both �
↑
− and �

↑
+ and is given by

I th
b = ±4ε−1 sin

ε

2
(25)

as a function of the defect strength ε.

C. Bias current pulse for HF loop

A bias current pulse for braiding an FAHF around the junc-
tion can be designed using the collective coordinate picture
[59] as follows. Multiplying the equation of motion (13) for
�↑ by �↑

x and integrating, we get

1

Jcn

∫
x
�↑

x �̈↑ = Ib

∫
x
�↑

x −
∫

x
�↑

x sin �↑ − c�

J

∫
x
�↑

x �↑
xx.

(26)
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Plugging in the FAHF solution �↑(x, t ) = 4 arctan( −x+z
β

)

where β =
√

1 − ( dz
dt )2 , performing the integration, we get

1

Jcn

∫
x
�↑

x �̈↑ = −2Ibπ. (27)

Taking the velocity of FAHF, dz
dt to be a constant and identify-

ing the mass of the HF as M = 1
2πJcn

∫
dx�2

x = 4
πJβcn

, we get

Mz̈ = Ib, (28)

which is an analog of Newton’s equation of motion of AHF of
mass M with collective coordinate z(t ). Using this equation of
motion, we can design a bias current pulse Ib(t ) such that the
AHF goes around the junction once and comes to a stop. The
force of attraction of AHF with the pinned HF is expected
to decay exponentially with the HF-AHF separation, and
we do not consider it in this calculation. In principle it can
be taken into account and the required pulse can be found
numerically. The boundary conditions for the AHF that moves
along the circular Josephson junction are z(0) = 0, ż(0) = 0,
z(T ) = 2π , ż(T ) = 0 where T is the time for completing the
loop and can be chosen. Denoting Ib as a function of both t
and T , we need to check that the bias current at all times is
below the threshold value,

|Ib(t )| <
∣∣I th

b

∣∣, (29)

so that the LHF remains localized at the location of the
defect. Writing Ib(t ) = Q̇(t ) where Q(t ) is the bias charge
and integrating (28) over time twice, we get

ż(t ) = 1

M
[Q(t ) − Q(0)]. (30)

Boundary condition ż(0) = 0 is satisfied, and using boundary
condition ż(T ) = 0, we get Q(T ) = Q(0). Integrating once
more, we get

z(t ) = 1

M

[∫ t

0
dt ′Q(t ′) − tQ(0)

]
. (31)

Boundary condition z(0) = 0 is satisfied, and z(T ) = 2π

gives π
M [

∫ T
0 dt ′Q(t ′) − T Q(0)] = 2π . Choosing Q(t ) =

a[1 − cos(�t )] + bt where � is arbitrary parameter that can
be chosen. Note that Q(0) = 0. On satisfying the boundary
conditions, we find the coefficients a and b to get the required
bias current pulse as

Ib(t, T ) = 4πM�

T
[

cos(T �) + 1 − 2 sin(T �)
T �

] sin(�t )

+ 4πM[cos(T �) − 1]

T 2
[

cos(T �) + 1 − 2 sin(T �)
T �

] , (32)

where � and T can be tuned to satisfy the condition (29).

VII. DISCUSSION

We first state the assumptions made in our protocol of the
implementation of non-Clifford gate. We assume that the HF
braiding doesn’t affect the state of the spin-triplet Josephson
junction or the superconductors in the spin-triplet Josephson
junction. This is also supported from the fact that spin-triplet
superconductors support half-quantum vortices [63] in the

bulk and braiding such a vortex around a region of the bulk
shouldn’t change the ground state. The detailed analysis of
this is beyond the scope of this work.

Secondly, we assume that different pairing regions in a
setup that supports a chain of parafermionic defects, can
have different order parameter phases. This leads to a higher
ground-state energy but as long as the quasiparticle tunneling
between the domain walls is suppressed due to the insulating
gap and the spacing between them, the form of the PF op-
erators at the domain walls retain the same dependence on
the pinned fields in the neighboring pairing and insulation
regions. Hence, the Josephson effect due to the difference of
order parameter phases can lead to tunneling of only Cooper
pairs, and that would also be suppressed due to the spacing
between domain walls. Third, in this work, we have ignored
technical issues that may arise in combining the PF setup with
the spin-triplet Josephson junction such that one of them is on
top of the other one.

Last, as the HF is being braided, a fractional quasiparticle
from the FCI layer could get trapped in it. But we assume
that it won’t be able to cross the interface as that process
will be energetically suppressed. Even if a quasiparticle gets
trapped and participates along with HF, in braiding around the
overall Abelian charge on the island, it will lead to an extra
overall Clifford gate in addition to the non-Clifford gate from
HF braiding. The overall gate will still be non-Clifford, but it
will be ambiguous up to a Clifford gate. Such ambiguity in
the application of non-Clifford gate is characteristic of simple
non-Abelian systems for topological quantum computing,
and, hence, quasiparticle trapping needs to be controlled for
or kept track of in some manner.

Now we discuss how well controlled can the HF/AHF pair-
creation process be made. In our implementation, we need
an HF/AHF pair to be created via under-barrier tunneling,
such that HF is localized and AHF is free to move (or vice
versa). Interaction of HF alone, with the defect, given by
− ∫

x εδ′(x)φHF, is equal but opposite to that of AHF with the
defect. Hence under tunnel creation, one of them appears on
the mass shell in the pinned state while the other tends to be
free [64]. In Appendix C 4 we calculate the pair creation rate
for the LHF/FAHF pair and for the fluxon pair of localized
fluxon (LF) and free antifluxon (FAF). The pair creation is
considered on top of an inhomogeneous quadrupole vacuum
configuration, which can be achieved by tuning the defect
strength. We show that the pair creation rate of LF/FAF pair
is exponentially suppressed compared to the LHF/FAHF pair
creation rate.

VIII. CONCLUSIONS

In this work, we proposed a non-Clifford gate for PFs
using the AC effect. Braiding a HF around a PF pair im-
plements the UHF,N gate as mentioned in Eq. (3) and which
is non-Clifford for qudit dimension N > 2. In a spin-triplet
Josephson junction with a current dipole defect, a HF can be
created and moved around using a bias current. Combining
such a junction with parafermionic defects can implement the
non-Clifford gate robustly via HF braiding. This proposal can
be combined with recent work on a PF box [65] for a universal
gate set where the Clifford gates are measurement-based.
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While we have focused on HFs in spin-triplet superconductors
to develop a proof-of-principle scheme, the key ingredient,
namely, the existence of a stable vortex with fractional flux,
may appear in other types of systems, for example, un-
conventional superconductors intertwined with spatial order
[66,67]. By braiding a quantized fractional flux of a quarter
fluxon, i.e., h

8e around a pair of Majorana zero modes, one

can also implement the non-Clifford gate T = Z
1
4 on the

corresponding logical qubit with logical operator Z . Thus,
extending anyon models with quantized fractional fluxons
provides robust universality, and a study of such extensions
is left for future work.
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APPENDIX A: BACKGROUND ON SPIN-TRIPLET
SUPERCONDUCTORS

We reiterate the facts covered in the main text on spin-
triplet superconductors with more explanation. As mentioned,
the spin-triplet superconductors are described by an order
parameter matrix in spin and momentum space [55,56] as
follows:

�(k) =
(�↑↑(k) �↑↓(k)

�↓↑(k) �↓↓(k)

)
, (A1)

where the arrows indicate spin quantum number of each
electron in the pair, sz. The order parameter matrix elements
are given by

�σσ ′ (k) = −
∑

k′
Vk,k′ 〈G| f †

k′σ f †
−k′σ ′ |G〉, (A2)

where |G〉 is the ground state, and the expression comes from
applying mean field theory to the quartic fermionic interaction
term

∑
k,k′ Vk,k′ f †

kσ f †
−kσ ′ fk′σ f−k′σ ′ where σ indicates up or

down spin, f †
kσ are fermionic creation operators for momen-

tum k and spin σ , and Vk,k′ is the Fourier coefficient of the
interaction term. Thus, the superconducting order parameter
�σσ ′ (k) is a wave function of a Cooper pair formed by
two quasiparticles whose momenta and spins are (k, σ ) and
(−k, σ ′). In the s-wave superconductors, we have �↑↑(k) =
�↓↓(k) = 0 and

�↑↓(k) = −�↓↑(k) = −
∑

k′
Vk,k′ 〈G| f †

k′↑ f †
−k′↓|G〉. (A3)

In p-wave superconductors, the spatial part of the pair wave
function is antisymmetric. Thus, the spins pair up as triplets.
Magnitude of total spin of a Cooper pair is S = 1 in spin-
triplet pairing in contrast to S = 0 in spin-singlet pairing.

The spin-triplet pairing order parameter matrix has �↑↓(k) =
�↓↑(k). Because the order parameter and the Cooper pair
wave function have the same symmetries, the state vector |ψ〉
of a triplet superconductor is written as

|ψ〉 = �↑↑(k)|↑↑〉 + �↓↓(k)|↓↓〉 + �↓↑(k)(|↑↓〉 + | ↓↑〉)

= �↑↑(k)|Sz = 1〉 + �↓↓(k)|Sz = −1〉 + �↓↑(k)

× |Sz = 0〉, (A4)

where the eigenstates are labeled by Sz = −1, 0, 1 where Sz is
the eigenvalue of the z component of the total spin operator of
the Cooper pair. The state vector can be written in a new basis
as

|ψ〉 = �↑↑(k)|↑↑〉 + �↓↓(k)|↓↓〉 + �↓↑(k)(|↑↓〉 + |↓↑〉)

= 1√
2

dx(k)(−|↑↑〉 + |↓↓〉) + i√
2

dy(k)(|↑↑〉 + |↓↓〉)

+ 1√
2

dz(k)(|↑↓〉 + |↓↑〉)

= dx(k)|Sx = 0〉 + idy(k)|Sy = 0〉 + dz(k)|Sz = 0〉.
(A5)

Here the state vector is expressed in terms of a unit vector
in spin space, d̂ , on which the projection of Cooper pair
spin is zero. We can write the order parameter in terms of
components of d̂ as

�(k) =
(�↑↑(k) �↓↑(k)

�↓↑(k) �↓↓(k)

)

= 1√
2

(−dx(k) + idy(k) dz(k)
dz(k) dx(k) + idy(k)

)
. (A6)

For a px + ipy superconductor, we consider that all the com-
ponents of order parameter matrix have the same k depen-
dence, i.e., di(k) = di(kx + iky) such that

�p+ip(k) = 1√
2

(−dx + idy dz

dz dx + idy

)
(kx + iky), (A7)

where the entries in the matrix are constants. The Hamilto-
nian of the spin-triplet superconductor with the above order
parameter matrix can be written as

Ĥ =
∑

k

( f †
k↑ f †

k↓)

(
ξkσ 0
0 ξkσ

)(
fk↑
fk↓

)

+
∑

k

[
( f †

k↑ f †
k↓)�p+ip(k)

(
f †
−k↑

f †
−k↓

)
+ H.c.

]
, (A8)

where ξkσ is the single-particle kinetic energy and H.c. de-
notes the Hermitian conjugate of the term in the bracket.
Conventionally, a unitary state [ �d (k) × �d (k)� = 0] is con-
sidered to describe a p + ip superconductor. Here we take
a more general form (A7) which can be diagonalized such
that the corresponding transformation matrix is momentum
independent. Hence, with the change of choice of the spin-
quantization axis, the Hamiltonian ((A8) can be diagonalized
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and written as

H =
∑
kσ

ξkσ f †
kσ

fkσ + 1

2
[�̃σσ (k)� f−kσ fkσ + �̃σσ (k) f †

kσ
f †
−kσ

],

(A9)

where ξkσ is the single-particle kinetic energy and �̃σσ (k) are
the components of the order parameter matrix in the new spin
coordinate system or choice of spin-quantization axis. Note
that the transformation to diagonalize the Hamiltonian matrix
is not momentum dependent because the momentum depen-
dence from the off-diagonal components is separated out as
kx + iky. The ground state of this Hamiltonian is expressed in
Eq. (11).

APPENDIX B: SPIN-TRIPLET JOSEPHSON
JUNCTION AND HF SOLUTION

The Hamiltonian density for the spin-triplet Josephson
junction, with the coefficients as assumed in the main text,
is given by

H =
∑

σ=↑,↓

1

2
cnn2

σ + 1

2
c�(∂x�

σ )2 + J (1 − cos �σ ) − Ib

2
�σ ,

(B1)

where �σ is the order parameter phase difference across the
junction for spin component σ and nσ is the number density
for spin σ . Here cn is the coefficient of the capacitive terms,
c� is the coefficient of the magnetic terms, J is the Josephson
energy scale, and Ib is the bias current. The corresponding
Lagrangian density is given by

L =
∑

σ=↑,↓

1

2
cn(∂t�

σ )2 − 1

2
c�(∂x�

σ )2 − J (1 − cos �σ )

+ Ib

2
�σ . (B2)

The momentum conjugate to �σ is the number density of spin
σ , nσ = ∂L

∂ (∂t �σ ) = cn∂t�
σ , such that the total number density

n = n↑ + n↓ = cn∂t (�↑ + �↓). It is the phase conjugate to
the total particle number density that couples to the magnetic
vector potential. In order to find this phase, it is convenient
to express �σ as �↑ = φ − θ and �↓ = φ + θ such that φ

can be factored out as a common phase for the diagonal order
parameter matrix as used in Eq. (A9). The Lagrangian density
can then be expressed as

L = cn(∂tφ)2 + cn(∂tθ )2 − c�(∂xφ)2 − c�(∂xθ )2

− 2J (1 − cos φ cos θ ) + Ibφ. (B3)

The momentum conjugate to φ is given by ∂L
∂ (∂t φ) = 2cn∂tφ

which is the same as the total particle density n. The HF
solution mentioned in Eq. (15) is given by φHF = 1

2 (�↑ +
�↓) = 2 arctan (e

± x̄−ut̄√
1−u2 ). Following the relation [50,68] of

the magnetic field to the phase that couples to the vector
potential, φ, we get the magnetic flux �HF due to the HF as

�HF = h̄

2e

∫ ∞

−∞
(∂xφHF) dx = h

4e
, (B4)

which is one-half of the flux quantum h
2e .

APPENDIX C: TUNNEL CREATION OF PAIR
OF HF AND AHF

In this section, we study tunnel creation of an half-fluxon
(HF)/anti-half-fluxon (AHF) pair in a spin-triplet Josephson
junction. As mentioned in the main text, a defect made of
a localized dipole current facilitates creation of an HF/AHF
pair such that the HF compensates the magnetic flux of the
pinned defect while the AHF is free to move along the length
of the junction. Such a pair creation can happen via under-
barrier tunneling, starting from a vacuum configuration. In
the presence of the defect, the vacuum configuration is not a
homogeneous solution φ = 0 but one of the static inhomoge-
neous vacuum configurations as discussed below in Sec. C 1.
Starting from this inhomogeneous vacuum configuration, we
consider an instanton solution that under imaginary time
evolution ends up on the mass shell as a pair configuration
of localized HF (LHF) and free AHF (FAHF). In Sec. C 4,
we find a critical value of separation between the HF and
the AHF, zcr, at which the pair configurations appear on the
mass shell and use that to calculate the action corresponding to
the under-barrier trajectory and the pair-creation rate. We also
calculate the pair-creation rate for a configuration of localized
fluxon (LF) and free anti-fluxon (FAF) and compare it with
the LHF/FAHF pair-creation rate. We follow Refs. [61,64,69]
for these calculations. Henceforth, without loss of generality,
we set the coefficients J , c� and cn to be 1.

1. Static vacuum configurations

The static equations of motion associated with the Hamil-
tonian density (B1) for Ib = 0 are given by

−�↑
xx + sin �↑ = −εδ′(x),

−�↓
xx + sin �↓ = −εδ′(x), (C1)

where the time derivative term has been set to 0
to look for static solutions. Depending on the value
of the defect strength the vacuum solution �↑(↓) can
be ±4sgn(x) arctan[exp(ξ↑(↓) − |x|)] or 4 arctan(exp[x −
ξ↑(↓)sgn(x])) where sgn(x) is the sign function and the param-
eters ξ↑(↓) are fixed by the boundary conditions. We consider
these solutions one by one.

a. Quadrupole solution

The quadrupole solution is given by

�
↑
qd(x) = ± 4sgn(x) arctan[exp(ξ↑± − |x|)],

�
↓
qd(x) = ± 4sgn(x) arctan[exp(ξ↓± − |x|)], (C2)

where the ± signs indicate the two allowed solutions with +
and − signs in front. The boundary conditions (21) can be
found by integrating the equations of motion (C1) around x =
0. By plugging the solutions �

↑
qd and �

↓
qd into the boundary

conditions �↑(↓)(x = +0) − �↑(↓)(x = −0) = −ε, we get

eξ± = ± tan
(ε

8

)
, (C3)

where ξ± = ξ↑± = ξ↓± and ((C3) shows that ξ+ and ξ− differ
only by a sign. Hence, the solutions (C2) can be expressed in
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terms of the defect strength ε as

�
↑(↓)
qd (x) = ±4sgn(x) arctan

[
± tan

(ε

8

)
e−|x|

]
= 4sgn(x) arctan

[
tan

(ε

8

)
e−|x|

]
. (C4)

The energy of the quadrupole configuration can be calculated
as

Eqd = 1

2

∫
x
[∂x�

↑
qd(x)]2 + 1

2

∫
x
[∂x�

↓
qd(x)]2

+
∫

x

(
1 − 1

2
cos �

↑
qd − 1

2
cos �

↓
qd

)

− 1

2

∫
x
εδ′[x)(�↑

qd(x) + �
↓
qd(x])

=
∫

x
[∂x�

↑
qd(x)]2 +

∫
x
(1 − cos �

↑
qd) −

∫
x
εδ′(x)�↑

qd(x)

= 2
[
ε sin

(ε

4

)
− 6 cos

(ε

4

)
+ 6

]
, (C5)

which goes to 0 as ε → 0 leads to the homogeneous solution
�↑(↓) = 0.

b. Localized half-fluxon solution

A localized half-fluxon (LHF) solution localized at the
defect in the presence of the defect potential −εδ′(x), can be
written [64] as

�
↑
LHF(x) = 4 arctan{exp[x − ξ

↑
LHFsgn(x)]},

�
↓
LHF(x) = ±4sgn(x) arctan[exp(ξ↓

LHF − |x|)]. (C6)

Note that �
↑
LHF goes from 0 at x → −∞ to 2π at x →

∞ while �
↓
LHF doesn’t get a net phase jump. By plugging

this solution into the boundary conditions �↑(↓)(x = +0) −
�↑(↓)(x = −0) = −ε, we get

eξ
↑
LHF =1 + tan

(
ε
8

)
1 − tan

(
ε
8

) , eξ
↓
LHF = ± tan

ε

8
. (C7)

Hence, the energy of the localized half-fluxon configuration
can be expressed in terms of �

↑
LHF and �

↓
LHF and calculated in

terms of the defect strength ε as

ELHF = H (∂t�
↑
LHF, ∂x�

↑
LHF, ∂t�

↓
LHF, ∂x�

↓
LHF)

=
∫

x

1

2
(∂x�

↑
LHF)2 + 1

2
(∂x�

↓
LHF)2

+
∫

x

{(
1 − 1

2
cos �

↑
LHF − 1

2
cos �

↓
LHF

)

− 1

2
εδ′(x)[�↑

LHF(x) + �
↓
LHF(x)]

}

= (ε + 6) sin
(ε

4

)
+ (ε − 6) cos

(ε

4

)
+ 12. (C8)

c. Localized fluxon solution

A localized fluxon (LF) solution for �↑ and �↓ in the
presence of the defect potential −εδ′(x) can be written

−60 −40 −20 20 40 60

−100

−50

50

100

150
Energy

Quadrupole
Half fluxon
Fluxon

FIG. 4. Energy of possible vacuum configurations as a function
of defect strength ε. The energy for the half-fluxon solution stays
between the quadrupole and the fluxon solution, which are the two
stable vacuum configurations. A defect strength can be chosen such
that one of these configurations is the vacuum configuration.

[64] as

�
↑
LF(x) = 4 arctan{exp[x − ξ

↑
LFsgn(x)]},

�
↓
LF(x) = 4 arctan{exp[x − ξ

↑
LFsgn(x)]}. (C9)

Note that both �
↑
LF and �

↓
LF go from 0 at x → −∞ to

2π at x → ∞. By plugging this solution into the boundary
conditions �↑(↓)(x = +0) − �↑(↓)(x = −0) = −ε, we get

eξ
↑(↓)
LF = 1 + tan

(
ε
8

)
1 − tan

(
ε
8

) . (C10)

Hence, the energy of the LF configuration can be expressed in
terms of �

↑
LF and �

↓
LF as

ELF = H (∂t�
↑
LF, ∂x�

↑
LF, ∂t�

↓
LF, ∂x�

↓
LF)

=
∫

x

1

2
(∂x�

↑
LF)2 + 1

2
(∂x�

↓
LF)2

+
∫

x

{(
1 − 1

2
cos �

↑
LF − 1

2
cos �

↓
LF

)

− 1

2
εδ′(x)[�↑

LF(x) + �
↓
LF(x)]

}

= 2ε cos
ε

4
+ 12 sin

ε

4
+ 12. (C11)

It turns out that the stable vacuum configuration can be
either the quadrupole solution or the localized fluxon solution,
as can be seen from Fig. 4. We assume that a value of the
defect strength is chosen such that the vacuum configuration
is the quadrupole solution.

2. Localized LHF/FAHF pair configuration

Consider an HF-AHF pair configuration such that the HF
is localized around the defect at x = 0 and the AHF is free
and far from the defect. Due to the separation of FAHF from
the defect/LHF, we can take the defect strength near FAHF
to be 0 and assume that there is no interaction between the
FAHF and the defect or LHF. Hence, the FAHF solution can
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be written as

�
↑
FAHF(x, t ) = 4 arctan(exp{β−1[−x + z(t )]}),

�
↓
FAHF(x, t ) = 0, (C12)

where β is the Lorentzian factor, which is a function of
velocity of FAHF, dz

dt , and is given by β =
√

1 − ( dz
dt )2 . From

the solutions for LHF and FAHF, we can write the LHF/FAHF
under-barrier pair configuration as

�
↑
LHF,FAHF(x, τ = it ) = −2π + 4 arctan{exp[x − ξ

↑
LHFsgn(x)]} + 4 arctan

{
exp

[−x + z

β(ż)

]}
,

�
↓
LHF,FAHF(x, τ = it ) = ±4sgn(x) arctan{exp(ξ↓

LHF − |x|)}, (C13)

where ξ
↑(↓)
LHF obey (C7) and β(ż) = √

1 + ż2 with ż = dz
dτ

where τ = it is imaginary time. Substituting this in the Hamiltonian
and taking a large LHF-FAHF separation, we get the energy gap of the pair configuration w.r.t. the quadrupole vacuum energy
(C14) as

Eqd
LHF,FAHF = ELHF,FAHF − Eqd

= 1

2

∫
x
[(∂x�

↑
LHF)2 + (∂t�

↑
LHF)2 + (∂x�

↓
LHF)2 + (∂t�

↓
LHF)2 + (∂x�

↑
FAHF)2 + (∂t�

↑
FAHF)2 + (∂x�

↓
FAHF)2 + (∂t�

↓
FAHF)2]

+
∫

x

{(
1 − 1

2
cos �

↑
LHF,FAHF − 1

2
cos �

↓
LHF,FAHF

)
− 1

2
[Ib + εδ′(x)][�↑

LHF,FAHF(x) + �
↓
LHF,FAHF(x)]

}
− Eqd

= (6 − ε) sin
ε

4
+ (6 + ε) cos

ε

4
+ 2

[
4 − β(ż)2

β(ż)

]
− Ibπz, (C14)

where we used (C10) in the calculation and took β(ż) or the velocity of FAHF to be a constant. For the bias current contribution,
we have approximated the pair profile by step functions at x = 0, z such that �↑

LHF,FAHF is equal to 2π only in the region 0 < x < z
and 0 elsewhere.

3. LF/FAF pair configuration

We can write the LF/FAF pair configuration as

�
↑(↓)
LF,FAF(x, τ = it ) = −2π + 4 arctan(exp(x − ξLFsgn(x))) + 4 arctan

{
exp

[−x + z

β(ż)

]}
, (C15)

where both the phases �↑ = �↓ jump by 2π . By plugging this solution into the boundary conditions �↑(↓)(x = +0) −
�↑(↓)(x = −0) = −ε, we get

eξ
↑(↓)
LF =1 + tan

(
ε
8

)
1 − tan

(
ε
8

) . (C16)

Substituting (C15) in the Hamiltonian and taking the large LF/FAF separation, we get the energy gap of the pair configuration
LF/FAF w.r.t. the quadrupole vacuum as

Eqd
LF,FAF = ELF,FAF − Eqd

=
∫

x

[
(∂x�

↑
LF)2 + (∂x�

↑
FAF)2 + (∂t�

↑
FAF)2 +

∫
x

(
1 − 1

2
cos �

↑
LF,FAF − 1

2
cos �

↓
LF,FAF

)
− Ib�

↑
LF,FAF − εδ′(x)�↑

LF

]
− Eqd

= 2ε cos
ε

4
+ 12 sin

ε

4
+ 12 −

[
(ε + 6) sin

(ε

4

)
+ (ε − 6) cos

(ε

4

)
+ 12

]
+ 4

4 − β2

β
− 2Ibπz

= 2(6 − ε) sin
(ε

4

)
+ 2(6 + ε) cos

(ε

4

)
+ 4

4 − β2

β
− 2Ibπz

= 2 E v
LHF,FAHF, (C17)

where we used (C16) in the calculation.
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4. Pair-creation rates

Now we calculate the pair creation rates for LHF/FAHF
and LF/FAF pair configurations. The Lagrangian density L is
given by

L =
∑

σ

−1

2
(∂τ�

σ )2 − 1

2
(∂x�

σ )2 −
(

1 − 1

2
cos �σ

)

+ Ib + εδ′(x)

2
�σ

= −H −
∑

σ

(∂τ�
σ )2, (C18)

where H is the Hamiltonian density,

H = −1

2
(∂τ�

σ )2 + 1

2
(∂x�

σ )2 +
(

1 − 1

2
cos �σ

)

− Ib + εδ′(x)

2
�σ . (C19)

The effective pair configuration Lagrangian as a function of
coordinates z and ż can be expressed in terms of the energy of
pair configuration w.r.t vacuum as

Lpair(z, ż) = −E v
pair −

∑
σ

∫
(∂τ�

σ )2. (C20)

a. LHF-FAHF configuration

Using (C20), the effective Lagrangian for LHF/FAHF
configuration is hence given by

LLHF,FAHF(z, ż) = −E v
LHF,FAHF − 8ż2

β(ż)

= −(6 − ε) sin
ε

4
− (6 + ε) cos

ε

4
− 6β(ż)

+ Ibπz.

For the effective Lagrangian, the momentum conjugate to the
coordinate z is given by pHF = ∂LLHF,FAHF

i∂ ż = −6 ż
iβ(ż) . Hence, we

can write the effective Hamiltonian HLHF,FAHF(p, z) as

HLHF,FAHF(p, z) = ipHFż − LLHF,FAHF(z, ż)

= (6 − ε) sin
ε

4
+ (6 + ε) cos

ε

4
− 6

ż2

β(ż)

+ 6β(ż) − Ibπz

= (6 − ε) sin
ε

4
+ (6 + ε) cos

ε

4
+ 6

β(ż)

− Ibπz

= (6 − ε) sin
ε

4
+ (6 + ε) cos

ε

4

+
√

p2
HF + E2

FAHF,(0) − Ibπz,

where EFAHF,(0) = 6 is the energy of FAHF at zero velocity.
For the under-barrier trajectory, we can set the effective
Hamiltonian HLHF,FAHF(p, z) = 0 for spontaneous pair cre-
ation from vacuum. Thus, we can write the momentum for

the under-barrier trajectory as

pHF =
√[

Ibπz − (6 − ε) sin
ε

4
− (6 + ε) cos

ε

4

]2
− 36.

Action corresponding to the under-barrier trajectory for
H (pHF, z) = 0 is given by S(�E ) = ∫ zcr

0 dt (ipHFż) =
−i

∫ zcr

0 dτ (ipHF
dz
dτ

) = ∫ zcr

0 dzpHF where zcr is the HF-AHF
separation at which the pair configuration appears on the
mass shell. zcr is defined via H eff dLHF,FAHF(pHF = 0, zcr) = 0,
and using this, we get

zcr = (6 − ε) sin ε
4 + (6 + ε) cos ε

4 + 6

Ibπ
, (C21)

which makes sense because zcrIbπ is the energy gain that
compensates the pair energy, which is 12 for ε, Ib = 0. Thus,
we get the effective Euclidean action as

SEuc
LHF,FAHF

= i
∫ zcr

0
dzpHF

=
∫ zcr

0
dz

√[
Ibπz − (6−ε) sin

ε

4
− (6 + ε) cos

ε

4

]2
− 36.

b. LF/FAF configuration

Using (C18), the effective Lagrangian for LF/FAF config-
uration is given by

LLF,FAF(z, ż) = −E v
LF,FAF − 16ż2

β(ż)

= −2

[
E v

LHF,FAHF − 8ż2

β(ż)

]

= 2 LLHF,FAHF(z, ż). (C22)

The momentum conjugate to coordinate z is given by pF =
∂LLF,FAF

∂ ż = −12 ż
iβ(ż) = 2pHF. Hence, we can write the effective

Hamiltonian as

HLF,FAF(p, z) = ipFż − LLF,FAF(z, ż)

= 2
[
(6 − ε) sin

(ε

4

)
+ (6 + ε) cos

(ε

4

)
+

√
p2 + 62 − Ibπz

]
= 2 HLHF,FAHF(pHF, z). (C23)

Following the calculation in the previous subsection for the
LHF/FAHF configuration and using the above results (C22)
and (C23), we get the critical separation for LF/FAF pair
creation to be the same as that for LHF/FAHF pair creation.
Thus, we get the relation between the effective Euclidean
actions as

SEuc
LF,FAF = 2 SEuc

LHF,FAHF. (C24)

The pair creation rate is determined by the exponentially
small factor exp(− SEuc

h̄ ). Hence from (C24), it follows that
the LF/FAF pair creation rate is exponentially suppressed
compared to the rate of LHF/FAHF pair creation on top of
the quadrupole vacuum configuration.
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