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Entangling continuous variables with a qubit array
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We show that an array of qubits embedded in a waveguide can emit entangled pairs of microwave photon
beams. The quadratures obtained from the homodyne detection of these outputs beams form a pair of correlated
continuous variables similar to the Einstein-Podolsky-Rosen experiment. The photon pairs are produced by the
decay of plasmonlike collective excitations in the qubit array. The maximum intensity of the resulting beams is
bounded by only the number of emitters. We calculate the excitation decay rate both into a continuum of the
photon state and into a one-mode cavity. We also determine the frequency of Rabi-like oscillations resulting
from a detuning.
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I. INTRODUCTION

The steady improvement of superconducting electronics
over the last two decades [1–3] cemented the place of
Josephson effect-based devices among the leading platforms
for quantum technologies (e.g., quantum computation) [4].
However, the control and observation of essential quantum
correlations and entanglement necessary for the operation
of these technologies remains a challenging task [5,6]. A
convenient test bed for this research is provided by a super-
conducting qubit array embedded in a coplanar waveguide (a
“one-dimensional quantum metamaterial” setup) [1–3,7–10].
Some of these metamaterials are predicted to display in-
teresting nonlinear properties like the two-photon induced
transparency [11–13], superradiance [14,15], and lasing [16],
but these results have been obtained using approximations
short of a full QED treatment.

In this paper we build a consistent theory for a linear array
of qubits placed in a waveguide. Specifically, we consider a
set of capacitively coupled transmons, but the general results
are not going to be sensitive to the particular kind of a qubit.
The Josephson junctions are arranged symmetrically in order
to ensure a quadratic coupling to the electromagnetic field.
The collective excitations are produced by abrupt changes of
qubit electric charges, tantamount to a sudden modification of
the photon dispersion relation in the waveguide—a quantum
analog of the emission of cosmological radiation in a curved
space for spontaneous particle pair creations [17,18], also re-
ferred to as the dynamical Casimir effect [19]. The symmetry
ensures that collective excitations of the array decay into the
entangled microwave beams propagating along the waveguide
in opposite directions.

Compared to the prior art, the proposed mechanism does
not involve the use of an external magnetic field [20] or a
pump field within a waveguide [21]. It predicts quantum cor-
relations at a distance and therefore differs from other studies
like the two-photon correlations analyzed in [22–24], sub- and
superradiance in [25–27], and even phase transition [28].

II. THEORETICAL MODEL

The proposed scheme is presented in Figs. 1 and 2. An
array of N transmon qubits is embedded in a ring waveguide
at zero temperature. Starting at equilibrium, we adiabatically
increase the potential of the qubit island to V and then
suddenly drop it to zero. The initial charge on the island is
qn = C0V , where C0 is the effective capacitance. Classically,
the island charge oscillates at a frequency ε0 =

√
8EJe2/C0/h̄,

where Josephson energy EJ � e2/C0 for a transmon. In
the quantum case these oscillations will decay into the
electromagnetic vacuum modes by producing two counter-
propagating entangled beams. The subsequent action of a
circulator passes these outputs on for a homodyne detection
[29], which includes local oscillator mixing and frequency fil-
tering, in order to determine their mutual Einstein-Podolsky-
Rosen (EPR)-type quantum correlations [30,31]. The integral
of the voltage pulse (flux [32]) and the total induced charge
correspond to correlated (anticorrelated) continuous-variable
quadratures.

The lumped-element scheme of the device is shown in
Fig. 2. The nth transmon’s quantum operators are its excess
charge q̂n = (2e)(n̂n − Ns) measured from the equilibrium
value Ns and flux �̂n. Its mutual capacitance with the neutral
gate (with gate voltage V ) is Cn,n, and Cn,n′ is the mutual
capacitance between the nth and n′th transmons. The waveg-
uide is described by conjugated operator charges �Q̂n and
fluxes �̂B

n and is characterized by the mutual capacitance
�C and inductance �L/2 between two adjacent transmons.
These operators obey the canonical commutation relations
[�̂n, q̂n′ ] = ih̄δn,n′ and [�̂B

n ,�Q̂n′ ] = ih̄δn,n′ . We omit the ca-
pacitive couplings to the waveguide as they cancel out for the
decay process. The capacitive coupling between the charge
�Q̂n′ and the qubit charge q̂n cancels out because of the
intrinsic symmetry. Indeed, inserting a capacitance C′ parallel
to each Josephson junction introduces two opposite terms,
C′�Q̂nq̂n and C′(−�Q̂n)q̂n, that do not contribute to the
total Hamiltonian. Therefore, these terms do not influence the
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FIG. 1. N qubits are imbedded in a ring waveguide. The emitted
signal is collected in a circulator z. One of its quadratures (charge
�Q̂≷ or flux �̂B

≷) or their combination is subject to a homodyne
detection (HD) after mixing with a local oscillator (LO) described
effectively by a unitary operator Û (t ). The resulting EPR correlation
between the output signals is detected.

interaction dynamics between the electromagnetic field and
the qubit.

The Hamiltonian of the system is obtained by quantizing
the different components’ contributions to the total energy
[33,34], yielding

Ĥ =
N∑

n=1

V q̂n +
N∑

n′=1

C−1
n,n′

2
q̂n′ q̂n − Eb

J

{
cos

[
2e

h̄

(
�̂n − �̂B

n

2

)]

+cos

[
2e

h̄

(
�̂n + �̂B

n

2

)]}
+ �Q̂2

n

2�C
+

(
�̂B

n+1 − �̂B
n

)2

2�L
,

(1)

where Eb
J is the bare Josephson energy of a junction (see

Fig. 2). The effective renormalized Josephson energy EJ =
Eb

J 〈0| cos(2e�̂n/h̄) cos(e�̂B
n /h̄)|0〉 is defined with respect to

the vacuum energy state |0〉. See Appendix A for more
detailed calculations. The essentially nonlinear cosine inter-
action terms between the transmons and the electromagnetic
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FIG. 2. Quantum circuit corresponding to the Hamiltonian (1).
(a) The ring waveguide cut at the circulator is represented by an
array of transmons (n = 1, 2, . . . , N) coupled to the microwave ra-
diation mode. The charges ±�Q̂≷ and fluxes ±�̂B

≷/2 are the output
components for homodyne detection. (b) Transmon qubit embedded
in a waveguide. Each node (solid black dot) is associated with the
excess charge q̂n and flux �̂n operators describing the transmon and
the incremental charge ±�Q̂n and flux ±�̂B

n /2 operators describing
the EM field within the waveguide.

modes result from the Josephson junctions and have been
configured to be an even function of each field amplitude.
Therefore, in the symmetric arrangement of the Josephson
junctions the first nonvanishing term in the coupling to these
modes is quadratic.

The transmons can be close enough to each other to
be coupled through the mutual capacitances. Assuming the
translational invariance of the ring, Cn,n′ depends only on the
distance n − n′ modulo N , and it is convenient to define their
Fourier components Ck = ∑N

n=1 e−i2πk(n−n′ )/NCn,n′/N . Here
the integer k is defined modulo N , and the capacitance energy
can be written as EC,k = (2e)2/2Ck . Under these conditions,
we can rewrite the transmon operators in their “wave vector”
components as

�̂n = h̄

2e

N∑
k=1

(
EC,k

EJ

)1/4 ei 2πkn
N (b̂k + b̂†

−k )√
2N

, (2)

q̂n = (2e)
N∑

k=1

(
EC,k

EJ

)−1/4 ei 2πkn
N (b̂k − b̂†

−k )

i
√

2N
. (3)

The creation-annihilation operators b̂†
k and b̂k describe plas-

monlike collective excitations of charge motion with a wave
number given by K = 2πk/N .

The charge and flux operators can be similarly de-
fined through the electromagnetic field component as �̂B

n =
α̂n/

√
�C and �Q̂n = √

�C ˙̂αn. Here α̂n is the vector potential
for an ideal waveguide consisting of two parallel infinite
planes [11]. It can be expressed through the wave vector
components:

α̂n =
N∑

k=1

ei2πkn/N

√
h̄

2ωkN
(âk + â†

−k ), (4)

˙̂αn =
N∑

k=1

e2π ikn/N

√
h̄ωk

2N
(âk − â†

−k )/i, (5)

where â†
k and âk are the photon creation-annihilation opera-

tors. The vacuum state is, as usual, defined from âk|0〉 = 0
and b̂k|0〉 = 0. With respect to this vacuum definition and
in the weak-coupling approximation, the Hamiltonian (1) is
rewritten for V = 0 in terms of only the circuit component
characteristics, up to fourth order in the field and in a normal-
ordered form, as (see Appendix A)

: Ĥ : =
N∑

k=1

h̄εkb̂†
kb̂k + h̄ωkâ†

k âk

+ E�C

32N

N∑
k′,l=1

√
εk+lεk′−l

ωkωk′
: (b̂†

k+l + b̂−k−l )

× (b̂†
k′−l + b̂−k′+l )(âk + â†

−k )(âk′ + â†
−k′ ) : . (6)

The first and second terms correspond, respectively, to the
plasmon mode with energy spectrum h̄εk = √

4EJEC,k and

the photon mode with ωk =
√

2[1 − cos(K )]/(�C�L) + ω2
0 ,

where h̄ω0 = √
EJE�C and E�C = 2e2/(h̄2�C). The plasmon

spectrum is almost flat. The photon spectrum has a gap result-
ing from the Josephson energy contribution. Without it, the
spectrum would be linear with a light speed c = D/

√
�C�L,
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where D is the transmon interdistance. The third term is
the quartic interaction responsible for the coupling k + k′ ↔
(k + l ) + (k′ − l ) between the radiation and the transmon
qubits and is negligible only if E�C〈〈εk, ωk . Note that we
neglect the quartic self-modulation terms responsible for an-
harmonicity [2] for both fields since these are even weaker
than the coupling. This term would have produced additional
(anti)bunching effects in the microwave regime [26,27].

III. THE DISCHARGE EXPERIMENT

A. Mathematical description

We start by adiabatically applying to each qubit the po-
tential V , producing the initial charge with the nonzero ex-
pectation 〈q̂n〉 = C0V interpreted as the displacement of the
vacuum state. Then the potential is suddenly dropped to zero.
The qubit islands begin discharging, emitting in the process
entangled pairs of photons. The corresponding transmon state
is a coherent state with k = 0. Its amplitude at t = 0 is

ϕ0 ≡
√

N〈b̂0〉 = i
√

EJ/ε0(eV/EC,0). (7)

The qubit regime is recovered in the case of the faint coherent
state; that is, the intensity is weak enough to neglect states
with a photon number higher than 1 in the coherent super-
position. Parametrizing the squeezed radiation mode with the
squeezing amplitude rk (t ) and the phase θk (t ), the full ansatz
for the quantum state of radiation in the waveguide is (see
Appendix B)

|�(t )〉 =
N/2∏
k=1

erk (e−2iθk â†
k â†

−k−e2iθk âk â−k )D̂(t )|0〉, (8)

with the displacement unitary transformation D̂(t ) =
exp(

√
Nϕb̂†

0 − √
Nϕ∗b̂0).

From the Lagrangian Re[〈�(t )|ih̄∂t− : Ĥ : |�(t )〉] we ob-
tain the dynamical equations:

iϕ̇ = ε0ϕ + E�Cε0

8N
(ϕ + ϕ∗)

×
N/2∑
k=1

cosh(2rk ) − 1 + cos(2θk ) sinh(2rk )

h̄ωk
, (9)

θ̇k =ωk + E�Cε0

16
(ϕ + ϕ∗)2 1 + cos(2θk )coth(2rk )

h̄ωk
, (10)

ṙk = E�Cε0

16
(ϕ + ϕ∗)2 sin(2θk )

h̄ωk
. (11)

In the short-time limit, assuming that all the capacitances
are of the same order of magnitude and taking realistic
values for the system parameters (EC,0 ∼ E�C ∼ 1 GHz,
EJ ∼ 10 GHz), we can make the following direct estimates.
The rate of squeezing is ṙk (0) ∼ EJ (eV/E�C )2/h̄ ∼ 1 GHz
for the initial voltage V = 1 μV. The relative charge leakage,
〈�qn〉/〈qn〉 ∼ √

EJ/EC,0(eV t/h̄)2 ∼ 1018t2(s), is quadratic in
time.

In the long-time limit, the equations are solved in the
rotating wave approximation in Appendix B. The decaying
of two transmon excitations into two photons satisfies the
number and energy conservation 2ε0 = 2ωk . We consider two

t0

-5

k
0

r*
k

1

05

2

FIG. 3. Dimensionless squeezing parameter r∗
k (t ) =

(16h̄
/E�C )[rk (t )/|φ0|2] as a function of time and detuning
frequency for ε0 � 
.

distinct cases of a transmon excitation decaying into either a
continuum of photon modes or a single mode.

B. Decay into a continuum

In the large-N limit and for weak squeezing rk (t ) � 1,
we can approximate the phase by θk (t ) = h̄ωkt − π/4. The
solution for the transmon field in the continuum limit is then
ϕ(t ) = ie−iε0tϕ0/

√
1 + 
t with an inverse power decay rate:


 =
(

E�CeV

16EC,0

)2 EJ/h̄3√(
ω2

N
2

− ε2
0

)(
ε2

0 − ω2
0

) ∼ C0V 2

h̄
. (12)

This rate corresponds to the capacitance energy perturbation
introduced initially and has to be much less than the plasmon
frequency ε0 (typically in the 1–10 GHz range) but much
larger than any decoherence rate (in the megahertz range) [1].
For the squeezing parameter, we obtain

rk (t ) = E�C

16

∫ t

0
dt ′ |ϕ(t ′)|2ε0 cos[2δkt ′]

h̄2ωk
, (13)

where δk = ωk − ε0 is the detuning frequency. Figure 3 repre-
sents its growth with time and concentration at zero detuning.

The total number of photons in one direction k ≷ 0 can
then be estimated as

〈
N̂≷

ph

〉 =
N/2∑
k=1

sinh2[rk (t )] = N
|ϕ0|2 − |ϕ(t )|2

2
. (14)

The photon waves along the two opposite directions have the
perfect entanglement correlation 〈(δN̂>

ph − δN̂<
ph)2〉 = 0.

Their quadratures are also correlated and are measured
through a homodyne detection after mixing them with a
local oscillator of frequency ω that is simply described via
the unitary operator Û (t ) = ei(ωt−π/4)

∑N
k=1 â†

k âk . The effective
output signals are

α̂out
n = Û †(t )α̂nÛ (t ), ˙̂α

out
n = Û †(t ) ˙̂αnÛ (t ). (15)

Their averages are zero. However, we determine EPR correla-
tions for the Fourier components α̂out

k , ˙̂αout
k of these continuous

variables relative to the shot noise level [30]:〈(
α̂out

k − α̂out
−k

)2〉
2
〈
α̂out 2

k

〉|rk=0
=

〈(
˙̂αout

k + ˙̂αout
−k

)2〉
2
〈
˙̂αout 2

k

〉|rk=0

ω→ωk= e−2rk (t ). (16)
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These correlations become important for large squeezing. The
corresponding physical quadratures are the charge �Q̂≷ =√

�C ˙̂α
out
±k and the flux �̂B

≷ = α̂out
±k /

√
�C in the waveguide,

which are, respectively, anticorrelated and correlated.

C. Oscillation with two modes

In the case of long wavelengths (gigahertz), the frequency
separation between modes in the ring becomes large. We can
then select only two entangled modes ±k only in Eqs. (9),
(10), and (11), which interact with a resonant transmon mode.
Other photon modes are not perturbed.

Besides the interaction terms for the transition, an ad-
ditional modulation phase term affects the transition fre-
quency [21]. The maximum squeezing that can be reached is

rm
N→∞= ln(2N |ϕ0|2)/2, corresponding to the total depletion

|ϕ(t )|2 = 0. For simplicity, we shall assume the phase mod-
ulation term is constant, which implies the restriction to val-
ues rk (t ) � rm − √

N/2e−rm . We define the dimensionless pa-
rameters t̃ = tE�Cε0/(32h̄ωk ) and δ̃ = h̄δk32ωk/E�Cε0. Two
regimes are considered below.

(1) No phase modulation. For short times, we note that the
fastest squeezing rate is achieved if the phase-matching con-
dition δ̃ = 4|ϕ0|2 is satisfied. Using this condition, the phase
modulation can be neglected, and the squeezing parameter
evolves towards rm. The explicit expression is

rk (t ) = 1

2
ln

(
e2rm + e−4 sinh(2rm )t̃/N

1 + e2rm e−4 sinh(2rm )t̃/N

)
. (17)

(2) Weak depletion. When the detuning is not phase
matched, the charge leakage from the island can be

neglected, i.e., |φ(t )| 
 |φ0|. For a small value of de-
tuning within the interval −2|ϕ0|2 � δ̃ � 6|ϕ0|2, the pho-
ton number grows exponentially: Nph(t ) = sinh2[rk (t )] =
8|ϕ0|2 sinh2(�t̃ )/�2, with the characteristic angular fre-
quency � =

√
|(δ̃ − 4|ϕ0|2)2 − 4|ϕ0|4|. Outside this interval,

the solution becomes Nph(t ) = 8|ϕ0|2 sin2(�t̃ )/�2, which
corresponds to a Rabi-like oscillation between the plasmon
mode and the photon modes. This Rabi-like superposition of
a plasmon state and an EPR photon state illustrates the rich
possibilities offered by this qubit line device for quantum
design.

IV. CONCLUSIONS

We proposed the superconducting transmon line embedded
in a ring waveguide as a generator of entangled beams of
microwave radiation. Using the fully quantum description,
we can describe the scattering process between photons and
the collective transmon excitation. We also showed that high
squeezing may be obtained in the long-wavelength regime,
allowing for a genuine EPR-like experiment in a microchip
device. An interesting extension of this design would be a
parametric amplifier analogous to those in the optical range
for quantum imaging [21,30].
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APPENDIX A: PHASE AND CHARGE BASIS FORMALISM

We start from the quantum Hamiltonian given by Eq. (1) (see also Fig. 1). The working states of a transmon are not eigenstates
of either charge q̂n or phase φ̂n. The phase is defined only within the value range [−π, π ], which differs from the range of a
continuous quantum variable within the real axis. Therefore, the subsequent developments are valid as long as its uncertainty
remains within these bounded values.

A real field like φ̂n can be written as a linear combination of creation and annihilation operators ĉ and ĉ†. Using the identity
exp(i f ĉ + i f ∗ĉ†) = 〈0| exp(i f ĉ + i f ∗ĉ†)|0〉 exp(i f ∗ĉ†) exp(i f ĉ), with 〈0| exp(i f ĉ + i f ∗ĉ†)|0〉 = exp(−| f |2/2), we can expand
the cosine terms in the Hamiltonian to second order:

cos φ̂n = 〈0| cos φ̂n|0〉
[

1 − : φ̂2
n :

2
+ . . .

]
, (A1)

where we will define the vacuum state |0〉 later and where we used the normal ordering : · · · :. According to the phase-number
uncertainty principle, this procedure is valid as long as the charge number perturbation is large. For the coherent-state ansatz we
shall use in the Appendix B, this is the case as long as the transmon capacitance energy EC,k is much smaller than the Josephson
energy EJ .

Similarly, for the electromagnetic field,

cos

[
e

h̄

α̂n√
�C

]
= 〈0| cos

[
e

h̄

α̂n√
�C

]
|0〉

[
1 − e2 : α̂2

n :

2h̄2�C
+ . . .

]
. (A2)

This approximation is valid in the weak-coupling regime E�C〈〈EJ and will be justified a posteriori at the end of this Appendix.
Using these expansions, the Hamiltonian becomes

Ĥ = 1

2

N∑
n,n′=1

C−1
n,n′ q̂nq̂n − 2EJ

N∑
n=1

(
1 − : φ̂2

n :

2

)(
1 − e2 : α̂2

n :

2h̄2�C

)
+ 1

2

N∑
n=1

[
ˆ̇α2

n + c2

D2
α̂n(2α̂n − α̂n−1 − α̂n+1)

]
+ O(φ̂n, α̂n)4, (A3)
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where we have defined the renormalized Josephson energy EJ = Eb
J 〈0| cos φ̂n cos [ e

h̄
α̂n√
�C

]|0〉. Separating the vacuum energy
contribution Evac from the normal-ordered part, the Hamiltonian becomes

Ĥ = Evac + EJ

N∑
n=1

: φ̂2
n : +1

2

N∑
n,n′=1

C−1
n,n′ (2e)2 : q̂nq̂n′ : −EJE�C

4h̄2

N∑
n=1

: φ̂2
n α̂

2
n :

+ 1

2

N∑
n=1

:

[
ˆ̇α2

n + c2

D2
α̂n(2α̂n − α̂n−1 − α̂n+1) + EJE�C

h̄2 α̂2
n

]
:, (A4)

where E�C = (2e)2/(2�C) and where

Evac = 1

2

N∑
n,n′=1

C−1
n,n′ 〈0|q̂nq̂n′ |0〉 −

N∑
n=1

〈0|2Eb
J cos φ̂n cos

[
e

h̄

α̂n√
�C

]
− 1

2

[
ˆ̇α2

n + c2

D2
α̂n(2α̂n − α̂n−1 − α̂n+1)

]
|0〉. (A5)

Since we are dealing with a ring, we use the periodic boundary condition, so that the capacitance depends on only the relative
position (n − n′). This amounts to neglecting the edge effect of the devices at the entrance and exit of the waveguides and to
concentrating mostly on the bulk effect. We can express the phase and charge operators in terms of the Fourier-transformed
creation and annihilation operators. Thus, the field can be rewritten in the form

φ̂n =
N∑

k=1

(
C−1

k (2e)2

2EJ

)1/4
ei 2πkn

N (b̂k + b̂†
−k )√

2N
, q̂n = (2e)

N∑
k=1

(
C−1

k (2e)2

2EJ

)−1/4
ei 2πkn

N (b̂k − b̂†
−k )

i
√

2N
, (A6)

where k is the wavelength defined modulo N and the capacitance matrix is expressed through its Fourier components:

C−1
n,n′ =

N∑
k=1

ei 2πk(n−n′ )
N C−1

k

N
, Cn,n′ =

N∑
k=1

ei 2πk(n−n′ )
N Ck

N
, C−1

k =
N∑

n−n′=1

e−i 2πk(n−n′ )
N C−1

n,n′ = 1/Ck . (A7)

After insertion of these expressions, the Hamiltonian without the electromagnetic field acquires the following form:

: Ĥ : =
N∑

k=1

h̄εkb̂†
kb̂k, h̄εk = √

4EJEC,k, (A8)

where we define the intrinsic energy of the capacitance as EC,k = (2e)2/(2Ck ). Similarly, for the electromagnetic field, we find

α̂n =
N∑

k=1

ei2πkn/N

√
h̄

2ωkN
(âk + â†

−k ), ˙̂αn =
N∑

k=1

e2π ikn/N

√
h̄ωk

2N
(âk − â†

−k )/i. (A9)

The vacuum (ground) state is defined from the relation âk|0〉 = 0 and b̂k|0〉 = 0. If we use the dispersion relation ωk =√
2[1 − cos(2πk/N )]/(�C�L) + ω2

0 and ω0 = √
EJE�C/h̄, we can rewrite the total Hamiltonian (A4) for V = 0 as Eq. (6).

Using a scaling argument, the expansion (A2) is justified by Eq. (A9), provided that the total photon number is of order N and
when E�C〈〈h̄ωk or taking the lower bound when E�C〈〈h̄ω0 or, equivalently, when E�C〈〈EJ . This is the same weak-coupling
condition that appears in Eq. (6) if the capacitance C0 and �C have the same order of magnitude.

APPENDIX B: DECAY OF THE PLASMON (COLLECTIVE TRANSMON) EXCITATION

1. The quantum dynamical equations

Let us start with a potential V that has been adiabatically applied. Then the charge perturbation of every island is Ns =
qn/(2e) = C0V/(2e) = eV/EC,0. Without the interaction term in the Hamiltonian (6), the coherent state D̂(ϕ(t ))|0〉 is the solution
with initial conditions ϕ0 = ϕ(0) = i

√
EJ/ε0Ns, where the displacement operator is

D̂(ϕ(t )) = exp[
√

Nϕ(t )b̂†
0 −

√
Nϕ∗(t )b̂0]. (B1)

It changes the operator b̂0 into D̂†(ϕ(t ))b̂0D̂(ϕ(t )) = b̂0 + ϕ(t ) inside the Hamiltonian. Without this potential, the stationary
state in the b̂k representation is the vacuum state |0〉. At t � 0, we suddenly drop the potential V to zero. Then the subsequent
dynamics is that the initial charge qn will decrease and emit entangled pairs of photons.

In the new transformed Hamiltonian D̂†(ϕ(t ))ĤD̂(ϕ(t )) − D̂†(ϕ(t ))h̄i∂t D̂(ϕ(t )), we can neglect the effect of the operator b̂k

responsible for the fluctuations in comparison to the coherent field ϕ(t ) � 1 in such a way that the resulting new form does
not contain any quantum transmon field and is quadratic in only the electromagnetic field operators. Under these conditions, an
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exact dynamical description of the photon field is achieved using the entangled squeezed state. The full ansatz is

|�(t )〉 = exp

[
N/2∑
k=1

rk (t )(e−2iθk (t )â†
k â†

−k − e2iθk (t )âk â−k )

]
D̂(ϕ(t ))|0〉. (B2)

The squeezing unitary transformation acts on the operator as âk → cosh[rk (t )]âk + sinh[rk (t )]e−2iθk (t )â†
−k , with which we

determine the Lagrangian by calculating the expected value for the Hamiltonian (6) and the time derivative term:

Re[〈�(t )|ih̄∂t |�(t )〉] = (ih̄N/2)[ϕ∗(t )∂tϕ(t ) − ∂tϕ
∗(t )ϕ(t )] + h̄

N/2∑
k=1

{cosh[2rk (t )] − 1}∂tθk (t ), (B3)

〈�(t )|Ĥ |�(t )〉 = Evac + Nh̄ε0|ϕ(t )|2 + 2
N/2∑
k=1

h̄ωk
cosh[2rk (t )] − 1

2

+ E�Cε0

16

N/2∑
k=1

[ϕ(t ) + ϕ∗(t )]2 cosh[2rk (t )] − 1 + cos[2θk (t )] sinh[2rk (t )]

ωk
. (B4)

These lead to the following Lagrange equations [see Eqs. (9), (10), and (11)]:

i∂tϕ(t ) = ε0ϕ(t ) + E�Cε0

8N
[ϕ(t ) + ϕ∗(t )]

N/2∑
k=1

cosh[2rk (t )] − 1 + cos[2θk (t )] sinh[2rk (t )]

h̄ωk
, (B5)

∂tθk (t ) = ωk + E�Cε0

16
[ϕ(t ) + ϕ∗(t )]2 1 + cos[2θk (t )] coth[2rk (t )]

h̄ωk
, (B6)

∂t rk (t ) = E�Cε0

16
[ϕ(t ) + ϕ∗(t )]2 sin[2θk (t )]

h̄ωk
, (B7)

or in phase and amplitude:

∂t |ϕ(t )|2 = i
E�Cε0

8N
[ϕ2(t ) − ϕ∗2(t )]

N/2∑
k=1

cosh[2rk (t )] − 1 + cos[2θk (t )] sinh[2rk (t )]

h̄ωk
, (B8)

(∂t + ε0) arg ϕ(t ) = −E�Cε0

16N

[ϕ(t ) + ϕ∗(t )]2

|ϕ(t )|2
N/2∑
k=1

cosh[2rk (t )] − 1 + cos[2θk (t )] sinh[2rk (t )]

h̄ωk
. (B9)

For a relative phase much smaller than the phases involved, i.e., |θk (t ) + arg ϕ(t )|〈〈θk (t ),− arg ϕ(t ), we can use the rotating
wave approximation assuming a posteriori that terms with a large oscillation frequency do not contribute much. This procedure
amounts to eliminating terms on the right-hand sides of Eqs. (9), (10), and (11) that are oscillating much faster than the relative
phase, and we obtain

i∂tϕ(t ) = ε0ϕ(t ) −
N/2∑
k=1

E�Cε0

16Nh̄ωk
{2ϕ(t ){cosh[2rk (t )] − 1} + e−i2θk (t )ϕ∗(t ) sinh[2rk (t )]}, (B10)

∂tθk (t ) = ωk −
N/2∑
k=1

E�Cε0

32h̄ωk
[e−i2θk (t )ϕ∗2(t ) + ei2θk (t )ϕ2(t )] coth[2rk (t )], (B11)

∂t rk (t ) = −
N/2∑
k=1

E�Cε0

32ih̄ωk
[e−i2θk (t )ϕ∗2(t ) − ei2θk (t )ϕ2(t )]. (B12)

2. Decay into a continuum

a. Decay rate

For weak coupling E�C/16〈〈ε0, ωk , we neglect the last term in Eq. (B11) and solve instead ∂tθk (t ) = h̄ωk . We obtain the so-
lution θk (t ) = ωkt − π/4. The integration constant has been chosen for consistency if we iterate the approximation in Eq. (B11)
by ensuring that cos[2θ (t = 0)] = 0. Then we can deduce that the neglected term in Eq. (B11) does not contribute much at later
times. Similarly, the phase can be approximated as arg ϕ(t ) = π/2 − ε0t , and we can write ϕ(t ) = i exp(−iε0t )|ϕ(t )|. Defining
the detuning δk = ωk − ε0, the rotating wave approximation corresponds to the condition |δk|〈〈ε0, ωk . As a result, we are left
with the following equations:

∂t |ϕ(t )|2 = E�Cε0

16N
|ϕ(t )|2

N/2∑
k=1

2 cos(2δkt ) sinh[2rk (t )]

h̄ωk
, (B13)

∂t rk (t ) = −E�Cε0

16
|ϕ(t )|2 cos(2δkt )

h̄ωk
. (B14)
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In the absence of coupling, we recover the oscillating solution: ϕ(t ) = i exp(−iε0t )|ϕ(0)|. We solve the system of equations in
the long-time limit for weak coupling and squeezing rk (t ) � 1, so that sinh[2rk (t )] 
 2rk (t ). Integrating the second equation,
we obtain the solution for rk (t ) in terms of |ϕ(t )|:

∂t |ϕ(t )|2 = E�Cε0

16N
|ϕ(t )|2

N/2∑
k=1

4 cos(2δkt )rk (t )

h̄ωk
, (B15)

rk (t ) = −
∫ t

0
dt ′ E�Cε0

16
|ϕ(t − t ′)|2 cos[2δk (t − t ′)]

h̄ωk
. (B16)

Substituting rk (t ) by its solution, we obtain a closed linear non-Markovian equation for |ϕ(t )|2:

∂t |ϕ(t )|2 = −
(

E�C

16

)2
ε2

0

N

N/2∑
k=1

∫ t

0
dt ′ 2{cos(2δkt ′) + cos[2δk (2t − t ′)]}|ϕ(t − t ′)|2|ϕ(t )|2

(h̄ωk )2
. (B17)

In the weak-coupling approximation and in the continuum limit N → ∞, the Markovian limit can be taken. In these conditions
we can transform the sum into an integral 1

N

∑N/2
k=1 → ∫ π

0 dK/(2π ), where K = 2πk/N is the wave vector. This integration is

made over the detuning frequency with the integral replaced by
∫ π

0 dK → ∫ ωN/2−ε0

ω0−ε0
dδk/( dωk

dK ). Since E�C〈〈ε0, ωk , we can use
a scaling factor λ for the large variables ε0 → ε0/λ and ωk → ωk/λ and take the limit λ → 0 in the integral. After all these
considerations, Eq. (B17) becomes

∂t |ϕ(t )|2 = − lim
λ→0

(
E�Cε0

16h̄

)2 ∫ ωN/2−ε0

ω0−ε0

dδk

πλ
g(δk/λ)

∫ t

0
dt ′{cos(2δkt ′/λ)

+ cos[2δk (2t − t ′)/λ]}|ϕ(t − t ′)ϕ(t )|2, (B18)

where g(δk ) = 1/(ω2
k

dωk
dK ). We proceed to change the integration variable t ′ → λt ′ in order to take the Markovian limit ϕ(t −

λt ′) → ϕ(t ) and to integrate over t ′:

∂t |ϕ(t )|2 = − lim
λ→0

(
E�Cε0

16h̄

)2 ∫ ωN/2−ε0

ω0−ε0

dδk

π
g(δk/λ)

[
2 sin(2δkt/λ) − sin(4δkt/λ)

4δk

]
|ϕ(t )|4. (B19)

After the variable change δk = sλ/(2t ), we obtain

∂t |ϕ(t )|2 = − lim
λ→0

(
E�Cε0

16h̄

)2 ∫ (ωN/2−ε0 )t/λ

(ω0−ε0 )t/λ

ds

π
g(s/2t )

[
2 sin(s) − sin(2s)

4s

]
|ϕ(t )|4

= −
(

E�Cε0

16h̄

)2 ∫ ∞

−∞

ds

π
g(s/2t )

[
2 sin(s) − sin(2s)

4s

]
|ϕ(t )|4. (B20)

Now if we assume that g(ω) is a smooth function over the scale 1/t , which means in the long-time limit when t � 1/(ωN/2 − ω0),
then we can approximate g(s/2t ) 
 g(0), and after integration over s, we find

∂t |ϕ(t )|2 = −1

2

(
E�C

16h̄

)2∣∣∣∣dωk

dK

∣∣∣∣
−1

ωk=ε0

|ϕ(t )|4. (B21)

Alternatively, the same result could have been obtained more simply but less rigorously from Eq. (B17) after taking the
Markovian limit, neglecting the second fast-oscillating cosine, and taking the time integral over the infinite interval,

∂t |ϕ(t )|2 = −
(

E�C

16

)2
ε2

0

N

N/2∑
k=1

∫ ∞

0
dt ′ 2 cos[2(ε0 − ωk )t ′]|ϕ(t )|4

(h̄ωk )2
= −

(
E�C

16

)2
ε2

0

N

N/2∑
k=1

2πδ[2(ε0 − ωk )]|ϕ(t )|4
(h̄ωk )2

. (B22)

Again, we transform the sum over k = KN/2π into an integral over the momentum K to obtain

∂t |ϕ(t )|2 = −|ϕ(t )|4
τ

,
1

τ
= E2

�C

162h̄2

∫ π

0

dK

2
δ(ε0 − ωk ), (B23)

from which we identify a relaxation rate τ . This last equation is identical to (B21) but has the form of Fermi’s golden rule:
the δ function indicates that the process of transforming two transmon excitations into two photons has to satisfy the energy
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conservation 2ε0 = 2ωk . Denoting β = 1/
√

�C�L, the integral is calculated easily,∫ π

0
dKδ

(
ε0 −

√
2β2[1 − cos(K )] + ω2

0

) =
∣∣∣∣dωk

dK

∣∣∣∣
−1

ωk=ε0

= 2ε0
[(

4β2 + ω2
0 − ε2

0

)(
ε2

0 − ω2
0

)]−1/2
. (B24)

Therefore, we find an explicit expression of the relaxation rate in terms of the lower and upper photon energies:

τ = h̄2162

ε0E2
�C

√(
ω2

max − ε2
0

)(
ε2

0 − ω2
min

) ∼ h̄

√
EJEC,0

E2
�C

, ωmin = ω0, ωmax =
√

ω2
0 + 4β2 = ωN/2. (B25)

Note that the condition of timescale separation τε0 � 1 amounts to stating that we are in a transmon regime, i.e., EC,0〈〈EJ in
the case EC,0 ∼ E�C . Solving Eq. (B23), we find the transmon field as |ϕ(t )|−2 = [ϕ(0)|−2 + t/τ , and using the initial condition
field ϕ0 = Ns

√
EJ/ε0 and carrier Ns = eV/EC,0, we obtain an inverse power law for the decay:

|ϕ(t )| = Ns
√

EJ/ε0√
1 + t/T

, T = h̄ε0τ

EJN2
s

= h̄ε0τE2
C,0

EJ (eV )2
, (B26)

ϕ(t ) = ie−iε0t Ns
√

EJ/ε0√
1 + t/T

. (B27)

More explicitly, we obtain Eq. (12) for the rate 
 = 1/T .

b. Squeezing parameter

Once we know the explicit form of decay for the transmon field, we can explicitly calculate the squeezing parameter.
Integrating Eq. (B16), we find

rk (t ) = E�C

16

∫ t

0
dt ′ N2

s EJ

1 + t ′/T

cos[2(ωk − ε0)t ′]
h̄2ωk

= E�Cε0τ

16

∫ t

0

dt ′

t ′ + T

cos[2(ωk − ε0)t ′]
h̄ωk

= E�Cε0τ

16h̄ωk
{cos[T (ωk − ε0)]Si[(ωk − ε0)(2t ′ + T )] + sin[T (ωk − ε0)]Ci[2(ωk − ε0)(2t ′ + T )]}|t0 (B28)

ωk→ε0= E�Cτ

16h̄
ln [1 + 
t]

t→∞= +∞, (B29)

where we made use of the cosine and sine integral functions. Alternatively, we can use the identity limt ′→∞ sin(ωt ′)/ω → πδ(ω)
(in the sense of a distribution over ω) in order to obtain limit expressions for long time (t � 1/ε0):

rk (t ) = E�Cε0τ

16

∫ t

0

dt ′

t ′ + T

d

dt ′
sin[2(ωk − ε0)t ′]
2h̄ωk (ωk − ε0)

(B30)

= E�C

16

(
1

T
− 1

t + T

)
τπ

2h̄
δ[2(ωk − ε0)]

t→∞= E�C

16

N2
s EJπδ(ωk − ε0)

4h̄2ε0
. (B31)

The squeezing parameter is related to the average photon production for each mode:

〈n̂k (t )〉 = 〈�(t )|â†
k âk|�(t )〉 = sinh2(rk (t )) 
 r2

k (t ). (B32)

We use this result to estimate the total number of photons in one branch (k > 0 or k < 0):

N>
ph(t ) = N<

ph(t ) =
N/2∑
k=1

〈n̂k (t )〉 
 N
∫ π

0

dK

2π
〈n̂k (t )〉 = N

∣∣∣∣dωk

dK

∣∣∣∣
−1

ωk=ε0

∫ ωN

ω1

dωk

2π
〈n̂k (t )〉. (B33)

For a smooth function f (ω), we use the asymptotic equality

lim
t,t ′→∞

d

dt

d

dt ′

∫ ∞

−∞
dω f (ω)

sin(ωt ) sin(ωt ′)
ω2

= lim
t,t ′→∞

d

dt

d

dt ′

∫ ∞

−∞
dω f (ω)

cos[ω(t − t ′)] − cos[ω(t + t ′)]
2ω2

t,t ′→∞= d

dt

d

dt ′

∫ ∞

−∞
dω f (ω)

∫ t+t ′

|t−t ′|
du

sin(ωu)

2ω

t,t ′→∞= π f (0)

2

d

dt

d

dt ′

∫ t+t ′

|t−t ′|
du = π f (0)

2

d

dt
[1 + 1+(t − t ′) − 1+(t ′ − t )]

t,t ′→∞= π f (0)δ(t − t ′). (B34)
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Combining this last result with expression (B30), we find for Eq. (B33)

N≷
ph(t )

t→∞= N
2 × 162 h̄2

τE2
�C

(
E�Cε0τ

16h̄ε0

)2 1

4

∫ t

0

dt ′

(t ′ + T )2
= N

τ

2

(
1

T
− 1

t + T

)
= N (|ϕ0|2 − |ϕ(t )|2)/2. (B35)

This relation allows us to identify, in the long-time limit, the conservation law stating that the number of transferred transmons
corresponds to the photon number N |ϕ(t )|2 + 2Nph(t ) = N |ϕ0|2. The photon fluctuations in one mode are determined similarly:

〈δ2n̂k (t )〉 = 〈�(t )|(â†
k âk )2|�(t )〉 − 〈

n2
k (t )

〉 = sinh2[rk (t )]{1 + sinh2[rk (t )]} 
 r2
k (t ). (B36)

We note also that photons with opposite momentum have the same correlations as those of equal momentum 〈δ2n̂k (t )〉 =
〈δn̂k (t )δn̂−k (t )〉, so that we deduce the zero correlation associated with the entanglement 〈[δn̂k (t ) − δn̂−k (t )]2〉 = 0. As a result,
we find the correlations of the total number of photons on one branch (k > 0 or k < 0) for weak squeezing:

〈δ2N≷
ph(t )〉 = 〈δN<

phδN>
ph(t )〉 =

N/2∑
k,k′=1

〈δn̂k (t )δn̂k′ (t )〉 

N/2∑
k=1

r2
k (t )

rk (t )�1= N≷
ph(t ), (B37)

which allows us to conclude the perfect entanglement correlation:

〈[δN>
ph(t ) − δN<

ph(t )]2〉 = 0. (B38)

The corresponding quadratures are also correlated and are measured through a homodyne detection after mixing them with a
local oscillator of frequency ω. The mixing plays the role of a beam splitter and is realized using a coupler between the output
signal waveguide and the local oscillator one. It results in two new output signals whose subsequent measurement difference
provides an outcome no longer dependent on the fast oscillation in time. Mathematically, using the unitary operator Û (t ) =
ei(ωt−π/4)

∑N
k=1 â†

k âk , this coupler transforms the output quadratures into

α̂out
n = Û †(t )α̂nÛ (t ) =

N∑
k=1

ei2πkn/N

√
N

α̂out
k =

N∑
k=1

ei2πkn/N

√
h̄

2ωkN
(ei(ωt−π/4)âk + e−i(ωt−π/4)t â†

−k ), (B39)

˙̂α
out
n = Û †(t ) ˙̂αnÛ (t ) =

N∑
k=1

e2π ikn/N

√
N

˙̂α
out
k =

N∑
k=1

e2π ikn/N

√
h̄ωk

2N
(ei(ωt−π/4)âk − e−i(ωt−π/4)â†

−k )/i. (B40)

Their averages are all zero, but their fluctuations are present even for an output vacuum field and are referred to as the shot noise
level. More precisely, 〈(α̂out

k − α̂out
−k )2〉|rk=0 = h̄/2ωk , and 〈( ˙̂αout

k + ˙̂αout
−k )2〉|rk=0 = h̄ωk/2. We determine the EPR entanglement

correlations for the Fourier components α̂out
k , ˙̂αout

k of these continuous variables relative to the shot noise level as a reference:〈(
α̂out

k − α̂out
−k

)2〉〈(
α̂out

k − α̂out
−k

)2〉|rk=0

=
〈(

˙̂αout
k + ˙̂αout

−k

)2〉〈(
˙̂αout

k + ˙̂αout
−k

)2〉∣∣
rk=0

= cosh[2rk (t )] − sinh[2rk (t )] cos[2(ω − ωk )t]
ω→ωk= exp[−2rk (t )]. (B41)

For this frequency ω, we find the corresponding correlated quadratures for the flux average and the total charge propagating to
the right (k > 0) or to the left (k < 0):

φ̂B
≷ = 1√

�C
α̂out

±k

∣∣
ω=ωk

, �Q̂≷ =
√

�C ˙̂α
out
±k

∣∣∣
ω=ωk

. (B42)

To assess the entanglement produced between the two output beams, we determine the partial entropy of one of the beams. If B
is the Hilbert space associated with the transmon field, we find the reduced matrix density from the partial trace:

ρ̂k>0 = trk<0,B[|�(t )〉〈�(t )|] =
N/2∏
k=1

cosh[rk (t )]
∞∑

nk=0

|nk〉 tanhnk [rk (t )]〈nk|. (B43)

With this expression, we determine the entanglement entropy:

S(t ) = −tr(ρ̂k>0 ln ρ̂k>0) = 2
∑
k>0

cosh2[rk (t )] ln{cosh[rk (t )]} − sinh2[rk (t )] ln{sinh[rk (t )]}

rk (t )�1
 −2
∑
k>0

ln[rk (t )]r2
k (t ). (B44)

When rk �= 0, this entanglement is always positive, and for large rk , it tends towards infinity.
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3. Two electromagnetic entangled mode regimes

a. Two-mode dynamical equations

In a small-size ring, the quantization of the wave number restricts the number of electromagnetic modes with a larger energy
level spacing that does not form a continuum anymore. Therefore, we can select two particular entangled modes interacting in
resonance with the transmon mode. The frequency of these modes ωk = ε0 + δk has a detuning frequency that is adjusted for the
optimal entanglement. By applying the two-mode approximation, the system (B10), (B11), and (B12) simplifies into

i∂tϕ(t ) = ε0ϕ(t ) − E�Cε0

16Nh̄ωk
{2ϕ(t ){cosh[2rk (t )] − 1} + e−i2θk (t )ϕ∗(t ) sinh[2rk (t )]}, (B45)

∂tθk (t ) = ωk − E�Cε0

32h̄ωk
[e−i2θk (t )ϕ∗2(t ) + ei2θk (t )ϕ2(t )] coth[2rk (t )], (B46)

∂t rk (t ) = − E�Cε0

32ih̄ωk
[e−i2θk (t )ϕ∗2(t ) − ei2θk (t )ϕ2(t )]. (B47)

We define the pair numbers Nph(t ) = cosh[2rk (t )] − 1. This set of equations is solved by using the conservation of the particle
numbers and energy:

N = N |ϕ(t )|2 + cosh[2rk (t )] − 1, (B48)

E = h̄ε0N |ϕ(t )|2 + h̄ωk{cosh[2rk (t )] − 1}
− E�Cε0

32ωk
{4|ϕ(t )|2{cosh[2rk (t )] − 1} + [e−i2θk (t )ϕ∗2(t ) + ei2θk (t )ϕ2(t )] sinh[2rk (t )]} (B49)

Besides the interaction terms for the transfer between the transmon modes and the mode pair, the energy term also contains an
interaction with a modulation phase term that affects the transition frequency [the first term in the last line of Eq. (B49)]. In order
to go further, we define the set of dimensionless parameters: t̃ = tE�Cε0/(32h̄ωk ) and δ̃ = h̄δk32ωk/E�Cε0. At time t = 0, the
initial conditions are E = h̄ε0N = h̄ε0N |ϕ0|2. By eliminating the angle 2 arg ϕ(t ) + 2θk (t ) between Eq. (B12) and the energy
conservation relation (B49), we obtain

[δ̃ − 4|ϕ(t )|2]{cosh[2rk (t )] − 1} = ± sinh[2rk (t )]
√

4|ϕ(t )|4 − [∂t̃ rk (t )]2. (B50)

Rearranging the terms, we obtain the closed set of equations:

∂t̃ rk (t ) =
√

4|ϕ(t )|4 − [δ̃ − 4|ϕ(t )|2] coth[rk (t )],

N |ϕ0|2 = N |ϕ(t )|2 + cosh[2rk (t )] − 1. (B51)

In terms of the pair population, these are rewritten as

∂t̃ N
1/2
ph (t ) =

√
4[Nph(t ) + 2]|ϕ(t )|4 − [δ̃ − 4|ϕ(t )|2]2Nph(t ),

N |ϕ0|2 = N |ϕ(t )|2 + Nph(t ). (B52)

b. No phase modulation

For t = 0, we note that the fastest squeezing rate is achieved for δ̃ = 4|ϕ0|2. In that case, if we neglect the subsequent phase
modulation, the squeezing parameter obeys ∂t rk (t ) = 2|ϕ(t )|2 and therefore starts from zero until reaching a maximum value rm

obtained by imposing the condition |ϕ(t )|2 = |ϕ0|2 − {cosh[2rk (t )] − 1}/N = 0. We find the solution

rm = 1
2 ln[1 + N |ϕ0|2 +

√
(1 + N |ϕ0|2)2 − 1]

N→∞= 1
2 ln(2N |ϕ0|2). (B53)

Next, we solve the equation ∂t̃ rk (t )/2 = |ϕ0|2 − {cosh[2rk (t )] − 1}/N to obtain Eq. (17). For large N and large |φ0|2, the presence
of phase modulation at later time restricts the validity of Eq. (17) to squeezing values smaller than rm. Indeed, using the number
conservation equation, we find an upper bound for the neglected term on the right-hand side of Eq. (B51). This term is much
smaller in comparison to the first term provided that

[δ̃ − 4|ϕ(t )|2] coth[rk (t )] = 4
cosh[2rk (t )] − 1

N
coth[rk (t )] 〈〈 4|ϕ(t )|4 = 4

∣∣∣∣|ϕ0|2 − cosh[2rk (t )] − 1

N

∣∣∣∣
2

. (B54)

Using this inequality in the limit for large squeezing, we find rk (t ) < rm − √
N/2e−rm .
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c. Weak depletion

We consider the case where the modulation term is present and the charge depletion in the transmon is weak, i.e., ϕ(t ) 
 ϕ0

or, equivalently, rk (t )〈〈rm. Using this simplification, Eq. (B52) becomes easily solvable:

∂t̃ N
1/2
ph (t ) =

√
4[Nph(t ) + 2]|ϕ0|4 − [δ̃ − 4|ϕ0|2]2Nph(t ). (B55)

The result is that for values of detuning within the interval −2|ϕ0|2 � δ̃ � 6|ϕ0|2, the photon population grows exponentially:

Nph(t ) = 8|ϕ0|2 sinh2(�t̃ )

�2
, � =

√
|4|ϕ0|4 − [δ̃ − 4|ϕ0|2]2|. (B56)

Outside this interval, we obtain instead the oscillatory behavior:

Nph(t ) = 8|ϕ0|2 sin2(�t̃ )

�2
. (B57)
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