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The issue of whether the quantum critical point (QCP) is hidden inside unconventional superconductors is
a matter of hot debate. Although a prominent experiment on London penetration depth has demonstrated the
existence of the QCP in the isovalent-doped iron-based superconductor BaFe2(As1−xPx )2, with the observation of
a sharp peak in the penetration depth in the vicinity of the disappearance of magnetic order at zero temperature,
the nature of such an emerging QCP remains unclear. Here, we provide a unique picture to understand well
the phenomena of the QCP based on the framework of linear response theory. Evidence from the density of
states and superfluid density calculations suggests the nodeless-to-nodal pairing transition accompanied the
appearance of a sharp peak in the penetration depth in BaFe2(As1−xPx )2. Such a pairing transition originates
from the three-dimensional electronic properties with a strong interlayer superconducting pairing. This finding
provides a significant insight into the understanding of the QCP observed in experiment in BaFe2(As1−xPx )2.
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I. INTRODUCTION

Studies of unconventional iron-based superconductivity
have triggered intensive research interest during the past
decade since the discovery of LaO1−xFxFeAs in 2008 [1].
For low-energy electronic properties, iron-based materials are
a multiband system with nodeless s±-wave superconducting
pairing symmetry [2,3] in contrast to that of cuprates, which
are a single-band system with nodal d-wave superconducting
pairing symmetry [4,5]. Despite such differences at the micro-
scopic level, the layered crystal structure and phase diagram
of both iron-based and copper oxide superconductors share a
common feature. From the viewpoint of the superconducting
phase diagram, those compounds exhibit similar dome-shaped
superconductivity after introducing the extra electron or hole-
like charge carriers into the parent compound or applying
high external pressure or chemical pressure. An isovalent
phosphorus substitution of arsenic in the BaFe2(As1−xPx )2

compound accompanied by the appearance of superconduc-
tivity [6–11] can be regarded as a kind of chemical pressure.
Importantly, a prominent experiment on London penetration
depth in this compound observed a sharp peak in the vicinity
of the disappearance of magnetic order at zero temperature,
suggesting the presence of a quantum critical point (QCP) [12]
and attracting widespread research attention [13–17].

Elucidating the origin of such a QCP inside the su-
perconducting dome could be the key to understanding
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high-temperature superconductivity [17–23]. Since the parent
compound of BaFe2As2 has a collinear antiferromagnetic
order, tuning the electronic band structure by introducing
isovalent phosphorus dopants without introducing charge car-
riers will suppress the magnetic order, and superconductivity
will emerge. This leads to conjecture regarding whether the
disappearance of magnetic order will be associated with a
sharp peak in the superfluid density in the London penetra-
tion depth experiment [12,13]. A previous theoretical study
demonstrated that in two-dimensional systems the concentra-
tion of superfluid density, which is proportional to the London
penetration depth, ρs ∝ 1/λ2

L, monotonically increases with
the suppression of the magnetic order in the region where
magnetism and superconductivity coexist, until the superfluid
density saturates to a maximal value in a pure superconducting
region in Fe-based superconductors [24]. Therefore, such
conjecture seems to be insufficient to explain the nature of the
London penetration depth experiment, and various theoretical
scenarios are proposed to explain the possible nature of such
an anomalous enhancement of λL [17,25–27].

Fortunately, angle-resolved photoemission spectroscopy
(ARPES) measurements of the superconducting gap struc-
ture of BaFe2(As0.7P0.3)2 demonstrated the direct observation
of a circular line node on the most significant hole Fermi
surface around the Z point at the Brillouin zone boundary
[28]. This finding opens an avenue for conjecturing whether
the QCP observed in the penetration depth experiment is
closely related to such nodal pairing structure. In addition,
the ARPES experiment and the first-principles calculations
also suggested that the Fermi surface topology becomes
much more three-dimensional with increasing the phosphorus
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dopants [7,12,28–30], leading us to establish a perspective
of the nodeless-to-nodal pairing transition accompanied by
the appearance of a QCP in BaFe2(As1−xPx )2, which is the
primary motivation of the present paper.

In this paper, a doping-dependent three-dimensional tight-
binding model is constructed to reproduce well the correct
low-energy electronic band structure and the Fermi surface
topologies from ARPES measurements [7]. By taking the
Coulomb interactions between itinerant electrons into ac-
count, we perform self-consistent mean-field calculations and
obtain a phase diagram of pairing order parameters versus
doping concentrations, which is in agreement with experi-
ments [12]. Further calculations of superfluid density and the
density of states (DOS) as a function of doping demonstrate
that the appearance of a sharp peak in the penetration depth is
accompanied by a nodeless-to-nodal pairing transition. Such
a superconducting pairing transition mainly comes from the
nature of the three-dimensional electronic band structure with
strong interlayer superconducting pairing order. Additionally,
it is worth pointing out that the calculated maximum λL does
not appear at the transit point of the magnetic order observed
by experiment [12]; instead, it is within the overlapping range
of spin-density wave and superconducting phases. The same
feature was reported in a previous work by using the universal
critical phenomena theory, which indicated that the possible
explanation of the discrepancy between experiment observa-
tion and theoretical calculation requires the consideration of
the physical properties at the scale of the correlation length or
an even smaller length scale.

The rest of this paper is organized as follows. In Sec. II,
we first introduce the theoretical model Hamiltonian and the
methods of the detailed calculations. The calculated phase
diagram, superfluid density, and London penetration depth at
zero temperature are given in Sec. III. In Sec. IV, the DOS
and Fermi surface of the superconducting state are addressed.
A summary is finally given in Sec. V.

II. MODEL HAMILTONIAN

According to the fact of experimental measurements
[7,12], we extend the two-dimensional phenomenological
model with two orbitals [31] to a three-dimensional model
with three orbitals to study the superconducting electronic
properties in isovalent-doped BaFe2(As1−xPx )2. The previous
two-dimensional model considered the effect of the asymmet-
ric arsenic atoms and is appropriate to describe the experimen-
tal observations in ARPES and scanning tunnel microscope
for the 122 family [32–35]. The calculated superfluid den-
sity is in qualitative agreement with the direct experimental
measurement in films of Fe pnictide superconductors at low
temperatures [36]. In the extended model, a unit cell contains
two Fe atoms, and each Fe involves three orbitals, dxz, dyz, and
dz2 . As arsenic is gradually substituted by phosphorus, the dz2

orbital of Fe will be driven close to the Fermi level [29,37], re-
sulting in an enhancement of interlayer hybridization between
two interlayer Fe orbitals.

In Fig. 1(a), we show a schematic illustration of the
tight-binding model Hamiltonian in real space, where t ′

1−4 are
hopping energies within each Fe layer between dxz and dyz

orbitals. Here, it should be noted that t ′
2 is different from t ′

3

FIG. 1. (a) Schematic illustration of hopping energy parameters
of the three-dimensional tight-binding model −tijc

†
i cj [i denotes all

the indexes of site i] with three Fe orbitals, dxz, dyz, and dz2 , in real
space. The red symbols denote the sites in one Fe layer, and the blue
symbols denote those in the adjacent Fe layer. The two inequivalent
Fe atoms are denoted by circles and squares. Hopping in the same
layer is linked by black dashed lines, while hopping between adjacent
layers is linked by solid olive lines. (b) The three-dimensional Fermi
surface topologies of BaFe2(As1−xPx )2 for x = 0.18. The label of
the space axes is ki=x,y,z/π . For the three-dimensional Fermi surface
topologies, blue (yellow) points represent plus (minus) signs of
superconducting order in the band space, which appears after intro-
ducing the interactions. The contour plot of the three-dimensional
Fermi surface structure (c) for kz = 0 and (d) for kz = π . The dashed
lines denote the first Brillouin zone with two Fe atoms per unit cell.
The band structure is plotted along the high-symmetry k points for
(e) kz = 0 and (f) kz = π . The gray dashed line denotes the Fermi
level.

since asymmetric arsenic ions is above and below the Fe layer
alternatively [31]. t ′

z,s,u are the interlayer hopping energies be-
tween two adjacent Fe layers. t ′

z denotes the nearest-neighbor
hopping energy along the z axis between dz2 and dxz (dyz )
orbitals, which can be regarded as two-step hopping processes
c†

i+zAi+z/2A†
i+z/2ci + H.c. mediated by arsenic (denoted by A)

in the crystal structure environment of BaFe2(As1−xPx )2.

144501-2



ANOMALOUS SHARP PEAK IN THE LONDON … PHYSICAL REVIEW B 100, 144501 (2019)

Under the C2 rotation at site i, c†
i+z,βσ Ai+z/2 −→

−c†
i−z,βAi−z/2σ , the combination of c†

i+z,βσ Ai+z/2 −
c†

i−z,βσ Ai−z/2 will replace the hopping term c†
i+zAi+z/2 [37,38],

and thus, the two-step hopping processes become −4tz sin2 kz

after omitting the creation and annihilation operators of
arsenic. t ′

s (t ′
u) is the hopping energy along x̂ ± ŷ ± ẑ between

the same (different) dxz, dyz orbitals in two adjacent Fe layers.
Using the Fourier transformation, the tight-binding model
Hamiltonian in momentum space can be rewritten as

Ht,k =
∑

kνσR

a1c†
AνσkcAνσk + a2c†

BνσkcBνσk + a3c†
RνσkcRν̄σk

+ a4c†
AνσkcBνσk + a5c†

RνσkcRβσk + H.c., (1)

where R = A, B denotes two inequivalent sites of Fe atoms,
ν denotes the dxz, dyz orbitals, β is the dz2 orbital, and σ is the
spin. Comparing hopping terms in k space with the hopping
parameters in real space, we obtain the coefficients in model
Hamiltonian as follows:

a1 = −2t2 cos (kx + ky) − 2t3 cos (kx − ky)

− 2ts(1 − cos kz )[cos (kx + ky) + cos (kx − ky)],

a2 = −2t3 cos (kx − ky) − 2t2 cos (kx + ky)

− 2ts(1 − cos kz )[cos (kx + ky) + cos (kx − ky)],

a3 = −2t4[cos (kx + ky) + cos (kx − ky)]

− 2tu(1 − cos kz )[cos (kx + ky) + cos (kx − ky)],

a4 = −2t1(cos kx + cos ky),

a5 = −2tz(1 − cos kz ),

with t2,3 = t ′
2,3 − ts, t4 = t ′

4 − tu, tz,s,u = −2t ′
z,s,u, t1 = t ′

1, as
shown in Fig. 1(a).

Diagonalizing the model Hamiltonian (1), we plot the
three-dimensional Fermi surface topology, as shown in
Fig. 1(b). There are two quasicylindrical shells around the
� point and two quasicylindrical shells around the M point.
Figure 1(b) also shows the variation of the three-dimensional
Fermi surface along the z direction, which is quite different
from that in LaOFeAs superconductors [39]. For more detail,
we depict the contour plots of the three-dimensional Fermi
surface for kz = 0 and kz = π in Figs. 1(c) and 1(d), respec-
tively. The two Fermi surface circles around the � point are
enlarged; in particular, the inner circle grows significantly
with increasing kz along the z direction, while the variation
of cylindrical shells around the M points is insignificant.
Those low-energy electronic behaviors are in good agree-
ment with previous ARPES measurements [7,12]. In addition,
the corresponding electronic band structures E (kx, ky, kz ) are
plotted for kz = 0 and kz = π , respectively, in Figs. 1(e) and
1(f) along the high-symmetry k points. For the tight-binding
model, there are six bands, where the two bands of the dz2

orbital are degenerate and dispersive below the Fermi level
for kz = 0, as shown in Fig. 1(e). However, for a finite kz, the
two degenerate flat bands will be split and become much more
dispersive, which can be seen clearly in Fig. 1(f).

Taking the strong Coulomb interactions between itinerant
electrons in Fe three-dimensional (3D) orbitals into account,
we write the interaction Hamiltonian on a mean-field level as

Hint = Hxy
int + Hz

int, which is expressed as [40–42]

Hxy
int = U

∑

iσν

〈niνσ̄ 〉niνσ + (U − 3JH )
∑

iνσ

〈niνσ 〉niνσ

+ (U − 2JH )
∑

iνσ

〈niνσ̄ 〉niνσ −
∑

iνσ

μniνσ , (2)

Ĥ z
int =

∑

iσ

Uz〈niβσ 〉niβσ̄ − μ1niβσ , (3)

where the parameter JH denotes the Hund’s coupling and
U and Uz describe on-site Coulomb interaction on the dxz

(dyz) and dz2 orbitals, respectively. Since the dz2 orbital is far
below the Fermi level [29] in the parent compound BaFe2As2,
without loss of generality, we set μ1 = μ + 1.36 and search μ

self-consistently to fix the total electron number as a constant
(4 electrons/per Fe atom) throughout all calculations. All
interactions and hopping parameters, such as t2, t3, and tz,
are doping dependent with fixed relations of ts = −tz, tu =
0.2tz, and t4 = 0.04. The wave vector k is restricted in the
magnetic Brillouin zone, ascribed to the system display-
ing a spin-density wave order. In addition, the local elec-
tron density is expressed as niνσ = 1

4 〈ni〉 + σMi, and the
magnetic order is described as M = 1

2

∑
ν (nAν↑ − nAν↓) =

1
2Ns

∑
ν,k σc†

AνσkcAνσk+Q. Here Ns is the number of unit cells,
and Q = (0,±π ) or (±π, 0) is the wave vector of spin-
density wave order [6].

Furthermore, we consider the intralayer and interlayer
superconducting pairings between the same dxz and dyz or-
bitals as H	 = ∑

Rνττ ′ 	Rν
i,i+τ c†

iν↑c†
i+τ,ν↓ + H.c., where τ =

x ± y and τ ′ = x ± y ± z. In momentum space, the supercon-
ducting Hamiltonian reads H	,k = ∑

Rνk(	Rνkc†
Rνk↑c†

Rν−k↓ +
H.c.), with

	Rνk = 2
∑

τ

cos kτ	
Rν
i,i+τ + 2

∑

τ ′
cos kτ ′	Rν

i,i+τ ′

= 4 cos kx cos ky
(
	s

xy + 2	z cos kz
)

− 4	d
xy sin kx sin ky, (4)

where the self-consistent pairing order parameter 	Rν
i,i+τ =

Vτ

2 〈cR
iν↑cR

i+τ,ν↓ − cR
iν↓cR

i+τ,ν↑〉 can be solved numerically. In-
terestingly, the value of the superconducting pairing order
within an Fe layer can be expressed as a linear combina-
tion of d-wave and s-wave pairing orders defined by 	s,d

xy =
0.5(	Rν

i,i+x̂+ŷ ± 	Rν
i,i+x̂−ŷ) because the superconducting pairing

order on (x̂ + ŷ)-orientated links is different from that on (x̂ −
ŷ)-orientated ones. The interlayer pairing order is denoted
	z hereafter for short, and the paring potential Vxy,z = 1.6
for both intra- and interlayer superconducting pairing order.
Here, it should be noted that when the pairing order parameter
	z approaches zero, the three-dimensional superconductivity
will evolve into an exact two-dimensional superconducting
system, and the pairing order 	Rνk has s± symmetry with the
nodal lines located around kx = ±π/2 and ky = ±π/2. When
the pairing order parameter 	z is increased to a finite value,

such as |−	s
xy

2	z
| � 1, some extra nodal points will penetrate into

the hole pockets around � point.
In the numerical calculation, we set the distance between

the nearest-neighbor Fe atoms and the hopping integral t1 as
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FIG. 2. Doping-dependent (a) Coulomb interactions including
U , JH , and Uz, and hopping energy parameters (b) t3 and (c) t2 and tz.

the length and energy units, respectively. By self-consistently
diagonalizing the 24 × 24 total Hamiltonian in momentum
space, H0

tot (k) = Ht,k + H	,k + Hint,k = ∑
n Enγ

†
n γn, we ob-

tain the eigenvalues and the corresponding eigenstates of the
system, which can be used for further calculating the physical
quantities, such as superfluid density and the local DOS. The
unit cell is 128 × 128 × 128 for the self-consistent calcula-
tion and 384 × 384 × 384 for the calculations of superfluid
density and band structure, as well as the DOS.

III. PHASE DIAGRAM AND LONDON
PENETRATION DEPTH

Figure 2 shows the doping-dependent parameters used
for the detailed calculations, including all hopping energies
and interactions, t2, t3, tz,U,Uz, JH , smoothly varied under
various doping concentrations. The variation of these param-
eters is constructed only to fit the experimental observations
[7,12,28]. The numerically self-consistently calculated phase
diagram is shown in Fig. 3(a), which is in quite good agree-
ment with previous experimental observations [12,13,43]. The
parent compound BaFe2As2 with antiferromagnetic order will
be suppressed monotonously with increasing the doping con-
centration x. When the doping is increased beyond x = 0.08,
the superconductivity emerges, as evidenced by the appear-
ance of the intralayer and interlayer superconducting pairing

FIG. 3. (a) Doping-dependent magnetic order m, intralayer su-
perconducting orders 	s,d

xy , and interlayer superconducting order 	z

for BaFe2(As1−xPx )2. (b) Superfluid density ρs versus doping level x.
(c) Square of the penetration depth λ2 versus x.

order parameters 	s,d
xy and 	z, and then the system enters

the region where magnetism and superconductivity coexist
until the doping concentrations reach x = 0.3. If we further
increase the doping concentrations, the magnetism disappears,
and the system becomes pure superconductivity. In Fig. 3(a),
we also notice that both 	s

xy and 	z versus doping x display a
clear dome-shaped superconductivity, and the values of 	s

xy
and 	z reach their maximum at the point where magnetic
order disappears. The absolute value of |	d

xy| for the two
different Fe sublattices is also shown in Fig. 3(a).

Next, we turn to discussing the behaviors of superfluid
density based on the linear response approach. Assuming that,
in the presence of a slowly varying vector potential along
the x direction Ax(r, t ) = A(q, ω)eiq·ri−iωt , all self-consistent
mean-field calculations are unchanged in the framework
of the linear response theory, only hopping energy terms
should be modified by a Peierls phase factor, c†

iσ c jσ →
c†

iσ c jσ exp i e
h̄c

∫ ri

r j
A(r, t ) · dr. Then expanding the factor to

the order of A2, the perturbed Hamiltonian reads H ′ =
−∑

i Ax[eJP
x (ri ) + e2

2 AxKx(ri)], with

Kx(ri ) = −
∑

νν ′σδ

ti,i+δx2
i,i+δ (c†

iνσ ci+δ,ν ′σ + H.c.), (5)

JP
x (ri ) = −i

∑

νν ′σδ

ti,i+δxi,i+δ (c†
iνσ ci+δ,ν ′σ − H.c.), (6)

where δ = x, x ± y, x ± y ± z. The total current density
JQ

x (ri, t ) = − δH ′
δAx (ri,t ) induced by an external magnetic field

is the summation of the diamagnetic part Kx and the para-
magnetic part J p

x . The calculations of Kx are restricted to the
zeroth order of Ax(ri ), and that of JP

x (ri ) is restricted to the first
order of Ax(ri ), 〈JP

x (ri )〉 = − eAx (r,t )
Ns

�(q, ω), where �(q, ω) is
obtained from the analytic continuation of the current-current
correlation �(q, iω) = ∫ β

0 dτeiωτ�(q, τ ) in the Matsub-
ara formalism. Here, �(q, τ ) = −〈Tτ JP

x (q, τ )JP
x (−q, 0)〉0,

JP
x (q, τ ) = eτH0 JP

x (q)e−τH0 , JP
x (q) = ∑

i e−iq·ri JP
x (ri), and Tτ

is the imaginary time ordering operator. In the quasiparticle
basis, the paramagnetic current can be expressed as the sum-
mation of components JP

x (q) = ∑
m1m2

JP
m1m2

, with JP
m1m2

=
γ

†k
m1γ

k+q
m2 �

k,k+q
m1m2 . After some tedious but straightforward al-

gebraic derivations, the concrete expression of � is derived.
Using the equation of motion of Green’s function, we obtain
[24]

�(q, iω)=
∑

km1m2σ

�
k,k+q
m1m2 �

k+q,k
m2m1 [ f (Ek,m1 ) − f (Ek+q,m2 )]

iω + (Ek,m1 − Ek+q,m2 )
, (7)

where f is the Fermi-Dirac distribution function. Thus, the
superfluid density weight measured by the ratio of the super-
fluid density to the mass is proportional to �(q, ω) in the
limit of zero frequency ω and momentum q [24,44–46] and
is expressed as

ρs

m∗ = −〈
JQ

x (ri, t )
〉
/e2Ax(ri)

= 1

Ns
�(qx = 0, qy → 0, qz → 0, ω = 0) − 〈Kx〉0. (8)

Figure 3(b) shows the superfluid density ρs as a function
of doping concentration x across the whole phase diagram in
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Fig. 3(a) at zero temperature. At underdoped concentration x
around the parent compound system, the superfluid density
ρs is zero, as expected from our intuitive knowledge that the
system does not have superconducting order. As the doping
concentration x increases, the superconductivity emerges, ac-
companied by the appearance of a finite value of ρs. If the
doping concentration x is further increased, ρs changes to
decrease its value slowly until x = 0.22, and then ρs further
goes upward with a steep slope, displaying a sharp peak at
x = 0.3 with the value of superfluid density being 8 times
larger than that at x = 0.22. Reaching the maximal value of
superfluid density ρs at x = 0.3 corresponds to the point of the
disappearance of magnetic order in Fig. 3(a), denoted by the
red dot in the curve of 	s

xy. Eventually, the superfluid density
ρs decreases sharply and then tends to saturate to a finite value
upon further increasing the doping concentration x.

In addition, a fundamental property of the superconducting
state is the London penetration depth λ, parametrizing the
ability of a superconductor to screen an applied magnetic
field, which not only can be evaluated straightforwardly from
the superfluid density ρs but also can be measured in exper-
iments [21]. In general, ρs is described as the phase rigidity
of a superconductor, and it may vanish before the supercon-
ducting energy gap diminishes with increasing temperature. In
Fig. 3(c), we plot the square of the London penetration depth
λ2 as a function of doping concentration x. It is important
to point out that the value of the London penetration depth
λ2 displays a sharp peak at x = 0.22 which corresponds to
the minimal value of ρs and corresponds to the red square in
the curve of 	s

xy in Fig. 3(a), and then it decreases sharply.
Eventually, λ2 becomes rather flat in the pure superconducting
region. Compared with the experimental results [12], where
the magnetic phase boundary corresponds to the sharp peak of
λ2, our numerical results show that the sharp peak in the pen-
etration depth appears before the vanishing of the magnetic
order. Such an anomalous peak in the London penetration
depth has not been observed experimentally in other iron-
based superconductors, and it leads to a conjecture about the
presence of the QCP in BaFe2(As1−xPx )2.

The superconducting gap structure in the band representa-
tion 	̃k is derived from the 6 × 6 matrix Hamiltonian H	,k

of 	k (shorthand for 	Rνk) in the orbital space as [H̃	,k] =
[W ]†[H	,k][W ]∗ when magnetic order is absent, with [W ]
being the transformation matrix diagonalizing the 6 × 6 tight-
binding Hamiltonian Ht,k , and the corresponding 	̃k are the
diagonal elements of [H̃	,k]. However, for finite magnetic
order the corresponding [W ] is a 12 × 12 matrix diagonalizing
the Hamiltonian Ht,k + Hint,k including the interaction part.
Figure 4 displays the behavior of 	̃k near the Fermi surface,
where the navy points correspond to positive signs of 	̃k and
the orange points are for the minus signs. Figure 4 shows
that the gap structure in x = 0.23 has a finite value near the
Fermi surface at all kz, which is quite different from that in the
x = 0.18 case where the node points exist. For a given doping
level, a larger kz corresponds to a smaller magnitude of the
superconducting gap. It is important to point out that along
the line of kz, the superconducting gap will change signs from
0.5π to π when we do not consider the effect of magnetic
order, which can be seen clearly in Fig. 4(c), where we set the
magnetic order to zero. Therefore, we expect that in the region

FIG. 4. Superconducting gap structure of the band space for
different doping concentrations x = 0.18, 0.23, 0.28 near the Fermi
surface. From left to right the plots correspond to kz = 0, π/2, π ,
respectively. The inset in (c) is an enlargement of the z point. The
gray lines are the corresponding first Brillouin zone.

with the sudden drop in penetration depth the corresponding
	̃k will change its structure.

IV. DOS AND FERMI SURFACE TOPOLOGIES

To clarify the nature of the emergence of an anomalous
sharp peak in the penetration depth, we calculate the DOS for
various doping concentrations x at zero temperature, as shown
in Fig. 5. When the doping concentration is located in the
region of x � 0.22, the calculated DOS displays a V-shaped
structure with finite value at the Fermi level, implying the
presence of nodal points in the superconducting energy gap.
As the doping concentration x increases, the V-shaped DOS
changes into a U-shaped structure at x = 0.24, 0.26 with a
diminished DOS at the Fermi level; the plot for x = 0.23
is similar to that for x = 0.24, which we do not show here.
When the doping concentration is increased beyond 0.28, the
tip at zero energy reappears [see Fig. 5(e)]. Figure 5(f) shows
a narrow V-shaped DOS feature in a pure superconducting re-
gion, suggesting the system is a nodal superconductor, which
is in agreement with the previous ARPES measurement [28].
Therefore, comparing Fig. 5 with Fig. 3(c), we find that the
phase transition of the changing pairing order parameter from
nodeless to a nodal structure is responsible for the appearance
of the sharp peak in the experimental measurement of the
London penetration depth.

To further understand the nature of the emergence of the
anomalous sharp peak in the London penetration depth, we
also plot the DOS for 	z = 0, a two-dimensional limited case,
shown by the gray dashed lines in Fig. 5, where the interlayer
interaction Vz = 0 is set to zero and the other interaction
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FIG. 5. (a)–(f) For Vz = 1.6, DOS as a function of energy at
various doping concentrations x = 0.18, 0.22, 0.24, 0.26, 0.28, 0.38
are shown by the red lines, where the gray dashed lines represent the
corresponding DOS for Vz = 0.

parameters remain the same as in Fig. 2. For this 3D inter-
action and two-dimensional superconducting order case, the
system displays a U-shaped DOS for all doping concentra-
tions from x = 0.18 to x = 0.28.

In the case where 	z is absent, the nodal-to-nodeless
transition no longer exists since all the DOSs are U-shaped
features. Although the resulting ρs and λ2 still have a sharp
peak as that in Vz = 1.6 case, which can be seen clearly
in Figs. 6(b) and Fig. 6(c), a remarkable dip in the phase
diagram of 	s

xy versus doping appears, which is ascribed to the
presence of three-dimensional interaction. Figure 6(a) shows
that 	s

xy drops to a minimum value suddenly at x = 0.24,

FIG. 6. In the doping region of [0.14,0.36], the red curves are
doping-dependent physical quantities for the 	z = 0 case. (a) Mag-
netic order m and superconducting orders 	s,d

xy , (b) superfluid density
ρs, and (c) the square of the penetration depth as a function of doping.
The gray lines are the corresponding curves of Vz = 1.6 in Fig. 3.

FIG. 7. (a) Three-dimensional plot of the two cylindrical shells
around the � point for a dopant concentration of x = 0.28. (b) and
(c) Counter plots of the Fermi surface at kz = 0 and kz = π , re-
spectively. Blue points denote the plus signs of the corresponding
superconducting pairing, and dark yellow points are for the minus
signs.

destroying the dome-shaped superconductivity and leading
to an unphysical anomalous penetration depth. A minimum
pairing order corresponding to a maximal penetration depth is
a reasonable result when there is no other phase transition.
Furthermore, for two-dimensional dome-shaped iron-based
superconductivity [24], the penetration depth does not show
the sharp peak. Therefore, the experimental observation of
a sharp peak in penetration depth having dome-shaped su-
perconductivity stems from three-dimensional electron inter-
actions accompanied by a transition from nodal to nodeless
pairing.

In addition to analyzing the numerical data for supercon-
ducting pairing order parameters, we find a nodal circle in the
inner hole pocket around the � point in the vicinity of kz =
0.86π for x = 0.28 and four nodal points in the outer hole
pocket, which is shown in Fig. 7(a) with the boundaries of the
two colors denoting the nodal points on the 3D Fermi surface
topologies. For kz > 0.86π , the superconducting pairing in
the inner hole pocket changes sign, while the points on the
outer pocket remain the same color as that of small kz, which
is quite different from x = 0.18 shown in Fig. 1(b). In order
to unambiguously display the inner shape of Fermi surface
topologies, Figs. 7(b) and 7(c) depict the contour plot of the
Fermi surface for kz = 0 and for kz = π at x = 0.28, respec-
tively. For kz = π the superconducting gap has different signs
on the outer and inner hole pockets, which is different from
x = 0.18 but consistent with the inset of Fig. 4. It is worth
pointing out that the small inner circle of the hole pocket
around the � point in the Brillouin zone is easily immersed
if the doping concentration is increased further. The larger
kz has a larger Fermi surface circle; however, the magnitude
of the corresponding superconducting pairing is small, as
shown in Fig. 4. Those calculations further solidify the nature
of nodeless-to-nodal transition in doped BaFe2(As1−xPx )2,
leading to the appearance of an anomalous sharp peak in the
London penetration depth.

V. SUMMARY

In this paper, we constructed a three-dimensional tight-
binding lattice model based on the facts from the penetration
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depth and the ARPES experimental measurements. Taking
the interlayer Coulomb interactions into account, the su-
perconducting phase diagram and an anomalous sharp peak
in the London penetration depth were evaluated and are
entirely in good agreement with experimental observations.
By verifying the DOS and the pairing order parameters
as well as the Fermi surface topologies at various doping
concentrations, we find that the QCP originates from the
nature of three-dimensional interactions, leading to a phase
transition from a nodeless to a nodal pairing symmetry.
This finding provides significant insight into the understand-
ing of the nature of the QCP that emerged in the London
penetration depth experiment in the isovalent doped supercon-
ductor BaFe2(As1−xPx )2.
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