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Kitaev honeycomb models in magnetic fields: Dynamical response and dual models
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Motivated by recent reports of a field-induced intermediate phase (IP) in the antiferromagnetic honeycomb
Kitaev model that may be a spin liquid whose nature is distinct from the Kitaev Z2 phase, we present a detailed
numerical study on the nature and dynamical response (such as dynamical spin-structure factors and resonant
inelastic x-ray scattering intensities) of this field-induced IP and neighboring phases in a family of Kitaev-based
models related by hidden symmetries and duality transformations. We further show that the same field-induced
IP can appear in models relevant for α-RuCl3, which exhibit a ferromagnetic Kitaev coupling and additional
interactions. In α-RuCl3, the IP represents a new phase, that is likely independent from the putative field-induced
(spin-liquid) phase recently reported from thermal Hall conductivity measurements.
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I. INTRODUCTION

In magnets with strongly frustrated interactions, quantum
spin liquids can arise as exotic phases of matter that feature
long-range entanglement and fractionalized excitations. A
prime example is the exactly solvable Kitaev model on the
honeycomb lattice [1], which hosts a quantum spin liquid
ground state of itinerant Majorana fermions that couple to a
static Z2 gauge field.

Material realizations of the Kitaev model have been heavily
sought after, and a mechanism [2] relying on an intricate in-
terplay of strong electronic correlations, crystal field splitting,
and spin-orbit coupling has brought candidate materials such
as Na2IrO3, various polymorphs of Li2IrO3, and α-RuCl3 to
the forefront of research. However, these materials all display
magnetic order at low temperatures, which is a result of addi-
tional magnetic couplings extending beyond the pure Kitaev
coupling. With the goal of unravelling potential residual frac-
tionalized excitations reminiscent of the pure Kitaev model
in materials, there have been various routes to suppress the
magnetic order, including the application of pressure [3–6],
finite temperatures [7–9] or a magnetic field [10–21]. For the
latter case, a putative field-induced phase [14–16,18,20] in
α-RuCl3, that lacks magnetic order, is under strong scrutiny.
Here, a half-integer quantized thermal Hall conductivity was
recently reported [20] for fields tilted by 30◦ and 45◦ out
of the honeycomb plane. Such measurements have motivated
much theoretical effort to analyze both the original Kitaev
model as well as models with realistic extended interactions
in magnetic fields.

On the theoretical side, it is known that without a mag-
netic field, the pure ferromagnetic (FM) and antiferromagnetic
(AFM) versions of the Kitaev model are related by a unitary
transformation and thus share the same topological properties.
For both coupling signs, the Kitaev spin liquid (KSL) survives
under a weak magnetic field, where it becomes gapped and
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hosts non-Abelian anyonic excitations [1]. The effects of a
stronger field after suppressing the KSL state have however
recently gained much theoretical interest due to the discovery
of a field-induced intermediate phase (IP) in the AFM model
[22,23]. This phase is separated from the low-field KSL and
the high-field polarized state by phase transitions and could
itself be a quantum spin liquid [24–28].

Motivated by these findings, (i) we perform a detailed
analysis of the nature and dynamical response of the field-
induced intermediate phase and neighboring phases in a fam-
ily of Kitaev-based models related by hidden symmetries and
duality transformations and (ii) we investigate the relevance
of the IP for real materials, in particular for α-RuCl3.

The paper is organized as follows. In Sec. II, we revise the
properties of the Kitaev model and present numerical results
for various dynamical response functions of the FM and AFM
Kitaev model in uniform magnetic fields. This includes the
dynamical spin-structure factor, which can be accessed by,
e.g., inelastic neutron scattering (INS) or electron spin reso-
nance (ESR) experiments, and dynamical bond correlations,
that contribute to resonant inelastic x-ray scattering (RIXS)
and Raman scattering. Furthermore, we probe directly static
and dynamic flux-flux correlations that appear under field.
In Sec. III A, we extend the parameter space to noncollinear
magnetic fields, where we discuss hidden dual models. This
allows us to effectively interpolate between the uniform-field
behavior of the AFM and FM models with a continuous
parameter. Numerically, we find that the field-induced IP of
the AFM Kitaev model is highly unstable against certain
nonuniform field rotations, and could manifest as a line of crit-
ical points in the parameter space of such generalized fields. In
Sec. III B, we discuss the relevance of the field-induced IP of
the AFM Kitaev model for real materials. By utilizing hidden
symmetries in the parameter space of extended interactions,
we show that the same IP can appear in realistic models for
α-RuCl3, that possess a ferromagnetic Kitaev coupling and
additional interaction terms, for fields perpendicular to the
honeycomb plane.
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FIG. 1. (a) Honeycomb lattice with definitions of cubic axes
x, y, z and bond types X, Y, Z. (b) High-symmetry k points in the
first (dashed) and third Brillouin zone (solid border).

II. PURE KITAEV MODEL IN UNIFORM
MAGNETIC FIELDS

A. Introduction and definitions

The Kitaev honeycomb model [1] is defined by a Hamilto-
nian consisting of bond-dependent Ising terms:

HK = K
∑
〈i j〉γ

Sγ
i Sγ

j , (1)

where γ ∈ {x, y, z} corresponds to the type of bond that con-
nects i and j, according to Fig. 1(a). The classical version
of the model exhibits an extensive degeneracy [29], that is
lifted in the quantum model in favor of the KSL ground states.
The exact solution of the quantum model can be achieved [1]
by representing the spins via fermionic Majorana operators
{bx

j, by
j, bz

j, c j} as Sγ
j = i

2 bγ
j c j . This representation introduces

a Z2 gauge redundancy; physical states are spanned by unique
configurations of matter fermions, and Z2 flux degrees of
freedom. The fluxes are associated with Wilson loop operators
{WL}, which commute with HK and with each other. The
shortest of such loops correspond to hexagonal plaquette
operators Wp = 26Sx

1Sy
2Sz

3Sx
4Sy

5Sz
6, where the site indices refer

to those in Fig. 1(a). In the ground states, the flux density

〈np〉 ≡ 1
2 (1 − 〈Wp〉) (2)

vanishes for every hexagonal plaquette p, and all excitations
that modify the flux density are gapped. As a result, the ground
state of the model can be written in terms of the solution of a
free-fermion problem.

The exact solubility of the pure Kitaev model (1) has facil-
itated a deep understanding of its various response functions.
For example, a single spin operator Sμ

i creates two fluxes
on two neighboring plaquettes, in addition to excitations in
the matter fermion sector. As a result, the dynamical spin-
structure factor (DSSF)

S (k, ω) =
∑

μ=x,y,z

∫
dt e−iωt

〈
Sμ

−k(t ) Sμ

k (0)
〉

(3)

probes exclusively fluxful excitations. Given that Wp com-
mutes with HK , the fluxes are not dynamic, leading to a contin-
uum that is both dispersionless [30] and gapped, with intensity
only above the two-flux gap [31,32] of �f � 0.065|K|.

In addition to the DSSF, the dynamics of the bond op-
erators Bi j := Sγ

i Sγ
j and of the flux operators Wp represent

further interesting probes of the KSL. We consider for the
bond operators the correlation function

IX(k, ω) :=
∫

dt e−iωt 〈B−k(t ) Bk(0)〉, (4)

Bk := 1

N

∑
i

eik·ri
∑

γ=x,y,z

Sγ
i Sγ

γ (i), (5)

where γ (i) is the nearest neighbor of i along a γ bond and
N is the number of sites. Since [Bk,Wp] = 0, for the pure
Kitaev model, the correlation function IX(k, ω) probes only
dispersive fermionic matter excitations in the flux-free sector
[33], revealing gapless modes (with vanishing intensity) at
k = � and k = K that reflect the Dirac spectrum of the
underlying spinons [1]. Interestingly, IX(k, ω) constitutes
the main contribution to the spin-conserving channel of the
resonant inelastic x-ray scattering (RIXS) intensity [33] and is
therefore experimentally relevant. For k = �, IX(�,ω) also
contributes to Raman scattering [34]. Finally, we define the
dynamical flux-structure factor

W (k, ω) :=
∫

dt e−iωt 〈W−k(t )Wk(0)〉, (6)

Wk := 1

N/2

N/2∑
p

eik·rpWp. (7)

In the pure Kitaev model, W (k, ω) has no intensity at finite
ω, reflecting that the ground state is an eigenstate of Wp.
However, generic perturbations to HK may lead to dynamics
in Wp, as discussed below.

In this work, we focus on the effect of additional magnetic
fields:

H = HK −
∑

i

hi · Si (8)

Previous works have focused primarily on uniform fields
where hi is equal at every site. For example, for weak uniform
fields in the [111] direction, Kitaev employed perturbative ar-
guments to show the appearance of a gap in the matter fermion
spectrum, producing isolated bands that carry a nonzero Chern
number [1]. It should be noted, since the magnetic fields
lead to mixing of the zero-field flux and matter sectors and
introduce a finite 〈np〉, that there are some ambiguities in
the discussion of the excitations at finite field. Analogous to
Kitaev’s approach, one can consider perturbatively dressing
the flux operators such that the ground state remains in the
flux-free sector [35]. However, this approach remains valid
only within the KSL phase. Instead, when considering gen-
eral (nonuniform) fields, there is a conceptual advantage to
studying the undressed operator Bi j and Wp. This is because
models with different field configurations and/or signs of
the Kitaev coupling K can be related by duality transfor-
mations that commute with these operators, leaving the dy-
namical response functions IX(k, ω) and W (k, ω) invariant
(Appendix A). Unless otherwise stated, we refer to undressed
operators throughout this manuscript.

The fate of the Kitaev model in uniform fields beyond
the perturbative regime has been the subject of much recent
interest. Various numerical studies [22,23,27,36] have showed
that the FM (K < 0) and AFM (K > 0) versions of the Kitaev
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model display rather different behavior under a uniform field.
The FM model exhibits a single phase transition as a function
of field strength at hFM

c ≈ 0.03|K|, qualitatively independent
of field direction [27]. The transition occurs directly to a quan-
tum paramagnet (QPM) phase, that is smoothly connected
to the fully polarized state of the h → ∞ limit. In contrast,
recent studies of the AFM model have found an additional
intermediate phase [22–27] (IP) for fields along the cubic
[111] direction, in the range hAFM

c1 < h < hAFM
c2 , with hAFM

c1 ≈
0.4K and hAFM

c2 ≈ 0.6K . The IP is thought to be gapless in
the thermodynamic limit [22–27]. Consequently, descriptions
of the IP in terms of various types of spin liquids have been
proposed [24–28]. Interestingly, the stability of the IP also
appears to depend on the orientation of the field [27]; for fields
along [001] in the AFM Kitaev model, Majorana mean-field
studies [37,38] found a possibly different field-induced phase.

We argue that the contrast between the FM and AFM
models under uniform fields can be anticipated by considering
the classical limit; in the case of FM coupling, a finite field
instantly selects the polarized state out of the classically
degenerate spin configurations [39], suggesting a critical field
of hFM

c,class = 0. For AFM coupling, the classical degeneracy
is retained [39] up to a field of hAFM

c,class = K , as the polarized
state does not fulfill the AFM spin-spin correlations preferred
by the coupling. In the quantum Kitaev models (both FM
and AFM), the stability of the KSL is determined instead by
the relative strength of the field compared to the magnitude
of the zero-field flux gap �f, which represents an additional
emergent low-energy scale. Independent of the sign of K , ex-
citations carrying finite flux acquire a dispersion on the order
of h. Intuitively, suppression of the zero-field spin liquid likely
occurs when this dispersion exceeds the zero-field flux gap,
leading to a proliferation of fluxes at a critical field strength
of hc ∼ �f, implying a finite stability of the KSL. For the
AFM model, the fact that the classical degeneracy is retained
up to larger fields hAFM

c,class � �f suggests the possibility of an
additional intermediate field regime in the quantum model
where neither the KSL nor the polarized phase are the ground
state, in line with the appearance of the IP. The extension of
these ideas to nonuniform fields is discussed in Sec. III A.

B. Ferromagnetic Kitaev model

In order to study the phenomenology of a direct transition
between the KSL and the field-polarized phase, we first con-
sider the FM Kitaev model (K < 0) in a uniform magnetic
field h ‖ [111], described by Eq. (8). All shown results were
obtained on the 24-site periodic cluster shown in Fig. 1(a) via
exact diagonalization (ED), with a broadening in frequency of
0.025|K| applied to the dynamical response functions. Other
studied field directions (not shown) including [11̄0], [112̄],
and [001] yield qualitatively similar response.

The evolution of the dynamical spin-structure factor
S (k, ω) is shown in Figs. 2(a) and 2(b) for k = � and K,
respectively. Starting from the KSL at h = 0, the applied field
leads to broadening of the intense band of spin excitations that
appear just above the (zero-field) two-flux gap in the range
ω ∼ 0.1–0.3 |K|. This broadening can be attributed to the
field-induced dispersion for the fluxful excitations, which is
expected to occur through both the mixing of flux and matter

FIG. 2. FM Kitaev model under [111] field. (a), (b) Low-
frequency dynamical spin-structure factor at selected k points. Poles
at ω = 0 are not shown. (c) Flux density 〈np〉 and standard deviation

(SD) of the local flux density σp =
√

〈np
2〉 − 〈np〉2 . (d) Static spin-

spin correlations in real space. 1nn, 2nn, 3nn denote 〈Si · S j〉 on first-,
second-, and third-nearest neighbors, respectively.

sectors, as well as the hopping of the dressed fluxes. The
broadening ultimately leads to the closure of the spin gap at
hFM

c ∼ 0.02|K| ∼ � f . Coming from high-field, semiclassical
spin-wave approaches would suggest a softening of magnons
at all wave vectors on approaching the spin liquid [40]. As
a result, the spin excitation gap may close everywhere in
k-space simultaneously. For h > hFM

c , the slope of the magnon
energies with respect to field is smallest at k = � [compare
Figs. 2(a) and 2(b)], as the minimal energy magnons exist at
the zone center in the limit of large field.

The emergence of a large flux density under field can be
seen in the evolution of 〈np〉 shown in Fig. 2(c). While fluxes
remain to be nearly absent in the KSL until the critical field
hFM

c , the average flux density and local flux density fluctu-

ations measured by σp =
√

〈np
2〉 − 〈np〉2 rapidly increase at

the transition into the QPM. Remarkably, 〈np〉 stays signifi-
cantly below the limit [41] for the classical polarized state,
limh→∞ 〈np〉 = 13

27 � 0.48, for a wide range of field strengths,
implying significant quantum fluctuations in the QPM. The
latter are also evident from long-range spin-spin correlations
developing only gradually above hFM

c , cf. Fig. 2(d).
Since Wp commutes with HK , the dynamics of the fluxes

are mostly controlled by the field strength. In the asymp-
totically polarized region at high field, the dynamical flux-
structure factor W (k, ω) [see Figs. 3(a) and 3(b) for k = �, K
respectively] features a series of excitation bands correspond-
ing to n-spin flips that do no alter 〈Sγ

i Sγ
j 〉. On approaching

hFM
c from above, these excitations collapse into a narrow

frequency range on the scale of the zero-field flux gap �f.
Importantly, since hFM

c ,�f � |K|, the flux dynamics near the
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FIG. 3. Flux correlations in the FM Kitaev model under [111]
field. (a), (b) Dynamical flux-structure factor W (k, ω). (c) 〈WpWq〉 −
〈Wp〉〈Wq〉, where each line color refers to the relative position of the
respective plaquette p to the black plaquette q shown in the inset.

critical field are exceedingly slow compared to the timescales
for other excitations. As a result, the finite flux-density state
just above the critical field may be discussed in terms of nearly
static fluxes, making it useful to consider the real-space static
flux-flux correlations.

The static flux-flux correlations 〈WpWq〉 − 〈Wp〉〈Wq〉 are
shown in Fig. 3(c). Deep in the KSL, the magnetic field
creates virtual pairs of fluxes on neighboring plaquettes,
which then may hop to adjacent plaquettes. However, flux
pairs remain bound to each other due to the finite flux gap.
As a result, fluctuations around the flux-free ground state
lead to positive real-space correlations that decay with in-
creasing plaquette separation. In contrast, for h > hFM

c , the
correlations are markedly different, likely reflecting effective
interactions between fluxes that exist in finite density. The
energetics of different flux configurations was studied first by
Kitaev [1], and later by Lahtinen et al. [42–44]. In analogy
with vortices in p + i p superconductors, each flux binds a
Majorana c-fermion [1,45] under applied field. Minimizing
the energy of the Majorana bound states for pairs of fluxes
leads to effective flux-flux interactions, which prefer that two
fluxes are located on second-neighbor plaquettes parallel to a
bond, for example. The correlations observed near the critical
field are consistent with flux patterns that minimize these
interactions. Indeed, provided that the dynamics of the fluxes
remain slow compared to the c-fermions, the essential effects
of such bound states are likely to be preserved. While the
spatial range of flux-flux correlations is difficult to diagnose
from finite-size calculations, we note that a state with true
long-range staggered flux order [46] would necessarily break

FIG. 4. Spin-conserving RIXS intensity IX(k, ω) in the FM
Kitaev model under [111]-field.

additional lattice symmetries, and would therefore be distinct
from the fully polarized state. Since no signatures of an
additional phase transition have been detected numerically
[22,23], it is likely that the flux-flux correlations retain a
finite range in the thermodynamic limit. Therefore the large
flux-flux correlations observed in these calculations do not
appear to reflect the formation of a long-range ordered flux
(vison) crystal of the type studied in Ref. [46].

The fate of the matter fermions can be diagnosed from
dynamical bond correlations. We therefore discuss the spin-
conserving channel of the resonant inelastic x-ray scattering
(RIXS) intensity IX(k, ω), as defined in Eq. (4). For com-
pleteness, we note that the form of the operator in Eq. (5) ne-
glects additional contributions to the response that can appear
at finite field related to differences in g tensors between core
and valence shell states. For a direct RIXS process in the first-
order fast-collision approximation (employed in Ref. [33]),
the RIXS operator gains an additional single-spin term under
field, with relative magnitude ∼|(gc − gv) · h|/|K|, where gc

and gv are the g tensors of the core and valence shells that
are involved in the RIXS process. Under the assumption that
these g tensors are similar, and for fields h smaller than |K|,
the main contribution to the spin-conserving RIXS intensity
should therefore still be described by IX(k, ω) under finite
fields.

Exact diagonalization results for IX(k, ω) are shown in
Figs. 4(a) and 4(b) for k = � and K respectively. In the
zero-field KSL, the majority of the spectral weight is rep-
resented by two-fermion excitations at energies ω � 0.8|K|
at all wave vectors, as in Fig. 4(b). The k points �, and �′
are an exception, as the intensity vanishes at zero field due
to [Bk=�,�′ , HK ] = 0 [Fig. 4(a)]. The discreteness of these
features in our calculations can be attributed to finite size
effects, but their energy range agrees with exact calculations at
zero field [33]. Above hFM

c , the former sharp excitations of the
KSL significantly broaden, consistent with strong scattering
from the finite density of fluxes introduced by h. As a result,
the matter fermions cease to be well-defined excitations al-
most immediately upon entering the QPM phase above hFM

c .
In contrast to the AFM Kitaev model discussed below, the
broad excitation bands, that emerge above hFM

c , begin at fre-
quencies similar to their corresponding zero-field two-fermion
excitations. At high fields strengths h � hFM

c , the QPM can
eventually be described as asymptotically polarized. Since
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FIG. 5. AFM Kitaev model with Kx = Ky, Kz = 1.05Kx under
[111] field. (a), (b) Low-frequency dynamical spin-structure factor.
(c) Flux density 〈np〉 and standard deviation (SD) of the local flux

density σp =
√

〈np
2〉 − 〈np〉2 . (d) Static spin-spin correlations in real

space. Xnn and Znn denote 〈Si · S j〉 on X and Z bonds, respectively.

the bond-bond correlations probe multispin-flip excitations,
they become increasingly expensive under applied field and,
accordingly, the broad bands of excitations shift to higher
energies with increasing h.

C. Antiferromagnetic Kitaev model

We now consider the AFM Kitaev model in uniform [111]
field. To mitigate some finite-size effects in the intermediate
phase [47], we slightly break C3 symmetry by choosing the
coupling strength on Z bonds (Kz) stronger than that on X
and Y bonds: K = Kx = Ky, Kz = 1.05Kx . Dynamic and static
response functions computed via ED are shown in Figs. 5
to 7.

For the dynamical spin-structure factor shown in Figs. 5(a)
and 5(b) at k = �′, K, we reproduce the results of Ref. [27].
At small h, the intense excitations at the flux gap broaden
significantly, with the lower bound reaching nearly zero fre-
quency at hAFM

c1 ≈ 0.4K . Unlike a continuous transition to
a spin-ordered phase [48], the spin gap appears to close
everywhere in k space simultaneously at hAFM

c1 . The spin
gap remains small within ED resolution up to the second
critical field hAFM

c2 ≈ 0.6K . This observation has previously
been interpreted as the presence of gapless spin excitations in
the IP in the thermodynamic limit [23,27].

Similar to the FM model, the vanishing energy differ-
ence between different flux sectors at hAFM

c1 allows fluxes to
proliferate. As a result, the first critical field marks a rapid
increase in the average flux density np, as well as in local
flux-density fluctuations σp, see Fig. 5(c). In contrast, both
quantities change very little at the second critical field hAFM

c2 .

FIG. 6. Flux correlations in the AFM Kitaev model with Kx =
Ky, Kz = 1.05Kx under [111] field.

In the IP, the dynamical flux-structure factor W (k, ω),
shown in Figs. 6(a) and 6(b), displays a broad continuum in
the energy range ω ∼ 0 to 3K . However, much of the spectral
weight is concentrated at small frequencies 0 � ω � 0.1K ,
on the same scale as the zero-field flux gap. This indicates
that the flux fluctuations—while large in amplitude σp—occur
primarily on relatively slow timescales throughout the IP. This
is in contrast to neighboring ordered phases of the KSL, which
can be induced by, e.g., an additional Heisenberg term, where
we find the spectral weight of W (k, ω) to be concentrated at
higher frequencies, with negligible weight near ω ≈ 0. Like-
wise, in the QPM phase in Figs. 6(a) and 6(b) for h > hAFM

c2 ,
the low-frequency intensity in W (k, ω) is rapidly suppressed.
Here, the opening of a gap at hAFM

c2 shifts all excitations
to higher energies with increasing field. Similar to the FM
model near hFM

c , the IP features pronounced modulation of the
static flux-flux correlations 〈WpWq〉 − 〈Wp〉〈Wq〉 in real space,
shown in Fig. 6(c). In this case, the correlations show a stripy

FIG. 7. Spin-conserving RIXS intensity IX(k, ω) in the AFM
Kitaev model with Kx = Ky, Kz = 1.05Kx under [111] field.
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pattern, the orientation of which is selected by the choice of
Kz > Kx, Ky. These correlations are a property of the IP, and
are largely suppressed upon approaching hAFM

c2 .
The spin-conserving RIXS intensity IX(k, ω) of the AFM

Kitaev model under field is shown in Fig. 7. Here, the response
under field differs significantly from the FM Kitaev model
due to the negative sign of static bond correlations 〈Sγ

i Sγ
j 〉 in

the low-field KSL, cf. Figs. 2(d) and 5(d). Upon entering the
IP at hAFM

c1 , the discrete two-fermion excitations of the KSL
observed in ED dissolve into a broad band with no distinct
frequency or momentum dependence [compare Figs. 7(a) and
7(b)], confirming that the c-fermions are strongly perturbed by
the presence of the fluxes. At h ∼ hAFM

c1 , a significant portion
of spectral weight in IX(k, ω) remains at high frequencies.
However, in contrast to the FM model, part of the broad
band shifts downward with increasing h, as the magnetic
field reduces the energy cost for flipping the signs of 〈Sγ

i Sγ
j 〉.

Finally, at h = hAFM
c2 , the band is driven to ω ≈ 0 at all wave

vectors. Consistently, the static nearest-neighbor spin-spin
correlations rapidly reverse sign upon leaving the IP, as shown
in Fig. 5(d).

III. STABILITY OF THE INTERMEDIATE PHASE IN
EXTENDED MODELS

A. Noncollinear fields

As discussed in Sec. II, the presence of the IP in the AFM
Kitaev model under a uniform field can be anticipated from
two observations: (i) a finite field rapidly induces flux density
fluctuations (suppressing the KSL) at h ∼ �f, but (ii) does
not immediately lift the extensive classical degeneracy. For
this reason, a quantum spin liquid phase at intermediate fields
can be anticipated. This argument can be extended to include
general site-dependent fields defined by

Hf = −
∑

i

hx
i Sx

i + hy
i Sy

i + hz
i S

z
i . (9)

For field configurations that do not couple to any classically
degenerate state [29], the product of the γ component of the
local fields on all γ bonds must satisfy

hγ
i = sgn(K ) hγ

j , (10)

which serves as a necessary condition for maintaining the
classical degeneracy at finite field. While a uniform field ful-
fills this only in the AFM model (K > 0), certain noncollinear
field configurations satisfy it in the FM model, suggesting that
the IP may be also induced by such fields in the FM model.
In fact, as discussed in Appendix A, the AFM Kitaev model
under uniform [111] field is exactly dual to the FM model
under the four-sublattice “tetrahedral” field pictured in Fig. 8.
Similarly, the AFM model under the four-sublattice field is
dual to the FM model under uniform [111] field.

These dualities allow us to consider a series of models that
interpolate between those possessing the IP, and those where
a direct transition occurs between the KSL and the QPM. To
this end, we consider the phase diagram of the AFM Kitaev

FIG. 8. (a) Site-dependent directions of the four-sublattice tetra-
hedral field that acts on HK in the same way as a uniform field does
on −HK . The relative orientations of the local fields match those of
the vertex corners of a tetrahedron, as shown in (b).

model with site-dependent fields:

H (h, φ) = HK,AFM − h
∑

i

hi(φ) · Si, (11)

with local field directions hi(φ) defined by the sublattice
pattern in Fig. 12(d), with

hi(φ) = 1√
3

⎧⎪⎨
⎪⎩

(1, 1, 1), if i ∈ sublattice A
(v, u, v), if i ∈ sublattice B
(v, v, u), if i ∈ sublattice C
(u, v, v), if i ∈ sublattice D

, (12)

u(φ) = cos(φ) +
√

2 sin(φ), (13)

v(φ) = cos(φ) − sin(φ)/
√

2. (14)

For this choice, hi(φ) rotates directly between a uniform [111]
field (for φ = 0), and the tetrahedral field shown in Fig. 8
(for φ = arccos(− 1

3 ) ≡ φtet � 0.61π ). As introduced above,
the model is dual to the FM Kitaev model in uniform [111]
field for φ = φtet. Eq. (10) becomes violated as soon as φ �= 0.

The phase diagram as a function of φ and h obtained via
ED is shown in Fig. 9(a). Phase boundaries were identified
from maxima in the second derivative of the ground state
energy −∂2

g E0 and in the fidelity susceptibility

χg = −2 log(|〈ψ (g)|ψ (g + δg)〉|)
(δg)2

, (15)

where we have varied both g = h or g = φ. The locations of
these maxima are shown as black points in Fig. 9(a).

We first focus on the region for φ � 0. As shown in the
phase diagram, we find that the IP is very unstable against
tetrahedral rotations, surviving only for the narrow range
φ � 0.005π = 0.9◦ in our N = 24 calculations. For all angles
φ > 0.9◦, a direct transition between the KSL and QPM is
observed, with critical field hc decreasing monotonically with
rotation angle. The extent of the KSL and IP can be deduced
from the behavior of the flux density, plotted in Fig. 9(b). In
the KSL, np is suppressed, while in the IP this quantity is
enhanced compared to adjacent phases. In Fig. 9(c), we show
the behavior of the fidelity susceptibility χφ in the narrow re-
gion around φ ∼ 0. For 0.4 � h

K � 0.6, the transition between
the IP and the polarized phase occurs via level crossings on
sweeping φ, signified by two divergencies in χφ at very small
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FIG. 9. (a) Phase diagram interpolating between the AFM Kitaev
model under a uniform [111]-field (φ = 0) and a model dual to
the FM model under a uniform [111] field (φ = φtet � 0.61π ) via
Eqs. (11) to (14). Black points depict maxima in the fidelity suscep-
tibility. (b) 〈np〉 [Eq. (2)]. (c) Fidelity susceptibility [Eq. (15)] with
respect to φ, close to the limit of uniform fields φ = 0. Calculated
with δφ = 0.005π . Note that the color scale is logarithmic.

negative and positive φ. For h � 0.6K , the divergences meet
and are rapidly suppressed.

While the above results suggest the IP has a very small—
but finite—extent with respect to φ, we note that the energy
spectra in finite-size calculations are necessarily discrete. The
level crossings shown in Fig. 9(c) can therefore not happen
instantly at φ = 0 in our calculations, but must appear after
a finitely large perturbation to the Hamiltonian. Provided that
the IP is gapless in the thermodynamic limit, as concluded
in Refs. [22–27], the critical φ values may scale to zero as
the finite-size gap closes. In our calculations on 24 sites, the
narrow width of the IP is controlled by the relative scale of
the energy gaps ∼0.01K between the ground state and lowest
excited states at φ = 0. For this reason, we cannot rule out
a scenario in which the IP is reduced to a line of critical
points in the (h, φ) plane of Fig. 9(a) in the thermodynamic
limit, with no finite extent in the φ-direction. This suggests an
intriguing instability of the IP with respect to nonuniform field
rotations, which coincides with the instability of the classical
degeneracy in the model formulated by Eq. (10).

FIG. 10. (J, K, �)-parameter space for � > 0. We adopt the
parametrization of Refs. [49,57], such that J = sin ϑ cos ϕ, K =
sin ϑ sin ϕ, � = cos ϑ , where ϕ is the polar angle and ϑ is pro-
portional to the distance from the center, reaching ϑ = π/4 at the
dashed circle and ϑ = π/2 at the outer circle. The black dots show
models where only one type of coupling is present. The triangle and
the square show the projected positions of the hidden AFM Kitaev
model [Eq. (18)] and of the α-RuCl3 model [Eq. (19)], respectively.
Additional couplings that are not encoded in (ϕ, ϑ ) are given on the
right side in units of

√
J2 + K2 + �2.

Finally, we comment briefly on a phase detected for neg-
ative φ. The region of this additional phase [named �1 in
Fig. 9(a)] can be outlined clearly by maxima in χg and −∂2

g E0.
From the static spin-structure factor, we can not identify a
dominant ordering wave vector. Within the discrete spectra
of the ED calculation, the gap throughout the region of �1

is on the order of 0.02K , so that one could speculate about
a potential gaplessness in the thermodynamic limit. In this
respect, it has similarities to the IP, however we do not find
�1 to be smoothly connected to the IP in the considered
parameter space on the basis of χg and −∂2

g E0. Furthermore
〈np〉 in the �1 phase is significantly lower than in the IP, yet
still distinctly above that of the KSL, see Fig. 9(b).

B. Extended interactions

To date, material realizations of Kitaev-like Hamiltoni-
ans have been sought in a number of spin-orbital coupled
transition metal compounds including α-RuCl3, Na2IrO3, and
various polymorphs of Li2IrO3. In such materials, the minimal
nearest-neighbor couplings can be parameterized [49,50]:

HJK��′ =
∑
〈i j〉γ

J Si · S j + K Sγ
i Sγ

j + �
(
Sα

i Sβ
j + Sβ

i Sα
j

)
+ �′ (

Sα
i Sγ

j + Sγ
i Sα

j + Sβ
i Sγ

j + Sγ
i Sβ

j

)
, (16)

where γ ∈ {x, y, z} corresponds to the type of bond con-
necting sites i and j, and (α, β, γ ) is always a permuta-
tion of (x, y, z). While the precise determination of magnetic
Hamiltonians for the candidate materials poses an ongoing
challenge, the Kitaev exchange has been shown to be of
ferromagnetic type (FM, K < 0), on grounds of the idealized
microscopic mechanism [2], ab initio studies [11,50–56] and
experimental analyses [9,57–62]. While we have discussed in
Sec. III A and Appendix A that the field-induced IP can be
realized in the FM Kitaev model, this requires noncollinear
and staggered fields that are unlikely to be available in
experiments on real materials. At first glance, this puts into
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question the relevance of the physics of the IP to real materi-
als.

From this viewpoint, it is useful to note the presence of
hidden Kitaev points in the extended (J, K, �, �′)-parameter
space [cf. Eq. (16)], which are implied by transformations
discussed in Ref. [57]. In particular, a π rotation of all spin-
operators around the [111] axis is defined by

R : (x̃, ỹ, z̃)ᵀ = 1

3

⎛
⎝−1x + 2y + 2z

+2x − 1y + 2z
+2x + 2y − 1z

⎞
⎠. (17)

Applying this transformation to the pure AFM Kitaev model
HK (K = +1) leads to a Hamiltonian H̃K = RHKR−1, that is
of the (J, K, �, �′) form with parameters

H̃K : (J̃, K̃, �̃, �̃′) =
(

+4

9
,−1

3
,+4

9
,−2

9

)
. (18)

Importantly, the signs of all anisotropic couplings (i.e., K <

0, � > 0 and �′ < 0) at this hidden AFM Kitaev point are
compatible with microscopic mechanisms relevant to known
Kitaev materials [49,55]. Such couplings are, in principle,
realizable in real materials. The static Z2 gauge field for
the KSL ground state of H̃K is related to new flux operators
W̃p = RWpR−1. Since R commutes with the Zeeman term of
a [111] field, H̃K hosts the IP under uniform fields. In Fig. 10,
we show the position of the hidden AFM Kitaev point H̃K

projected into the (J, K, �)-parameter space.
Since both the KSL and the IP at the original AFM Kitaev

point have finite extents when adding additional interactions
to HK [27,49,63] these phases must also have finite extent
around the hidden Kitaev model H̃K . It is therefore interesting
to explore as to what extent these phases might be proximate
to the phases of real materials. To that end, we take as a
representative for real materials the ab initio-guided minimal
model of Ref. [65] for α-RuCl3:

HRuCl : (J, K, �, J3) = (−0.5,−5,+2.5,+0.5) meV, (19)

where J3 stands for third-nearest-neighbor Heisenberg cou-
pling. We then consider models:

H (ξ, h) = (1 − ξ ) H̃K + ξ
1

C
HRuCl −

∑
i

h · Si, (20)

which interpolate between the hidden AFM Kitaev point (ξ =
0) and the α-RuCl3 model (ξ = 1) under uniform fields h.
We set C = 8.5 meV for comparable energy scales. HRuCl has
been shown to be consistent with many experimental aspects
of α-RuCl3 [13,17,64–67]. While the model can certainly still
be further fine-tuned [67], we assert that the relative direction
in parameter space between H̃K and α-RuCl3 can be described
reasonably well with HRuCl.

In Figs. 11(a)–11(f), we show the ground state phase
diagrams of H (ξ, h) for three different directions of h, go-
ing from in-plane (h ‖ b = [11̄0]) to out-of-plane (h ‖ c∗ =
[111]) fields. Phase boundaries were determined from ED
on the high-symmetry 24-site cluster, by tracking maxima
in χg [Eq. (15)] and in −∂2

g E0 with g = h or g = ξ . The
physical B-field in tesla is related to our natural units as
B = Cμ−1

B g−1h, shown on the right-hand axes in Fig. 11 for
the g-tensor estimate of Ref. [64].

On the described path through parameter space, the zigzag
phase of HRuCl is found to be a (direct) neighbor of the hidden
KSL phase, meeting it at ξ � 0.04 for h = 0. With increasing
field strength, this phase boundary bends towards smaller ξ ,
see Figs. 11(b), 11(d) and 11(f). Hence, no model exists on
the path where an external field can suppress zigzag order in
favor of a field-induced KSL state, unlike the path considered
in Ref. [70], where the KSL can be field-induced for field
directions close to [111]. For the models considered here,
the stability of the KSL region is found to be qualitatively
independent of field direction.

In contrast, the stability of the field-induced IP depends
crucially on the field direction. Even for ξ = 0 at the pure
(hidden) Kitaev model, the IP is not induced for all uniform
field directions, as is the case for the direction shown in
Figs. 11(c) and 11(d). For most field directions where the IP is
observed, it is found to be less stable than the KSL against ad-
ditional interactions introduced by a finite ξ , as in Figs. 11(a)
and 11(b), so that it cannot generally be field-induced from
a zigzag ground state either. Remarkably, however, we find
exclusively for the out-of-plane field direction [111] = c∗,
that the IP extends far through parameter space, reaching even
the HRuCl model at ξ = 1 at high fields, see Figs. 11(e) and
11(f). This result applies only for fields very near to the [111]
direction [71]. Upon rotating h by small angles of � 10◦ away
from [111], the extended region shrinks quickly, such that the
extent of the IP with respect to ξ becomes qualitatively similar
to that in Fig. 11(b). We remark the presence of level crossings
between quasidegenerate states within the IP region on the
high-symmetry cluster for [111] fields [47]. These are ex-
pected to be inconsequential finite-size artifacts, since similar
features in the nearest-neighbor Kitaev-Heisenberg vanish on
larger clusters accessible by density-matrix renormalization
group (DMRG) methods [72].

While the particular model HRuCl does not host any field-
induced phase between the zigzag and polarized phases on
the classical level [73], a candidate field-induced classical
phase that is nearby in parameter space would be the “AF
vortex” phase of Ref. [39]. Then, linear spin-wave theory
within the QPM would however predict a gap closing at
q = K upon reaching the AF vortex phase coming from high
fields, which is inconsistent with the dynamical response we
observe within ED for HRuCl upon reaching the IP (Appendix
B). We therefore find that the behavior of HRuCl under a [111]
field in ED is inconsistent with either classical scenarios;
an intermediate ordered phase or a direct transition between
zigzag and polarized [73].

Our results indicate that the IP is present in α-RuCl3 for
strictly out-of-plane [111] fields. The IP is therefore unlikely
to be linked to various experimental observations in α-RuCl3
for fields tilted significantly away from [111] and in-plane
fields that have been interpreted in terms of a field-induced
quantum spin liquid independently [14–16,18,20].

IV. SUMMARY AND OUTLOOK

We have presented a detailed numerical study of Kitaev-
based models in both uniform and general noncollinear fields,
which provide a broad new theoretical realm to probe the
phenomenology of this model. By exploiting the large number
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FIG. 11. Phase diagrams of H (ξ, h) from Eq. (20) for uniform fields with directions between b = [11̄0] (in-plane) and c∗ = [111] (out-
of-plane). ξ = 0 corresponds to the hidden AFM Kitaev point H̃K of Eq. (18), and ξ = 1 to the α-RuCl3 model HRuCl. The labels on the
left axes show the energy scale of the Zeeman term as it enters Eq. (20). The labels on the right axes show the corresponding external field
strengths B = Cμ−1

B |g−1h| in tesla, when converting to the energy scale of α-RuCl3 and assuming the anisotropic g tensor g of Ref. [64]. Phase
boundaries are determined by peaks in ∂2

g E0 and in χg. The quantum paramagnetic (QPM) phase is smoothly connected to the fully polarized
state of the h → ∞ limit. (a), (b) Field along [11̄0], which corresponds to the crystallographic b axis of α-RuCl3. (c), (d) h tilted from b
towards [111] = c∗ by 30◦. Assuming the mentioned g tensor, this corresponds to an external B-field tilted by ∼45◦. (e), (f) h ‖ [111] = c∗.

of mutually commuting local operators in the Kitaev model
at zero field, we showed that dualities can be established
between different field configurations and signs of the Kitaev
coupling. Making use of these, we discuss the magnetic field-
induced phases (including the novel phase �1) with the help of
various (newly studied) correlators. For cases where the field
does not directly couple to any of the classically degenerate
spin configurations, we find the emergence of a field-induced
intermediate phase (IP), related to previous studies of the
AFM Kitaev model under a uniform field.

The existence of such an IP lying between the KSL and
field-polarized states is deeply connected to the separation of
energy scales between the Kitaev coupling K and the zero-
field two-flux gap �f at zero field. For fields incompatible
with a classical ground state, K controls the scale at which
the classical degeneracy is lifted. In contrast, �f sets the sta-
bility of the low-field Kitaev spin liquid. Consistent with this
picture, we found, on the one hand, that the IP is remarkably
unstable towards field configurations that couple to a classical
ground state, and, on the other hand, that for both the FM and
AFM signs of the Kitaev interaction, the IP is stable for an
extensive number of noncollinear fields related to one another
via local duality transformations.

Interestingly, the locality of such dual transformations
implies that fields inducing the IP need not be periodic
with respect to translation. As a result, the momentum-
space dynamical spin-structure factor—relevant for INS
and ESR experiments—cannot represent a unique probe
of the IP or related phase transitions. Instead, we stud-
ied the dynamical bond correlations—relevant for RIXS
and Raman scattering measurements—and dynamical flux-
flux correlations, which remain invariant under the dual
transformations.

Independent of the field configuration, the field-induced
phase transitions out of the KSL phase occur via proliferation
of fluxes. However, we found that the suppression of the KSL
occurs at sufficiently low fields that the dynamical timescale
of the field-induced fluxes ∼h̄/�f remains large compared to
the timescales associated with the matter fermion dynamics
∼h̄/K . The separation of energy scales therefore also man-
ifests as persistent plaquette operator correlations in phases
adjacent to the KSL (including both the IP and asymptoti-
cally polarized phase). The observed correlations imply that a
picture of effective couplings between slow dynamical fluxes
mediated by the fast c-fermions may be applicable despite
being outside the KSL.
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Finally, to establish a relevance of the IP for real materials,
we have studied models in the vicinity of a hidden Kitaev
point, which hosts analogues of the AFM KSL and the field-
induced IP under uniform fields. This point features large off-
diagonal exchange couplings � > 0 and ferromagnetic Kitaev
interactions K < 0 found in real materials. Surprisingly, we
found that the IP extends in a large region of interaction pa-
rameter space and can be field-induced in models with zigzag
order, including (J, K, �, J3) models relevant for α-RuCl3.
For α-RuCl3 our results predict that the IP is present for
strong out-of-plane [111] fields. This establishes a connection
between experimental studies of real materials and previous
theoretical works on the IP. While we have focused our
discussion on an α-RuCl3-based model, the stability of the IP
beyond the hidden Kitaev point may also extend to A2IrO3

(A = Na, Li) materials. We hope that this work motivates
future studies probing such questions.
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APPENDIX A: SYMMETRIES AND DUALITIES AT ZERO
AND FINITE FIELDS

In this Appendix, we review the construction of general
symmetries of the Kitaev model. An important feature of
the Kitaev Hamiltonian at zero field is the existence of a
macroscopic number of mutually commuting Wilson loop
operators {WL} that also commute with HK . On a torus, any
combination of loops {L} can be constructed as products of
plaquette operators {Wp} and large loop operators running
around the periodic boundaries, i.e., WL = Wp1Wp2 . . .Wpn .
Together, such loop operators form the generators for local
symmetry transformations e

i
2 αWL HK e− i

2 αWL = HK with 0 �
α < 2π . For a Hamiltonian H = HK + H1, all perturbations
H1

′ = e
i
2 αWL H1K e− i

2 αWL are formally equivalent to H1 for all
L and α. For our purpose, we focus on the specific case
α = π , for which spin operators O = Sμ

i Sν
j S

ρ

k . . . transform
as O′ = ±O, depending on whether they commute (+) or
anticommute (−) with WL. The honeycomb lattice is thus
divided into four sublattices, according to the transformation
associated with each site:

WL : (x′, y′, z′) =

⎧⎪⎨
⎪⎩

(x, y, z), sublattice A
(x,−y,−z), sublattice B
(−x, y,−z), sublattice C
(−x,−y, z), sublattice D

. (A1)

Transformations generated by specific loop operators WL

are shown in Figs. 12(a)–12(d). A specific example, shown
in Fig. 12(d), is the “Klein” transformation employed in
Refs. [57,63,74], which is associated to the operator WKlein

given by the product of plaquette operators on 1
4 of the

hexagonal plaquettes [Fig. 12(c)]. As noted above, the pure
Kitaev Hamiltonian is mapped to itself by all such transforma-

A

B

C

D

x z
y

(a) (b)

(c) (d)

FIG. 12. Construction of general four-sublattice symmetry trans-
formations for the Kitaev model with α = π . (a) Example of a loop
L. The associated operator WL generates the symmetry transforma-
tion shown in (b). The specific operator WKlein depicted in (c) leads
to the “Klein” transformation (d) employed in Refs. [57,63,74].

tions, preserving the sign of the coupling (K ′ = K). However,
the operators associated with a magnetic field generally do
not commute with WL. Let us consider a general field term
described by

Hf = −
∑

i

hx
i Sx

i + hy
i Sy

i + hz
i S

z
i , (A2)

where hμ
i may take different values at each site. The equiva-

lency of all combinations of local fields WLHfWL generated by
different L has several consequences.

In Sec. II, we discussed the appearance of the gapless IP in
the AFM Kitaev model for uniform [111] fields Hf = H[111],
where hx

i = hy
i = hz

i = h. By symmetry, equivalent states are
also induced by all nonuniform field configurations described
by WLH[111]WL. For all such fields, the product of γ compo-
nents of the local fields on a γ bond is positive, i.e. hγ

i hγ
j > 0.

Since all IP states appearing for H = HK + WLH[111]WL are
smoothly connected by continuous unitary transformations,
they belong to a common intermediate-field phase. However
these transformations do not commute with the spin opera-
tors, so that the dynamical spin-structure factor S (k, ω) does
not provide a unique characterization of the common IP. In
contrast, Sγ

i Sγ
j and Wp commute with all WL, and therefore

IX(k, ω) and W (k, ω) reflect more intrinsic characteristics
that are common across all equivalent IP states.

A similar approach can be used to establish correspon-
dence between the FM and AFM Kitaev models. We define
P3, which permutes the spin components (x, y, z) → (y, z, x)
on every site. Combining this with the operator WKlein [see
Fig. 12(c)] leads to G ≡ e

i
2 πP−1

3 WKleinP3 , that commutes with
all Wp, but anticommutes with all bond operators Sγ

i Sγ
j . As

a result, GHKG−1 = −HK , providing a duality transformation
that relates the AFM and FM Kitaev models at zero field (i.e.,
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FIG. 13. Dynamical spin-structure factor of H (ξ = 1, h)
[Eq. (20)] under a [111] field. Poles obtained via ED were broadened
by 0.05.

K ′ = −K). The transformation in real space is

G : (x′, y′, z′) =

⎧⎪⎨
⎪⎩

(x, y, z), sublattice A
(−x, y,−z), sublattice B
(−x,−y, z), sublattice C
(x,−y,−z), sublattice D

(A3)

with the sublattice pattern shown in Fig. 12(d). Under the
transformation G, a uniform [111] field H[111] becomes a
four-sublattice “tetrahedral” field GH[111]G−1, with local fields
hi oriented along the [111], [1̄11̄], [11̄1̄], or [1̄1̄1] directions
as shown in Fig. 8.

If this tetrahedral field is applied to the AFM Kitaev model,
it acts as a uniform field in the FM model; the tetrahedral field
directly couples to one of the classically degenerate states and
opens a gap immediately after the suppression of the KSL.

Conversely, if the tetrahedral field is applied to the FM Kitaev
model, it acts as a uniform field in the AFM model, yielding a
gapless intermediate phase. This IP in the FM Kitaev model is
continuously connected to the IP of the AFM Kitaev model
via the unitary transformation G, and therefore represents
the same phase. For field configurations that are dual to one
another, the FM model displays precisely identical dynamical
flux-flux and bond-bond correlations to those observed in the
AFM model. This follows from the fact that G commutes with
Wp and anticommutes with Sγ

i Sγ
j .

APPENDIX B: DYNAMICAL SPIN-STRUCTURE FACTOR
OF HRuCl UNDER A [111] FIELD

In Fig. 13, we show the DSSF of H (ξ = 1, h) [Eq. (20)]
under a [111] field, which corresponds to the HRuCl model of
Eq. (19). At zero field, the response shows sharp low-energy
single-magnon excitations at q = M, and a broad scattering
continuum at q = � [65]. Upon applying the [111] field, the
q = M magnon does not shift in energy, but it looses signifi-
cant intensity upon increasing the field towards hc1. At q = �,
the broad range of excitations at zero field narrows upon
increasing h, with large amounts of spectral weight shifting to
lower energies. In the IP at hc1 < h < hc2, the DSSF shows
most spectral weight at q = � and energies ω � 0.8 meV,
originating from a highly increased low-energy density of
states in the IP, that extends down to lowest energies near ω ∼
0. These excitations show no distinct field-dependence within
the IP region, which is in sharp contrast to the excitations in
the QPM at h > hc2. The low-energy q = � excitation in the
QPM shows a linear field dependence with slope dω/dh ≈
�S = 1 as expected for a single magnon in the asymptotically
polarized QPM state.
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