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Quantum anomalous Hall effect and Anderson-Chern insulating regime in the noncollinear
antiferromagnetic 3Q state
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We investigate the emergence of both quantum anomalous Hall and disorder-induced Anderson-Chern
insulating phases in two-dimensional hexagonal lattices, with an antiferromagnetically ordered 3Q state and
in the absence of spin-orbit coupling. Using tight-binding modeling, we show that such systems display not
only a spin-polarized edge-localized current, the chirality of which is energy dependent, but also an impurity-
induced transition from trivial metallic to topological insulating regimes, through one edge mode plateau. We
compute the gaps’ phase diagrams and demonstrate the robustness of the edge channel against deformation and
disorder. Our study hints at the 3Q state as a promising building block for dissipationless spintronics based on
antiferromagnets.
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I. INTRODUCTION

Since control of the antiferromagnetic order parameter by
electrical means was demonstrated [1,2], antiferromagnets
have undoubtedly emerged as credible candidates for the
replacement of ferromagnets as the active and upgrading spin-
dependent element on which spintronic devices are based.
With their numerous outstanding properties, they provide a
rich playground to study unique magnetic properties com-
bined with unconventional transport phenomena [3,4]. In par-
ticular, the interplay between electronic transport, topological
properties of the ground states (in reciprocal space), and an-
tiferromagnetic order in real space opens auspicious perspec-
tives in the field of topological antiferromagnetic spintronics
[5]. Indeed, although antiferromagnets break time-reversal
symmetry locally, they are invariant under the combination
of spin rotation and crystal symmetry operation (e.g., lat-
tice translation in G-type collinear antiferromagnets, mirror
symmetry in coplanar kagome antiferromagnets, etc.), which
provides an analog to Kramers’s degeneracy theorem. A direct
consequence is that antiferromagnetism preserves the gapless
states of topological materials such as topological insulators
[6,7] and Weyl semimetals [8,9].

The search for topological effects has been particularly
fruitful in the context of noncollinear antiferromagnets. For
instance, the anomalous Hall effect in noncollinear but
coplanar antiferromagnets was recently observed [10,11]
and attributed to the coexistence of the spin Berry phase
of the electronic ground states in the presence of spin-
orbit coupling (SOC) and symmetry breaking due to the
noncollinear spin texture [12,13]. Along similar lines of
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thought, large longitudinal and transverse spin currents in
noncollinear coplanar antiferromagnets have also been re-
ported [14]. Because they do not necessitate SOC, non-
collinear, noncoplanar antiferromagnets constitute an appeal-
ing platform to sustain topological and trivial states and
realize phase transitions between them. As a matter of fact,
noncoplanar magnetic moments distributed on a lattice pro-
mote the emergence of the spin Berry phase even in the
absence of SOC [15] and can experience topological phase
transitions [16,17].

Topological phase transitions in condensed matter have
been intensively scrutinized over decades [18,19]. Such tran-
sitions are accompanied by the emergence of localized edge
states unaffected by disorder and immune to backscattering,
resulting in quantum (spin or anomalous) Hall effects in
topological insulators [20]. The quantum anomalous Hall
(QAH) effect is characterized by frictionless edge states in
the absence of magnetic field. One way to fulfill this quantum
state is to start with a time-reversal-symmetric (Z2) topo-
logical insulator displaying the quantum spin Hall effect and
break time-reversal symmetry by introducing magnetic order
by magnetic doping [21,22] or surface hybridization with a
magnetic insulator [23,24]. This method applies to both strong
and weak topological insulators (e.g., see Ref. [25]). Alterna-
tively, Haldane showed that such a state can be obtained by
engineering the band structure in such a way that conduction
electrons experience a local, staggered magnetic flux that
vanishes globally [26,27]. Such a situation can be achieved
with the Kondo-lattice model on a triangular lattice [28,29]
or with the double-exchange model on a kagome lattice
[30,31] where noncollinear, noncoplanar antiferromagnetism
is stabilized and provides both nonvanishing Berry curvature
and orbital gap. Nonetheless, only a limited number of works
have focused on such materials [17,29,30], and a detailed
understanding of quantum anomalous transport, the nature of
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FIG. 1. (a) 3Q spin structure in a two-dimensional triangular
lattice. (b) Leads plus system: the four magnetic atoms of the motif
are in green, red, blue, and yellow. The thick black lines and the
thin cyan lines are the first and second nearest-neighbor couplings,
respectively. The pink regions refer to the leads. L and W indicate
the length and the width of the system of study.

the edge states, and their robustness against disorder is still
lacking.

In the present work, we exploit the noncollinear, noncopla-
nar antiferromagnetic texture in the absence of spin-orbit cou-
pling to realize topologically protected edge transport. Taking
the two-dimensional triangular lattice with 3Q spin texture
as a prototype model, we show that the spin-polarized QAH
effect is achieved without SOC in the zero-net-magnetization
material, in agreement with previous predictions [17,29]. The
chirality of the topological edge modes depends on the gap
in which the Fermi energy is located. They are shown to be
robust against disorder and unaffected by geometrical defects
inside the lattice. We also investigate the rich next-nearest-
neighbor hopping phase diagram for the topological band
gaps, opening around the high-symmetry Dirac points. Fi-
nally, we demonstrate that gradually tuned disorder can drive
the 3Q antiferromagnetic metallic state into a topological
Anderson-Chern insulating phase [32,33], characterized by a
conductance plateau of e2/h.

II. TRIANGULAR LATTICE MODEL

Let us start with a two-dimensional hexagonal lattice
underpinning the peculiar 3Q antiferromagnetic structure as
depicted in Figs. 1(a) and 1(b): its three-dimensional chiral
spin configuration, equivalent to a superposition of three
spin spirals, is noncollinear, noncoplanar, and topologically
nontrivial in real space while exhibiting no overall net
magnetization. Such a magnetic state was predicted using ab
initio calculations by Sakuma [34] in the γ -FeMn disordered
alloy and by Kurz et al. [35] at the Mn/Cu(111) interface
even in the absence of SOC. In the latter work, the authors
attributed the onset of the 3Q state to the so-called four-spin
interaction, i.e., an interaction involving all four magnetic
moments of the magnetic unit cell [see Eq. (1)]. Further
investigations in the context of the Kondo lattice and Hubbard
model have indeed confirmed the thermodynamic stability
of such a 3Q spin texture in the triangular lattice [28,29,36],
pointing out the importance of itinerant electron contributions.
To confirm the stability of the 3Q spin texture, we use
atomistic spin modeling on a triangular lattice of 60 × 60 sites
with an extended Heisenberg spin Hamiltonian of the form

H = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j

+ J4

∑
i jkl

[(Si · S j )(Sk · Sl )

+ (S j · Sk )(Sl · Si ) − (Si · Sk )(S j · Sl )], (1)

FIG. 2. The noncollinear 3Q magnetic structure of a triangular
lattice with four-spin exchange interaction.

where Si and S j are normalized magnetic moment directions
of sites i and j, respectively. The first two terms in Eq. (1)
are the nearest- and next-nearest-neighbor exchange energies
with interactions J1 and J2, respectively. The last term is the
four-spin exchange energy with J4 as the four-spin exchange
interaction [35]. All these interactions are antiferromagnetic.
The magnetic properties of atomic spins are calculated
using an atomistic spin simulation technique [37]. The
spin dynamics is described by numerically solving the
Landau-Lifshitz-Gilbert equation of the form

∂Si

∂t
= − γ

1 + α2

[
Si × Heff

i + αSi × (
Si × Heff

i

)]
, (2)

where γ = 1.76 × 1011 T−1 s−1 is the absolute value of the
gyromagnetic ratio, α = 0.1 is the intrinsic Gilbert damping,
and Heff

i = −(1/μs)∂SiH is the effective field experienced
by the magnetic moment Si, with μs being the magnetic
moment magnitude. To obtain the 3Q state, we consider a
random spin configuration as an initial state, impose periodic
boundary conditions, and scan through the parameter space
(J2/J1, J4/J1). The time evolution of Eq. (2) is solved using
the Runge-Kutta fourth-order scheme, and the system is
simulated for 10 ns to achieve energy convergence. The 3Q
spin configuration is obtained for J2 = 0.3J1 and J4 = 0.08J1,
as displayed in Fig. 2.

Now that the 3Q magnetic texture is confirmed as the
ground state, let us consider electronic transport. The unit
cell of the 3Q antiferromagnet has four chemically identical
sites, tagged α, β, γ , and δ, as sketched in Fig. 3(a). The
unit vectors of the magnetic moments on these sites fulfill
Sα + Sβ + Sγ + Sδ = 0. Remarkably, the associated spin chi-
rality [16] reads κ = Sα · (Sβ × Sδ ) = −Sα · (Sβ × Sγ ) �= 0.
In other words, the nonvanishing Berry flux threading the
elementary trimer formed by neighboring sites [e.g., α, β, δ

sites in Fig. 3(a)] is compensated by the one threading the
secondary trimer that involves one next-nearest neighbor (e.g.,
α, β, γ ), so that the overall Berry flux vanishes over the
magnetic cell, like in Haldane’s model [26]. The associated
effective magnetic flux [17] induces the anomalous Hall effect
in frustrated ferromagnets [15], skyrmionic materials [38,39],
and also 3Q antiferromagnets with no overall magnetism [29].

The two-dimensional hexagonal lattice, with the primitive
cell formed by a1 = (1, 0)a0 and a2 = (1/2,

√
3/2)a0, and

the first Brillouin zone with the reciprocal lattice spanned by
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FIG. 3. (a) The unit cell with Sα = (0, 0, 1), Sβ =
(−2

√
2/3, 0, −1/3), Sγ = (

√
2/3, −√

6/3, −1/3), and
Sδ = (

√
2/3,

√
6/3, −1/3), with the first Brillouin zone. (b)

Band structure along the contour � → K → M → � for the model
in Eq. (4) with tn = 0 and 	 = 3t . (c) Bulk four-band structure
plotted on [−1.5π, 1.5π ] × [−1.5π, 1.5π ]. The circled numbers
refer to the corresponding gap number: for example, the circled 1
refers to gap 1 in the text. (d) Trace of the Berry curvature tensor

Tr[�z(k)], defined in Eq. (7), of the lowest degenerate band in (c)
plotted within the same intervals.

b1 = (2π,−2π/
√

3)/a0 and b1 = (0, 4π/
√

3)/a0 are both
depicted in Fig. 3(a). Here a0 is the lattice constant taken
as a unit of length in the following. The single-electron
Hamiltonian under the tight-binding approximation reads

Ĥ =
∑

i

ĉ†
i (εi + 	σ̂ · Si )ĉi − t

∑
〈i, j〉

ĉ†
i ĉ j − tn

∑
〈〈i, j〉〉

ĉ†
i ĉ j, (3)

where ĉ†
i = (c†

i,↑, c†
i,↓), with c†

i,σ being the creation operator
for an electron with spin σ on site i, σ̂ is the vector of the
Pauli matrices, 	 is the s-d exchange interaction between the
itinerant spin and the local magnetic moment, and t and tn
are the nearest-neighbor and next-nearest-neighbor hopping
parameters, respectively. Accordingly,

∑
i runs over all the

sites of the crystal, while
∑

〈i, j〉 and
∑

〈〈i, j〉〉 run over the
nearest-neighbor and the next-nearest-neighbor pairs, respec-
tively. The eigenvalue problem can be recast in momentum
space by Fourier transforming the real-space Hamiltonian Ĥ
as Ĥk|unk〉 = εnk|unk〉, where Ĥk is the k-dependent Hamil-
tonian, εnk is the eigenenergy of the nth band, and, finally,
|unk〉 is the periodic part of the Bloch wave function. In the
basis of the spinor ψ

†
k = (ĉ†

αk, ĉ†
βk, ĉ†

δk, ĉ†
γ k ), the Hamiltonian

in momentum space simply reads

Ĥk =

⎡
⎢⎢⎢⎣

	σ̂ · Sα L01̂2 L11̂2 L21̂2

L01̂2 	σ̂ · Sβ L21̂2 L11̂2

L11̂2 L21̂2 	σ̂ · Sγ L01̂2

L21̂2 L11̂2 L01̂2 	σ̂ · Sδ

⎤
⎥⎥⎥⎦, (4)

with L0 = −2t cos( 1
2 k · a1) − 2tn cos[ 1

2 k · (a1 − 2a2)], L1 =
−2t cos[ 1

2 k · (a1 − a2)] − 2tn cos[ 1
2 k · (a1 + a2)], and L2 =

−2t cos( 1
2 k · a2) − 2tn cos[ 1

2 k · (2a1 − a2)].
To conclude this section, let us indicate how the non-

collinear magnetic moments generate an effective spin-orbit

coupling. It is possible to rewrite Eq. (4) in the frame of the
local quantization axes of the individual sites of the magnetic
unit cell. In other words, by rewriting H̃k = Û †ĤkÛ , with

Û =

⎡
⎢⎢⎣

	σ̂ · nα 0 0 0
0 	σ̂ · nβ 0 0
0 0 	σ̂ · nγ 0
0 0 0 	σ̂ · nδ

⎤
⎥⎥⎦, (5)

where ni = (z + Si )/|z + Si|, we obtain

H̃k =

⎡
⎢⎢⎣

	σ̂z t̃αβ t̃αγ t̃αδ

t̃βα 	σ̂z t̃βγ t̃βδ

t̃γα t̃γ β 	σ̂z t̃γ δ

t̃δα t̃δβ t̃δγ 	σ̂z

⎤
⎥⎥⎦. (6)

In this representation, the diagonal part of the Hamiltonian is
spin diagonal (no spin mixing occurs on the magnetic sites),
and the information of the spin texture has been transferred to
the hopping matrix elements t̃i j . Explicitly, t̃i j = ti j[ni · n j +
iσ̂ · (ni × n j )], where ti j is the off-diagonal matrix element of
Eq. (4) at position (i, j). In other words, the hopping matrix
elements become complex and spin dependent, mimicking
the action of spin-orbit coupling and promoting anomalous
transport.

III. SPIN BERRY PHASE INDUCED ANOMALOUS
TRANSPORT

A. Topological edge states

The band structure along the high-symmetry point contour
and its three-dimensional version over the whole Brillouin
zone are displayed in Figs. 3(b) and 3(c), respectively. There
are four doubly degenerate bands, as dictated by Kramers’s
degeneracy theorem. Indeed, the four magnetic moments are
oriented towards the four corners of a tetrahedron, and per-
forming a rotation R within this tetrahedron is equivalent to
performing a translation Ta in the crystal lattice. Therefore,
the operation O = RTa is a symmetry of the magnetic system.
Upon time-reversal operation T , the combined operator T O
is antiunitary, (T O)2 = −1, implying double degeneracy of
the bands. Besides the antiferromagnetic gap appearing in the
middle (denoted gap 2), two additional gaps are obtained in
Figs. 3(b) and 3(c), referred to as gap 1 for the lower one and
gap 3 for the upper one.

As mentioned in the Introduction, the origin of the QAH
effect is rooted in the existence of a nonvanishing k-space
Berry curvature defined as �(k) = i〈∇ku(k)| × |∇ku(k)〉 for
a nondegenerate state. In the case of band degeneracy, the
Berry curvature is not a vector anymore but adopts a tensorial
form [40,41]. As a matter of fact, the time evolution of the
system entails the occurrence of adiabatic transitions between
states of the same subspace, and therefore, the Berry curvature
tensor is constructed by all the wave function projections
between the elements of the same subspace,

�i j (k) = i〈∇kui(k)| × |∇ku j (k)〉
+ i

∑
l∈ζ

〈ui(k)|∇kul (k)〉 × 〈ul (k)|∇ku j (k)〉, (7)
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where ζ is the degenerate subspace. The second term encodes
the signature of the non-Abelian topology of the covariant
tensor. In this noncollinear, noncoplanar antiferromagnet, the
bands are twofold degenerate and hence, the Berry curvature
tensor for each degenerate band is a 2 × 2 nonvanishing ma-
trix. As a matter of fact, close to gaps 1 and 3, a nonvanishing
k-space Berry curvature tensor emerges around the K points
[see Fig. 3(d)], enabling the onset of gapless chiral states at
the edges. The physical origin of the Berry curvature is the
exchange interaction that makes the spin of the conduction
electrons align with the local moments, inducing a Berry cur-
vature which gives rise to an anomalous velocity [15,17]. The
Berry curvature tensor is not gauge invariant, and this leads
to the appearance of jumps in the eigenvalues profile of the
Berry curvature tensor when the gauge is not suitably chosen
[41]. However, these jumps do not prevent from defining
observables which are gauge invariant such as the determinant

det[�(k)] and the trace Tr[�(k)]. In the insulating regime,
the anomalous Hall conductivity σxy equals the integral of

Tr[�(k)] on the first Brillouin zone,

σxy = −(e2/h̄)
∑

n

∫
BZ

d2k/(2π )2Tr[�n(k)] fn(k) (8)

= −(e2/h)C, (9)

where fn(k) is the Fermi distribution for the degenerate states,
n is the index of the degenerate subspace, and C is the Chern
number. The nonvanishing quantized σxy in gaps 1 and 3 is the
signature of the nontrivial topology of the 3Q state which is
exposed by the presence of edge states. This property is absent
in collinear as well as coplanar antiferromagnets.

For further insight into the character of these edge currents,
we use a suitable tight-binding code for quantum transport
[42] to build a translationally invariant nanowire along the x
direction while fixing the width W to 50a0 in order to ensure
a large number of transport modes N . The calculations are
performed at zero temperature in the ballistic regime. The
one-dimensional band structure is plotted in Fig. 4(a), with
the parameters of the system being tn = 0.2t and 	 = 3t . This
band structure exhibits four metallic regions characterized by
a large number of bands and separated by two topological gaps

FIG. 4. (a) The one-dimensional band structure with the emer-
gence of the gapless edge states seen in gaps 1 and 3, with tn = 0.2t ,
	 = 3t . The black arrow indicates the trivial edge states discussed
in the main text. (b) Close-up of the corresponding conductance (in
units of e2/h).

FIG. 5. (a) The unidirectional chiral edge current in the system
(for an energy lying in gap 1 with a length and width of L = W =
50a0 and tn = 0.2t , 	 = 3t). The black arrows show the direction
of the current. (b), (c), and (d) The spin polarization along x, y, and
z, respectively: the charge current follows the net orientation of the
edge spins.

(gap 1 and gap 3) where the conducting edge channels clearly
appear and one trivial gap in the middle of the band structure
(gap 2). Figure 4(b) displays the corresponding conductance
G = N × e2/h across the band structure. In the metallic re-
gions, the large conductance reflects the large number of
transport modes of the system (N 
 1). More interestingly,
the conductance vanishes in the trivial gap (gap 2), while
it saturates to e2/h in the topological gaps (gaps 1 and 3),
reflecting the presence of a single chiral edge mode (N = 1).
We notice that the conductance reaches 2e2/h around the
transport energy E = 2.5t . This peculiarity is associated with
the emergence of trivial, nonchiral edge states at the verge
of the metallic regime, as indicated by the black arrow in
Fig. 4(a).

To better understand the nature of the edge mode giving
rise to the quantum conductance, we disconnect the right lead
and compute the spatial profile of the local charge and spin
currents for electrons coming from the left lead and bouncing
back to it. The access to the local charge and spin currents
flowing between any two sites i and j of a discretized lattice
is a well-established procedure involving the hopping matrix
between the two sites. From the real-space wave function
ψi, j as well as the hopping Hamiltonian Ĥi j between sites
i and j, the local spin current is naturally defined as Ji j

σ̂ =
i(ψ†

j Ĥ†
i j σ̂ψi − ψ

†
i σ̂Ĥi jψ j ). The various components of the

spin current are denoted Jσx, Jσy, and Jσz, and the charge
current Jσ0 is obtained by replacing σ̂ by 1̂2.

Figure 5(a) shows the local charge current Jσ0 when the
operating energy is in the lower gap, gap 1: the unidirectional
chiral edge state is propagating clockwise from the top edge
to the bottom one, demonstrating the realization of the QAH
effect in the absence of the spin-orbit coupling. On the other
hand, when the Fermi energy of injected electrons is within
the upper gap, gap 3, the same QAH effect is observed.
In gap 3, however, the single propagating edge mode has
a chirality opposite to the one from its gap 1 counterpart
(counterclockwise from the bottom edge to the top one).
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The associated spin currents Jσx,y,z are plotted in
Figs. 5(b)–5(d), which clearly show that the charge current
displayed in Fig. 5(a) is spin polarized along the net mag-
netization of the edge line. On the top edge, we chose the
magnetic moments at the boundary to be Sγ and Sδ [Fig. 3(a)].
Therefore, the net magnetization at this edge is directed along
Sγ + Sδ = (

√
2/3, 0,−2/3). As a result, the spin current

polarized along x and z, while Jσy = 0. Furthermore, Jσx

has the same direction as Jσ0, whereas Jσz is opposite.
On the right edge, we chose the magnetic moments at the
boundary to be Sβ and Sγ [Fig. 3(a)], which provides a net
magnetization on the right edge directed along Sβ + Sγ =
(−√

2/3,−√
6/3,−2/3). The three negative components are

seen in the spin polarization of the charge current on the right
edge. Finally, the bottom edge has a net magnetization of
Sα + Sβ = (−2

√
2/3, 0, 2/3), as directly reflected in the spin

polarization displayed in Figs. 5(b)–5(d).

B. Engineering the band structure

While each nearest-neighbor triangular plaquette bears a
spin Berry phase κ = Sα · (Sβ × Sδ ), turning on the next-
nearest-neighbor hopping tn creates new triangular plaquettes
with opposite flux Sα · (Sβ × Sγ ) = −κ [α, β, δ, and γ follow
a counterclockwise circular ordering, as seen previously in
Fig. 3(a)]. Therefore, by tuning the relative strength between
the nearest-neighbor hopping t , the second-nearest-neighbor
hopping tn, and the exchange coupling 	, one can modify
the emergent magnetic flux threading the magnetic unit cell
and thereby engineer the band structure and its properties.
The conditions on 	 and tn (both in units of t) to obtain a
topologically nontrivial system are summarized in Figs. 6(a)
and 6(b): the regions where a topological gap (gaps 1 and 3)
exists are on a colored scale; the darker the color is, the larger
the gap is. The white color in the phase diagrams denotes the
absence of gap for the set of parameters concerned. The gaps
plotted in the phase diagram are global ones; they represent
the difference between the lowest energy of the nth band and
the highest energy of the (n − 1)th band as computed over the
whole Brillouin zone.

The size of gap 1 at K = (±4π/3, 0) is displayed in
Fig. 6(c) for different exchange couplings 	 as a function of
tn: remarkably, gap 1 closes at tn = 0.5t , which corresponds to
the appearance of a Dirac cone at K . This can also be viewed
in Fig. 6(a), at the dashed line. When tn = 0.5t , global gap
3 vanishes [see dashed line in Fig. 6(b)]. However, at this
condition there is another Dirac cone at K and a local and
direct band crossing around the same energy range as gap
3. As a matter of fact, by expanding the energy dispersion
close to the K point and around tn ≈ 0.5t , we obtain for these
two different Dirac cones E±

K (q) = ±	 ±
√

3
4 t |q|a0, and |q|

is the norm of the momentum q around the K point. Notice
that Fig. 6(c) shows a finite local gap when 	 = 0.5t and
for −t < tn < 0.5t , whereas Fig. 6(a) denies the existence
of a global gap for these conditions. The bands are, in fact,
overlapping and cross indirectly at different k points of the
Brillouin zone, therefore ensuring the existence of a local gap
despite the absence of global gaps.

Another remarkable feature appears in gap 1 when tn → t .
This time, the Dirac cones emerge at M = (π, π/

√
3), as

FIG. 6. (a) and (b) Phase diagrams for global topological gaps 1
and 3 (in units of t). 	 and tn are in units of t . (c) Local gap 1 at
K = (4π/3, 0) as a function of tn and for four 	. The Dirac point
appears at K for tn = 0.5t .

seen in the band structure in Fig. 7(a), located at the energy
E−

M . The Berry curvature calculation of the lowest-energy
band, depicted in Fig. 7(b), confirms M is the Dirac point
around which the finite curvature is concentrated. Global gap
3 remains nonexistent for tn → t , as predicted in the phase
diagram [Fig. 6(b)], but there is a Dirac-like crossing point at
the energy E+

M , as indicated in Fig. 7(a).
The position of the Dirac cones in reciprocal space is

dictated by the symmetries of the Bloch states. For instance,
in graphene the Dirac cone must be pinned on the K and K ′
points due to time-reversal symmetry. In our case, the system

FIG. 7. (a) Band structure with tn = 0.9t and 	 = 3t , with the
Dirac point about to appear at M when tn → t . (b) Trace of the Berry

curvature tensor Tr[�(k)] of the lowest band for the same set of
parameters.
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TABLE I. Conditions under which fourfold degeneracy occurs in
the Brillouin zone.

Condition Coordinates

tn = −t �: (0,0)
tn = t/2 K , K ′: (±4π/3, 0)
tn = +t M, M ′: (±π, π/

√
3)

exhibits an analog of Kramers degeneracy but no time-reversal
symmetry. Therefore, if a Dirac cone were to emerge, it would
not need to be pinned on the K point. In fact, Hou and Chen
[43] recently showed that the position of a Dirac cone is
determined by a so-called hidden symmetry. In a nutshell,
Dirac cones appear at the k points that are invariant under this
hidden symmetry and whose eigenstates are doubly degen-
erate. The difficulty lies in identifying this hidden symmetry,
which is not a trivial task. Alternatively, we provide a heuristic
argument based on the structure of the Hamiltonian, Eq. (4).
One (nonunique) way to obtain fourfold degeneracy is to can-
cel the off-diagonal hopping terms, i.e., L1 = L2 = L0 = 0.
Under such a condition, Ĥk becomes block diagonal with two
fourfold-degenerate eigenvalues at ±	. It is worth noticing
that this degeneracy is due to the electronic hopping properties
and not to the form of the magnetic texture. The position of the
degeneracies in reciprocal space can be obtained directly from
the above condition. We find that such degeneracies appear
only at five possible k points and for very specific values of the
next-nearest-neighbor hopping parameter tn. All these points
are high-symmetry points of the hexagonal Brillouin zone and
are summarized in Table I. Following this heuristic argument,
the positions of the fourfold degeneracies are in agreement
with the positions of the Dirac cones obtained numerically in
Figs. 6(c) and 7(a).

C. Robustness and Anderson-Chern insulator

We now turn our attention towards the impact of Anderson
disorder on the topological transport. For this purpose, we
add to Eq. (3) nonmagnetic quenched (immobile) impurities,
which are described as random on-site energies all over the
sample, with a uniform distribution in the range [−Vimp, Vimp]
[39]. The calculated conductance of the strip is averaged
over 1280 disorder configurations. The conductance G as
a function of disorder strength Vimp is plotted in Fig. 8(a)
for three different widths W and setting the value of Fermi
energy in topological gap 1 (tn = 0.2t , 	 = 3t). The quan-
tized conductance is robust for impurity strength ranging from
0 to ∼ 2t , showing that the topological edge currents are
preserved even under relatively strong disorder: the regime
remains ballistic. Above Vimp ≈ 2t , the conducting edge chan-
nel is progressively destroyed, and the conductance starts
decreasing significantly as the reflection probability becomes
larger. As seen in Fig. 8(a), beyond the threshold disorder
strength, the probability of backscattering naturally reduces as
the width of the system becomes larger. The decaying part is
proportional to the density of impurities for sufficiently large
widths (not shown). Figure 8(b) furthermore demonstrates
that these QAH states persist under geometrical deformations
of the system’s edges. In our case, the geometrical defects

FIG. 8. (a) The conductance G in units of e2/h as a function of
the disorder strength when the Fermi energy is in gap 1 (N = 1)
for three different widths W = 20a0, 30a0, 40a0 and for L = 50a0.
(b) Robustness of the unidirectional chiral edge current against the
local geometrical defects.

are multiple-site vacancy defects of different shapes at the
boundaries of the periodic sample. In such a case, the system
is not uniform anymore and displays geometrical singularities
such as holes and geometrical cusps. Despite their presence,
the unidirectional transport enabled by the band topology
is immune to the backscattering due to local defects and
singularities.

Finally, we show that in this metallic 3Q antiferromagnet,
disorder is capable of inducing another nontrivial quantum
phase, termed the topological Anderson-Chern insulator. An-
derson’s theory of localization states that strong disorder can
promote metal-insulator transition [44]. In systems possess-
ing nonvanishing Berry curvature, the renormalization of the
topological effective mass and chemical potential induced by
Anderson disorder favors the emergence of topological edge
states when transiting towards the insulating regime [32,33].
A similar effect is expected in the present case, where the
nontrivial band structure topology is provided by the spin
Berry curvature.

Here we consider the Fermi energy located within the bulk
states, so that in the clean regime it is simply a topologically
trivial metal with a finite number of bulk propagating modes.
The behavior of the normalized conductance between the two
leads as a function of disorder strength is plotted in Fig. 9
(main panel) for three different Fermi energies fixed inside
the bulk band structure (E0, E0 ± ε1,2) and above gap 3.
For the three cases, the conductance, high in the absence of
disorder, decreases progressively upon increasing the disorder
strength. Then, the three conductance curves merge and reach
a plateau at e2/h, featuring the emergence of one chiral trans-
port channel flowing on the system’s edge (bottom edge here
because of the chirality in gap 3). This edge state is perfectly
conducting in spite of the strong disorder, and its quantized
plateau is credited to its topological robustness. Beyond a
certain disorder strength, the three conductance curves drop
to zero.

To complete this study, the inset of Fig. 9 compares
the evolution of the conductance for different next-nearest-
neighbor hopping parameters, demonstrating that tn clearly
influences the range of the disorder-induced QAH plateau by
tuning the band structure topology as discussed above and
renormalizing the effective electronic parameters. The inset of
Fig. 8 shows that tn = 0 has a larger range of disorder-induced
QAH plateaus than tn = 0.3t . This can be attributed to the
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FIG. 9. (a) The conductance G in units of e2/h as a function of
the disorder strength Vimp at fixed chemical potentials lying inside
the bulk states above gap 3 (E0 = 2.65t , ε1 = 0.07t , and ε2 = 0.04t);
the system parameters are W = L = 20a0 and tn = 0, 	 = t . Inset:
Comparison between conductances of two next-nearest-neighbor
hopping parameters, 0 and 0.3t .

existence of global topological gap 3 for tn = 0 [see Fig. 6(b)],
whereas it is absent for tn = 0.3t [this does not rule out local
topological direct gap 3, as seen and discussed in the case
of gap 1 in Fig. 6(c)]. For tn = 0, when the operating Fermi
energy is located right above the upper limit of gap 3 in the
metallic bulk band, the disorder renormalizes the topological
effective mass and the carrier velocity and thus favors the
emergence of the large-range disorder-induced QAH plateau
when the impurity strength increases. On the other hand, there
is no global topological gap 3 for tn = 0.3t , and the range
of impurity strength over which the disorder-induced plateau
appears is much narrower than for tn = 0. We emphasize that
while such a plateau was originally observed in the context of
Z2 topological insulators [32,33], it was associated with the
quantum spin Hall effect. In the present case, the plateau is
associated with the QAH effect, i.e., charge edge currents.

IV. CONCLUSION

We investigated topologically protected edge transport in
noncollinear, noncoplanar antiferromagnetic 3Q texture in the
absence of spin-orbit coupling. The symmetries of the system
ensure an analog to Kramers’s theorem resulting in a dou-
bly degenerate band structure. Accordingly, the noncollinear
magnetic texture promotes a non-Abelian Berry curvature
tensor, which is responsible for the emergence of the chiral
edge states. The chirality of the topological edge modes

depends on the gap in which the Fermi energy is located.
We showed their robustness against disorder and geometrical
defects inside the lattice and the rich phase diagram. Finally,
we demonstrated that gradually tuned disorder can induce
a transition in the 3Q antiferromagnet, from trivial metallic
to topologically insulating regimes, through one edge mode
plateau state characterized by a conductance of e2/h.

While noncollinear coplanar antiferromagnets were re-
cently proposed to host unconventional spin and anomalous
currents [12–14], the present study highlights the potential
of noncoplanar antiferromagnets for topological transport. In
the former, the coexistence of SOC and noncollinear coplanar
antiferromagnetic texture promotes time-reversal symmetry
breaking and nonvanishing Berry curvature. In contrast, in
the latter the noncoplanar antiferromagnetic texture provides
both ingredients, even in the absence of SOC [28–31]. The
emergence of the quantum phase of matter in frustrated
quantum magnets has been the object of intense scrutiny in
the past decades, with a particular focus on their magnetic
phases and elementary excitations [45]. For the experimental
realization of the QAH effect in antiferromagnets, magnetic
pyrochlores [46] displaying an all-in, all-out spin configura-
tion such as Pr2Ir2O7 [47] and Nd2Ir2O7 [48], possibly the
Mott insulator NiS2 [49,50], and layered triangular magnets
such as cobaltites [51], in particular Na0.5CoO2 [52], are
considered as valuable candidates. All these materials exhibit
a 3Q magnetic texture and insulating or bad-metal behavior
and as such could support the QAH effect. We emphasize that
the existence of anomalous electronic transport automatically
implies the presence of the anomalous Nernst effect [53] as
well as magneto-optical activity such as Kerr and Faraday
effects [54]. Finally, the spin Berry curvature responsible for
the electronic anomalous transport is also expected to promote
magnonic anomalous transport [55], a topic we leave to future
studies.
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