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Magnetization dynamics in clean and disordered spin-1 XXZ chains
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We study spin transport in the one-dimensional anisotropic S = 1 Heisenberg model. Particular emphasis
is given to dynamics at infinite temperature, where current autocorrelations and spatiotemporal correlation
functions are obtained by means of an efficient pure-state approach based on the concept of typicality. Our
comprehensive numerical analysis unveils that high-temperature spin transport is diffusive in the easy-axis
regime for strong exchange anisotropies. This finding is based on the combination of numerous signatures,
such as (i) Gaussian spreading of correlations, (ii) a time-independent diffusion coefficient, (iii) power-law
decay of equal-site correlations, (iv) exponentially decaying long-wavelength modes, and (v) Lorentzian line
shapes of the dynamical structure factor. Moreover, we provide evidence that some of these signatures are not
exclusively restricted to the infinite-temperature limit but can persist at lower temperatures as well, where we
complement our results by additional quantum Monte Carlo simulations of large systems. In contrast to the
easy-axis regime, we show that in the case of an isotropic chain, the signatures (i)–(v) are much less pronounced
or even entirely absent, suggesting the existence of anomalous spin transport despite the nonintegrability of the
model. Eventually, upon introducing a random on-site magnetic field, we observe a breakdown of diffusion and
distinctly slower dynamics. In particular, our results exhibit qualitative similarities to disordered spin-1/2 chains
and might be consistent with the onset of many-body localization in the S = 1 model for sufficiently strong
disorder.
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I. INTRODUCTION

Fundamental aspects about the emergence of thermody-
namic behavior in closed quantum many-body systems have
recently attracted rejuvenated interest [1–3]. While there has
been immense progress due to, e.g., theoretical concepts
such as the eigenstate thermalization hypothesis [4–6], large-
scale numerical simulations [7], as well as the advance of
new experimental platforms [8,9], there are still challenging
problems calling for a deeper understanding. For instance, a
particularly intriguing question is whether or not conventional
hydrodynamic transport, i.e., diffusion, can arise in isolated
quantum systems undergoing solely unitary time evolution
[10].

Intimately related to this question is the distinction be-
tween integrable and nonintegrable models. On the one hand,
integrable models are characterized by a macroscopic number
of (quasi)local conservation laws which can lead to anomalous
thermalization [11,12] and ballistic transport [13–15]. As a
consequence, diffusion is generally not expected to occur
in these systems. Nevertheless, while subleading diffusive
corrections have been established within the framework of
generalized hydrodynamics [16–18], there is also clear nu-
merical evidence for diffusive transport in certain integrable
models and parameter regimes [19–27].
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On the other hand, integrability is rather the exception than
the rule and can be broken in numerous ways, e.g., spin-
phonon coupling [28,29], long-range interactions [30,31],
impurities [32,33], or disorder [34]. For such nonintegrable
models, Drude weights are expected to vanish [15] and diffu-
sion might emerge, e.g., due to quantum chaos [35]. Although
much progress in understanding the emergence of diffusive
hydrodynamics has been recently made in the study of ran-
dom unitary circuit models [36–38], observations of genuine
diffusion in realistic systems are comparatively rare [22,39–
43]. In particular, it is still an open question whether diffusion
is indeed a generic feature for all integrability-breaking pertur-
bations (note that counterexamples have been proposed [33]).
Moreover, answering this question is also very challenging
due to the tremendous numerical requirements which arise in
the study of transport in quantum many-body systems, such as
the exponential growth of the Hilbert-space dimension as well
as the necessity to study long timescales.

In this context, we consider yet another nontrivial way
to break integrability, i.e., the consideration of a larger spin
quantum number S > 1/2 [44,45]. In particular, we study spin
transport in the one-dimensional S = 1 XXZ model using an
efficient numerical approach based on the concept of quantum
typicality [46–56]. Summarizing our main results, we unveil
that high-temperature spin transport is diffusive in the easy-
axis regime of large anisotropies. This finding is based on
the combination of numerous signatures, such as (i) Gaussian
spreading of correlations, (ii) a time-independent diffusion
coefficient, (iii) power-law decay of equal-site correlations,
(iv) exponentially decaying long-wavelength modes, and
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(v) Lorentzian line shapes of the dynamical structure factor.
Moreover, we provide evidence that some of these signatures
are not exclusively restricted to the infinite-temperature limit
but can persist at lower temperatures as well, where we
complement our results by additional quantum Monte Carlo
simulations of large systems. In contrast to the easy-axis
regime, we show that in the case of an isotropic chain, the
signatures (i)–(v) are much less pronounced or even entirely
absent, suggesting the existence of anomalous spin transport
despite the nonintegrability of the model. Eventually, upon
introducing a random on-site magnetic field, we observe a
breakdown of diffusion and distinctly slower dynamics. In
particular, our results exhibit qualitative similarities to disor-
dered spin-1/2 chains and might be consistent with the onset
of many-body localization in the S = 1 model for sufficiently
strong disorder.

This paper is structured as follows. We introduce the model
in Sec. II and define the observables in Sec. III. In Sec. IV we
explain our numerical approach, and we present our results in
Sec. V. We conclude and summarize in Sec. VI.

II. MODEL

We study the one-dimensional S = 1 XXZ model with
periodic boundary conditions described by the Hamiltonian

H = J
L∑

l=1

(
Sx

l Sx
l+1 + Sy

l Sy
l+1 + �Sz

l Sz
l+1

)
, (1)

where the Sx,y,z
l are spin-1 operators at lattice site l , J = 1

denotes the antiferromagnetic exchange constant (and sets the
energy scale throughout this paper), L is the number of sites,
and � > 0 is the anisotropy in z direction. In contrast to its
spin-1/2 counterpart, the Hamiltonian (1) is nonintegrable for
S = 1 [45,57].

The spin-1 chain (1) is a fundamental model of low-
dimensional quantum magnetism and is realized to good
quality in numerous materials. As a consequence, its thermo-
dynamic and its dynamical properties have been intensively
scrutinized by theoretical [45,58–63] and experimental tech-
niques [64–69]. Moreover, various modifications to the bare
Hamiltonian (1) have been explored as well, such as, e.g.,
single-ion anisotropy and external magnetic fields [70–74].
While experiments have reported on the existence of diffusive
spin and energy transport in spin-1 compounds [68,69], theo-
retical studies have given contradictory results and argued for
diffusive [60,75,76] but also ballistic transport [77,78]. In this
context, it is important to note that Refs. [75,77,78] have in
fact considered the nonlinear σ model as the effective low-
energy description of Eq. (1), where additional conservation
laws might have an impact on the transport properties.

While the focus of this paper is on spin S = 1, it is
instructive to briefly recap the nature of spin dynamics in
the integrable S = 1/2 version of Eq. (1). On the one hand,
for � < 1, the spin-1/2 chain features a finite Drude weight,
i.e., ballistic transport [14,79,80]. On the other hand, for
� > 1, the Drude weight vanishes and clean signatures of
diffusion have been observed [19–24]. While the situation is
arguably most controversial for � = 1, recent works advocate

the presence of superdiffusion at the isotropic point at high
temperatures [24,81,82]. In this context, it is an intriguing
question if normal diffusion generically occurs in the one-
dimensional XXZ model (i.e., for all �) upon considering
the larger spin quantum number S = 1, both at infinite and
also finite temperatures (see also Ref. [83]). We explore this
question in Secs. V A and V B.

In Sec. V C, we additionally study the spin-1 XXZ chain in
the presence of a random magnetic field, i.e., the Hamiltonian
(1) is modified according to

H = J
L∑

l=1

(
Sx

l Sx
l+1 + Sy

l Sy
l+1 + �Sz

l Sz
l+1 + hlS

z
l

)
, (2)

where the on-site magnetic fields hl ∈ [−W,W ] are drawn at
random from a uniform distribution, with W � 0 setting the
magnitude of disorder.

Once again, let us briefly reiterate the case of S = 1/2.
In fact, the disordered spin-1/2 Heisenberg chain is a central
model to study the disorder-driven transition between a ther-
mal phase (W < Wc) and a many-body localized (MBL) phase
(W > Wc), where Wc is a critical disorder strength [84,85].
This MBL phase is characterized by, e.g., a vanishing dc
conductivity [86,87], area-law entanglement of eigenstates
[88,89], the emergence of a set of local integrals of motion
[90,91], as well as the logarithmic growth of entanglement
with time [92,93]. While ground-state properties of disordered
spin-1 systems have been studied before [94,95], their dynam-
ics has remained largely unexplored. Therefore, the present
paper attempts to elucidate the effect of disorder on spin
dynamics in the anisotropic spin-1 chain.

III. OBSERVABLES

Let us now introduce the quantities which are studied in
this paper. In particular, we discuss how diffusive transport
can be detected based on these quantities.

A. Current autocorrelations and transport coefficients

Since total magnetization is conserved for all choices of �

and W , the spin current j = ∑
l jl is well defined via a lattice

continuity equation, ∂t S
z
l = i[H, Sz

l ] = jl−1 − jl , and takes on
the form [96]

j = J
L∑

l=1

(
Sx

l Sy
l+1 − Sy

l Sx
l+1

)
. (3)

Within linear response theory, transport properties are related
to current-current correlation functions evaluated in equilib-
rium,

〈 j(t ) j〉 = Tr[e−βH j(t ) j]

Z , (4)

where the time argument has to be understood in the Heisen-
berg picture j(t ) = eiHt je−iHt , β = 1/T denotes the inverse
temperature, and Z = Tr[e−βH] is the partition function. For
instance, integration of 〈 j(t ) j〉 yields the time-dependent dif-
fusion coefficient D(t ) [97],

D(t ) = 1

χ

∫ t

0

Re 〈 j(t ′) j〉
L

dt ′, (5)
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where χ = limq→0〈Sz
qSz

−q〉 denotes the isothermal spin sus-
ceptibility. In the case of diffusion, one expects that the current
autocorrelation eventually decays to zero, such that D(t )
saturates at a constant plateau D(t > τ ) ≈ D for times t above
the mean-free time τ . Generally, however, it is important to
note that D(t ) does not distinguish between transport channels
with different behavior [19].

Furthermore, the frequency-dependent spin conductivity
σ (ω) follows from a Fourier transform of the current-current
correlation function,

Re σ (ω) = 1 − e−βω

ωL
Re

∫ ∞

0
eiωt 〈 j(t ) j〉 dt, (6)

and is usually decomposed into a δ function at ω = 0 and a
regular part at ω 	= 0,

Re σ (ω) = Dδ(ω) + σreg(ω), (7)

where D is the so-called Drude weight. If transport is dif-
fusive, we have D = 0 and there is a well-behaved dc con-
ductivity σdc = limω→0 σreg(ω). Moreover, using an Einstein
relation, this dc conductivity is connected to the diffusion
constant according to [97]

D = σdc

χ
. (8)

B. Spin-density correlations

In addition to current dynamics, we also study the dynam-
ics of spatiotemporal correlation functions Cl,l ′ (t ) defined as

Cl,l ′ (t ) = 〈
Sz

l (t )Sz
l ′
〉 = Tr

[
e−βHSz

l (t )Sz
l ′
]

Z . (9)

For the particular case of β → 0, these correlations realize
a δ-peak profile at time t = 0, or in other words, spins at
different lattice sites are uncorrelated at infinite temperature,

Cl,l ′ (t = 0) =
{

χ > 0, l = l ′

0, l 	= l ′ , (10)

with χ = 2/3 for β = 0 and S = 1. For times t > 0, however,
correlations start to build up and the initial δ peak will spread
over the system. Specifically, in the case of diffusion, this
spreading yields a Gaussian density profile [23,42],

Cl,l ′ (t ) ∝ exp

[
− (l − l ′)2

2
(t )2

]
, (11)

where the spatial variance 
(t )2 is generally given by


(t )2 =
L∑

l=1

l2 δCl,l ′ (t ) −
(

L∑
l=1

l δCl,l ′ (t )

)2

, (12)

with δCl,l ′ (t ) = Cl,l ′ (t )/χ and
∑

l δCl,l ′ (t ) = 1. Due to con-
tinuity, this spatial variance is also related to the already-
mentioned diffusion coefficient [98–100],

d

dt

(t )2 = 2D(t ). (13)

Note that Eq. (13) does not require specific assumptions on
the microscopic Hamiltonian H, apart from [H,

∑
l Sz

l ] = 0

and the system being translational invariant. Given a diffusive
process, i.e., D(t ) = D = const., it then follows that 
(t )2 ∝
t . Moreover, this particular scaling of 
(t )2 also implies that
the equal-site correlation Cl,l ′=l (t ) decays as a power law,

Cl,l ′=l (t ) ∝ t−1/2. (14)

Starting from the real-space correlations in Eq. (9), the
respective correlation functions in momentum space follow
from a lattice Fourier transform according to [101]

Cq(t ) = 〈
Sz

q(t )Sz
−q

〉 = 1

L

L∑
l,l ′=1

eiql e−iql ′ 〈Sz
l (t )Sz

l ′
〉
, (15)

=
L∑

l=1

eiql
〈
Sz

l ′+l (t )Sz
l ′
〉
, (16)

where the discrete momenta q are defined as usual, q =
2πk/L, k = 0, 1, . . . , L − 1. Note that Eq. (16) is strictly
valid only for translational invariant systems (W = 0) but
might also hold approximately for W > 0 if the Cl,l ′ (t ) are
averaged over sufficiently many disorder realizations, cf.
Sec. IV C. In momentum space, diffusion can be characterized
by the existence of a hydrodynamic regime where long-
wavelength modes exhibit an exponential decay,

Cq(t ) ∝ e−q̃2Dt , (17)

with q̃2 = 2[1 − cos(q)] ≈ q2 for small q.
Moreover, another Fourier transform from the time to the

frequency domain yields the so-called dynamical structure
factor Cq(ω):

Cq(ω) =
∫ ∞

−∞
eiωtCq(t ) dt . (18)

As a direct consequence of the exponentials in Eq. (17),
diffusive transport reflects itself in a Lorentzian line shape of
Cq(ω),

Cq(ω) ∝ 1

ω2 + q̃4D2
, (19)

for sufficiently long wavelengths.

IV. NUMERICAL APPROACH

A. Dynamical quantum typicality

Loosely speaking, the concept of dynamical quantum typi-
cality (DQT) states that a single pure quantum state can have
the same properties as the statistical ensemble [46–56]. In
practice, this fact can be exploited in order to replace the trace
in Eq. (4) by a simple scalar product with two auxiliary pure
states |ϕβ (t )〉, |ψβ (t )〉 such that the current autocorrelation
takes on the form [54,56,102]

Re 〈 j(t ) j〉 = Re 〈ϕβ (t )| j |ψβ (t )〉
〈ϕβ (0)|ϕβ (0)〉 + ε, (20)

with |ϕβ (0)〉 = e−βH/2 |ϕ〉, |ψβ (0)〉 = j e−βH/2 |ϕ〉, and

|ϕ〉 =
d∑

k=1

ck|φk〉. (21)
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Here, the reference pure state |ϕ〉 is prepared according to
the unitary invariant Haar measure [103], i.e., the complex
coefficients ck are randomly drawn from a Gaussian distribu-
tion with zero mean. The states |φk〉 denote a complete set of
basis vectors of the Hilbert space, e.g., the Ising basis. If not
stated otherwise, we always consider the full Hilbert space
with dimension d = 3L.

Importantly, the statistical error ε = ε(|ϕ〉) in Eq. (20)
scales as ε ∝ 1/

√
deff, where deff = Z/e−βE0 is an effec-

tive dimension and E0 is the ground-state energy of H
[51,54,56,102,103]. Thus, ε decreases exponentially with in-
creasing system size and, particularly for β → 0, the typical-
ity approximation becomes very accurate already for moder-
ate values of L [56,82].

Completely analogous to current autocorrelations, the spa-
tiotemporal correlations Cl,l ′ (t ) for β � 0 can be obtained by
means of a pure-state approach as well, simply by replacing j
with Sz

l (or Sz
l ′ ) in and below Eq. (20). However, in the limit

β → 0, it is even possible to calculate Cl,l ′ (t ) from just one
auxiliary state [43,104] (see also Appendix),

Re Cl,l ′ (t ) = Re 〈ψ̃ (t )| Sz
l |ψ̃ (t )〉 + ε, (22)

where |ψ̃ (t = 0)〉 is constructed according to

|ψ̃ (0)〉 =
√

Sz
l ′ + 1 |ϕ〉√〈ϕ|ϕ〉 , (23)

with |ϕ〉 again being randomly drawn, cf. Eq. (21). It is impor-
tant to note that the operator Sz

l ′ + 1 (i) only has nonnegative
eigenvalues and (ii) is diagonal in the Ising basis. Therefore,
the application of the square-root operation is well defined and
rather straightforward [43].

B. Pure-state propagation

In Eqs. (20) and (22), the time argument is interpreted as a
property of the pure states and not of the operators anymore:

|ψ (t )〉 = e−iHt |ψ (0)〉. (24)

Compared to standard exact diagonalization (ED), the main
advantage of the pure-state approach stems from the fact that
this time evolution can be conveniently evaluated by means of
an iterative forward propagation, |ψ (t + δt )〉 = e−iHδt |ψ (t )〉.
Similarly, the action of e−βH/2 can be generated by a forward
propagation as well, but now in imaginary time. While there
exist various sophisticated methods such as Trotter decom-
positions [105], Chebyshev expansions [106,107], as well as
Krylov-subspace techniques [108], we here apply a fourth-
order Runge-Kutta algorithm where the discrete time step δt is
always chosen short enough to guarantee negligible numerical
errors [54,56]. Since the involved operators usually exhibit
a sparse matrix representation, the matrix-vector multiplica-
tions within this Runge-Kutta scheme can be implemented
memory efficient, and we can treat Hilbert-space dimensions
significantly larger compared to ED. (As an example, d =
3L ≈ 4 × 108 for L = 18. Note that this Hilbert-space dimen-
sion would correspond to L ≈ 29 in the case of S = 1/2.)

Eventually, concerning the Fourier transforms in Eqs. (6)
and (18), let us note that the integrals can in practice be
evaluated only up to a finite cutoff time tmax < ∞, giving rise
to a finite frequency resolution δω = π/tmax.

C. Averaging

In this paper, we have to differentiate between two possible
types of averaging. On the one hand, our numerical approach
is based on the construction of the pure state |ϕ〉, cf. (21),
comprising the random coefficients ck . Although the statistical
error ε(|ϕ〉) of the typicality approximation is rather small for
large L, the remaining error can be reduced even further by
averaging over NS different instances of the ck . While such a
procedure is usually unnecessary for β → 0 (NS = 1), it can
be beneficial for temperature regimes T � J [52,109].

On the other hand, in the case of a disordered model with
W > 0, all results naturally depend on the specific configu-
ration of the random magnetic fields hl . In order to obtain
reliable results, we therefore routinely perform an averaging
over a sufficiently large number N ,

Cl,l ′ (t ) = 1

N

N∑
n=1

C(n)
l,l ′ (t ), (25)

where each C(n)
l,l ′ (t ) is evaluated for a different random config-

uration of the hl .
A useful measure, both for sampling over initial states as

well as over disorder configurations, is the variance of sample-
to-sample fluctuations,

�Cl,l ′ (t ) =
N(S)∑
n=1

[
C(n)

l,l ′ (t )
]2

N(S)
−

⎛
⎝ N(S)∑

n=1

C(n)
l,l ′ (t )

N(S)

⎞
⎠

2

, (26)

which will typically increase for lower temperatures T and
stronger disorder W . The value of N(S) has to be chosen in
such a way that the error of the mean

√
�Cl,l ′ (t )/N(S) remains

small in all cases. The above reasoning, of course, not only
applies to the spatiotemporal correlations Cl,l ′ (t ) but also to
the current autocorrelation 〈 j(t ) j〉.

D. Quantum Monte Carlo

The quantum Monte Carlo (QMC) method is based on
the stochastic series expansion (SSE) [110–112], which uses
importance sampling of the high-temperature series expansion
of the partition function with a truncation of the sum to order
M,

Z =
∑

α

∑
SM

(−β )n(M − n)!

M!
〈α |

M∏
p=1

Hap,bp | α〉, (27)

where ap = 1, 2 indicates diagonal H1,b = J�Sz
i(b)S

z
j(b) + C

or off-diagonal H2,b = J (S+
i(b)S

−
j(b) + H.c.)/2 operators on

bond b. The constant C is chosen such that all diagonal
weights are positive [112], |α〉 = |Sz

1, . . . , Sz
L〉 refers to the

Sz basis, and SM = [a1, b1][a2, b2] . . . [aM, bM] is an index
for the operator string

∏M
p=1 Hap,bp . This string is Metropolis

sampled using two types of updates: (i) diagonal updates,
which change the number of diagonal operators H1,bp in the
operator string, and (ii) loop updates, which change the type of
operators H1,bp ↔ H2,bp . For bipartite lattices the loop update
comprises an even number of off-diagonal operators H2,bp ,
ensuring positivity of the transition probabilities.

144423-4



MAGNETIZATION DYNAMICS IN CLEAN AND … PHYSICAL REVIEW B 100, 144423 (2019)

From QMC simulations, the real-space correlations Cl,l ′ (τ )
are obtained in imaginary time τ :

Cl,l ′ (τ ) =
〈

M∑
m=0

(
M

m

)(
τ

β

)m(
1 − τ

β

)M−m

× 1

M

M−1∑
p=0

Sz
l (m + p)Sz

l ′ (p)

〉
W

, (28)

where the argument of Sz
l (p) refers to discrete expansion slices

of the SSE (for details, see, e.g., [61]), and 〈•〉W denotes the
Metropolis weight of an operator string of length M generated
by the SSE of Z [111,112].

After a Fourier transform to momentum space, cf. Eq. (15),
the dynamical structure factor eventually results from analytic
continuation to real frequencies based on the inversion of

Cq(τ ) =
∫ ∞

0
dωCq(ω)K (ω, τ ), (29)

with a kernel K (ω, τ ) = (e−τω + e−(β−τ )ω )/π . This inversion
is an ill-posed problem for which maximum entropy methods
(MEM) have proven to be well suited. We have applied
Bryan’s algorithm for our MEM [113,114]. This method
minimizes the functional Q = χ2/2 − ασ , with χ being the
covariance of the QMC data with respect to the MEM trial
spectrum Cq(ω). Overfitting is prevented by an entropy term
σ = ∑

ω Cq(ω) ln[Cq(ω)/m(ω)]. We have used a flat default
model m(ω), which is iteratively adjusted to match the zeroth
moment of the trial spectrum. The optimal spectrum follows
from the weighted average of Cq(ω) with the probability
distribution P[α|Cq(ω)] [113].

V. RESULTS

We now present our numerical results. First, we study dy-
namics for infinite temperatures β = 0 and vanishing disorder
W = 0 in Sec. V A. Then, we also consider finite temperatures
β > 0 in Sec. V B, before discussing the effect of disorder
W > 0 in Sec. V C.

A. Clean model at high temperatures

1. Current dynamics

Let us start with the discussion of current dynamics for
the isotropic model with � = 1. In Fig. 1(a), the current
autocorrelation function 〈 j(t ) j〉/L is shown for different sys-
tem sizes L = 12, 14, 16, 18 in a semilogarithmic plot. First
of all, for the small system with L = 12, we find that the
data obtained by DQT reproduce ED results very accurately
[76]. As explained in Sec. IV A, this accuracy is expected to
improve even further if L is increased, such that the pure-state
approach can be regarded as practically exact for all L � 12.
Moreover, while the curves are converged in system size at
short times, finite-size effects become apparent for t � 10.
For such times, one finds that 〈 j(t ) j〉/L decays to smaller
and smaller values for increasing L (although it is difficult
to estimate the L → ∞ value based on the system sizes
numerically available).

Next, Fig. 1(b) shows the corresponding diffusion coeffi-
cient D(t ), i.e., essentially the integral over the curves shown

10−2

10−1

100

L = 12, . . . , 18
L = 16,

18

0
1
2
3
4

0 10 2 0

L

0

1

2

0 3

0 1 2
L = 18

j(
t)

j
/L Sz = 0

D
(t

)

t

R
e

σ
(ω

)/
β

ω

Sz = 0
Sz = 0

δω = π/20
δω = π/10

FIG. 1. (a) Current autocorrelation 〈 j(t ) j〉/L obtained for differ-
ent system sizes L = 12, 14, 16, 18 by ED and DQT. As a com-
parison, we also show data for L = 16, 18 calculated in the Sz =
0 subsector only. (b) Corresponding diffusion coefficient D(t ), cf.
Eq. (5). Rescaled data from time-dependent density matrix renor-
malization group (tDMRG) calculations for T = 10 are depicted
[83,116]. (c) Conductivity σ (ω) calculated according to Eq. (6) for
frequency resolutions δω = π/10, π/20, and π/100 (Sz = 0). As a
comparison, we depict data obtained by the microcanonical Lanczos
method (MCLM) from Ref. [60]. The other parameters are � = 1
and β = 0.

in panel (a). Even for the largest system size L = 18, we
observe that D(t ) still exhibits a finite slope ∂t D(t ) > 0 and
does not saturate to a constant plateau on the timescales shown
here. It is instructive to compare these results to a calculation
restricted to the symmetry subspace with Sz = 0. For this
choice, one finds that 〈 j(t ) j〉 decays significantly faster, cf.
Fig. 1(a), and correspondingly, the diffusion coefficient D(t )
is approximately constant for times t � 10, cf. Fig. 1(b). Im-
portantly, however, the Sz = 0 data in Figs. 1(a) and 1(b) are
converged in system size only up to short times t � 5. More-
over, the convergence towards L → ∞ is generally slower
than a calculation in the full Hilbert space (cf. Ref. [115]),
which can also be seen by comparing to results obtained
by the time-dependent density matrix renormalization group
(tDMRG) [83,116].

Eventually, Fig. 1(c) shows the frequency-dependent con-
ductivity σ (ω) for the largest system size L = 18. We de-
pict data for different frequency resolutions δω = π/10 and
δω = π/20, i.e., two rather short cutoff times tmax for the
Fourier transform (6). However, even for the short tmax chosen,
we observe that σdc strongly depends on δω and diverges
if tmax is increased. Again, let us compare these results to
a calculation in the Sz = 0 subsector only. In this case, the
maximum of σ (ω) is shifted to a finite frequency ωmax ≈ 0.1
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FIG. 2. Analogous data as in Fig. 1, but now for a larger
anisotropy � = 1.5. Note that we plot the absolute value |〈 j(t ) j〉|/L
in (a) for better visibility. All calculations are performed in the full
Hilbert space.

and σ (ω) develops a local minimum at ω = 0. Moreover, our
DQT results are in good agreement with earlier data obtained
by the microcanonical Lanczos method (MCLM) for Sz = 0
[60].

Let us now consider a larger anisotropy � = 1.5. Anal-
ogous to Fig. 1, we present a finite-size scaling of 〈 j(t ) j〉
and D(t ) in Figs. 2(a) and 2(b). Compared to the isotropic
point, we find that 〈 j(t ) j〉 now decays to significantly smaller
values. Moreover, as can be seen in Fig. 2(b), the diffusion
coefficient D(t ) converges to an approximately constant and
L-independent plateau for times 2 � t � 5. In particular, this
plateau persists for longer and longer times if L is increased
[115].

For system size L = 16 and L = 18, we again depict in
Fig. 2(c) the corresponding conductivity σ (ω) for two dif-
ferent frequency resolutions δω = π/30 and δω = π/50. In
contrast to � = 1, cf. Fig. 1(c), we now find a well-defined
dc conductivity σdc, which is practically independent of the
specific L and δω chosen.

Comparing the results presented in Figs. 1 and 2, the
dynamics of the spin current apparently exhibits qualitative
differences between � = 1 and � = 1.5. On the one hand,
for the isotropic model, there is a large discrepancy between
calculations in the canonical and grand-canonical ensemble.
On the other hand, for � = 1.5, the finite-size scaling of
D(t ) clearly suggests diffusive spin transport for this value of
anisotropy. This is a first central result of the present paper.

2. Density dynamics

We now come to the discussion of the spatiotemporal
correlation functions Cl,l ′ (t ). In particular, we here prepare

l

0

0.2

0.4

0.6

Cl,L/2(t)
Δ = 1

10 0t

l

Δ = 1.5

FIG. 3. Broadening of density profiles Cl,L/2(t ) at infinite tem-
perature β = 0 for (a) � = 1 and (b) � = 1.5. We have L = 18 in
both cases.

the typical pure state |ψ̃ (t )〉 by applying the operator (Sz
L/2 +

1)1/2 such that the expectation value of Sz
l yields the corre-

lation Cl,L/2(t ) = 〈Sz
l (t )Sz

L/2〉, cf. Eqs. (22) and (23). (Note
that the specific value l ′ = L/2 is arbitrary due to periodic
boundary conditions.)

In Fig. 3, Cl,L/2(t ) is shown for � = 1, 1.5 and L = 18
sites. As discussed in the context of Eq. (10), Cl,L/2(t ) exhibits
an initial δ-peak profile at l = L/2 which becomes broader
for times t > 0. Moreover, comparing � = 1 and � = 1.5,
this broadening turns out to be slower in the case of the larger
anisotropy.

Next, let us study the decay of the central peak at l =
L/2, i.e., the dynamics of the equal-site correlation function
CL/2,L/2(t ). In Fig. 4, CL/2,L/2(t ) is shown for � = 1, 1.5 in a
logarithmic plot for different system sizes L = 10 (ED) and
L = 16, 18 (DQT). In all cases, we find that CL/2,L/2(t ) ex-
hibits a fast decay for short times t � 1, followed by a slower
decay for t � 10. In particular, for this intermediate regime,
CL/2,L/2(t ) is convincingly described by a power law ∝ t−1/2,
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FIG. 4. (a) Equal-site correlation CL/2,L/2(t ) for � = 1 and sys-
tem sizes L = 10 (ED), L = 16, 18 (DQT), in a logarithmic plot.
The dashed line indicates power-law decay ∝ 1/

√
t . The constant

long-time value scales as 2
3 /L [117,118]. (b) Same data as in (a) but

now for the larger anisotropy � = 1.5. We have β = 0 in both cases.

144423-6



MAGNETIZATION DYNAMICS IN CLEAN AND … PHYSICAL REVIEW B 100, 144423 (2019)

10−4

10−3

10−2

10−1

100

8

t = 1, 2, 4

0

1

2

3

4

11

50

C
l,

L
/
2
(t

)

l

D
(t

),
Σ

(t
)

t

Σ(t)
D(t)
Σ(t)2/2t

FIG. 5. (a) Density profile Cl,L/2(t ) at fixed times t = 0, 1, 2, 4.
Dashed curves are Gaussian fits to the data. (b) The width 
(t ), as
obtained from these density profiles [symbols, Eq. (12)], is compared
to the width 
(t ), as obtained from current autocorrelations [curve,
Eq. (13)]. The derivative D(t ) in Eq. (13) as well as the quantity

2/(2t ) are shown as well. The other parameters are � = 1, L = 18,
and β = 0.

consistent with diffusion phenomenology, cf. Eq. (14). How-
ever, comparing � = 1 and � = 1.5, it appears that this
power-law decay is cleaner for larger �. (See also [63] for
further data at � = 1 and temperatures β � 0.) Eventually,
for even longer times t � 10, CL/2,L/2(t ) saturates at a constant
plateau which is related to the conservation of total magneti-
zation (the plateau scales as ∝ 1/L), cf. Refs. [117,118].

In order to analyze the difference between � = 1 and
� = 1.5 in more detail, Figs. 5(a) and 6(a) show cuts of
Cl,L/2(t ) at fixed times t = 0, 1, 2, 4 for both values of �.
In the case of � = 1 [Fig. 5(a)], we find that the density
profiles exhibit a flat region in the center of the chain which
cannot be captured by Gaussian fits. Moreover, as shown in
Fig. 5(b), while the widths 
(t ) of these profiles necessar-
ily agree with a calculation via current autocorrelations, cf.
Eq. (13), the nonconstant D(t ) is inconsistent with diffusion.
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FIG. 6. Analogous data as in Fig. 5, but now for the larger
anisotropy � = 1.5. The density profiles in (a) are well described
by Gaussians over 3 orders of magnitude.
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FIG. 7. Structure factors for the smallest nonzero momentum
q = π/9 in a chain with L = 18. (a) Cq(t ) for � = 1, 1.5 in a
semilogarithmic plot. (b) Cq(ω) for � = 1. (c) Cq(ω) for � = 1.5.
The dashed lines indicate an exponential decay, as well as Gaussian
or Lorentzian line shapes, respectively. We have β = 0 in all cases,
and δω = π/50 in (b) and (c).

(As a consequence, 
(t ) ∝ tα with α > 1/2 and 
(t )2/(2t )
is nonconstant.) In contrast, for � = 1.5 [Fig. 6(a)], we find
that Cl,L/2(t ) is well described by Gaussians over roughly 3
orders of magnitude for all times shown here. These Gaussian
profiles, in combination with the constant plateau of D(t ), the
corresponding square-root growth of 
(t ), and the saturation
of 
(t )2/(2t ) in Fig. 6(b) are clear signatures of diffusion for
this anisotropy. This is another important result of the present
paper. Note that a very similar behavior, both for � = 1 and
� = 1.5, has been found also for S = 1/2 [23,42].

Next, we consider correlations in momentum space. In
Fig. 7(a), the intermediate structure factor Cq(t ) is shown in
a semilogarithmic plot for a single system size L = 18 and
the smallest nonzero momentum q = π/9 available. On the
one hand, for � = 1.5 we find that Cq(t ) exhibits a clean
exponential decay with the decay rate −q̃2D, cf. Eq. (17). In
particular, let us stress that the dashed line in Fig. 7(a) is no fit
but takes into account the actual value of q and the diffusion
coefficient D ≈ 0.95 (cf. Refs. [76,119]), as extracted from
the constant plateau in Fig. 2(b). On the other hand, for � = 1,
Cq(t ) decays rather quickly and we are unable to detect an
exponentially decaying mode for the q values available. This
difference between the two anisotropies also carries over to
the frequency domain. In Figs. 7(b) and 7(c) the dynamical
structure factor Cq=π/9(ω) is shown for � = 1 and � = 1.5,
respectively. While for � = 1, Cq(ω) is very similar to a
Gaussian, we observe a pronounced Lorentzian line shape
in the case of � = 1.5, as expected for a diffusive process
[cf. Eq. (19)].

3. Intermediate summary

Based on the numerical evidence presented in Figs. 1–7,
high-temperature spin dynamics in the S = 1 XXZ chain
appears to be strongly dependent on the value of anisotropy.
On the one hand, for � = 1.5 numerous signatures of genuine
spin diffusion can be observed. On the other hand, for � = 1,
these signatures are either less pronounced or entirely absent.
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While our numerical results cannot rule out that diffusion
will eventually emerge also for � = 1 asymptotically at long
times and larger L, they might suggest that high-temperature
spin transport in the isotropic S = 1 Heisenberg chain is
superdiffusive, analogous to the case of S = 1/2 [24,81,82]
and consistent with recent results in Ref. [83].

B. Clean model at lower temperatures

In Sec. V A, we have unveiled clear signatures of high-
temperature spin diffusion in the easy-axis regime � = 1.5.
Focusing on density dynamics, let us study whether such
signatures can be found for finite temperatures β > 0 as well.
(See also Refs. [75,77,78,120] for transport studies at low T .)

Figure 8 shows the equal-site correlation CL/2,L/2(t ) for
anisotropic chains with � = 1.5 and L = 12, 14, 16 at mod-
erate temperature β = 1. The data are averaged over NS =
50 random initial states in order to account for the larger
statistical error of the typicality approximation at β > 0,
cf. Sec. IV C, and the shaded area indicates the standard
deviation of the mean. Remarkably, we are able to detect
an intermediate time window 1 � t � 5, where the decay
of CL/2,L/2(t ) is approximately described by ∝ t−1/2. Even
though this scaling is certainly less convincing compared to
the infinite-temperature case shown in Fig. 4(b), it suggests
that diffusion might occur also at finite temperatures T ∼ J .

Next, Fig. 9 shows a contour plot of the dynamical struc-
ture factor Cq(ω) for all four possible combinations of β =
0, 1 and � = 1, 1.5. On the one hand, for β = 0 [Figs. 9(a)
and 9(b)], the data are obtained by means of DQT for chains
with L = 18. We find that Cq(ω) exhibits a broad excitation
continuum in the center of the Brillouin zone extending up
to ω � 5, as well as distinct (diffusion) poles for small wave
numbers q → 0 [which have been discussed in detail in the
context of Figs. 7(b) and 7(c)]. On the other hand, for β = 1
[Figs. 9(c) and 9(d)], we compare data obtained by DQT for
L = 16 to QMC simulations for significantly larger systems
with L = 64 sites. One clearly observes that the lowering of
the temperature leads to a redistribution of spectral weight.
Specifically, we find increased intensity at around q = π ,
which is most pronounced for � = 1.5. Correspondingly, the
spectral weight of the original poles for momenta q → 0 is
reduced at β = 1. Moreover, considering the big difference in
system size, the agreement between DQT and QMC is quite
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FIG. 9. (a), (b) Dynamical structure factor Cq(ω) at infinite tem-
perature β = 0 for � = 1 and � = 1.5, obtained by DQT for system
size L = 18. (c, d) Cq(ω) at β = 1. Data obtained by DQT (NS = 50)
for L = 16 and q < π are compared to QMC simulations for L = 64
at q > π .

convincing. For a thorough discussion of Cq(ω) at � = 1 and
lower temperatures T � J , see, e.g., Refs. [61,62].

For a more detailed comparison between DQT and QMC
as well as between � = 1 and � = 1.5, we depict cuts of
Cq(ω) at β = 1 for various momenta q in Figs. 10(a)–10(h).
In particular, DQT and QMC data are compared for the same
chain length L = 16. For all combinations of q and � shown
here, we find that DQT and QMC agree very well. While the
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FIG. 10. Dynamical structure factor Cq(ω) at finite temperature
β = 1 and various momenta q both for � = 1 (left) and � = 1.5
(right). The data are obtained by DQT (symbols) and QMC (curves)
for chains with L = 16. Note that the data in panels (c)–(h) have been
multiplied by a factor for better visibility.
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FIG. 11. Conductivity σ (ω) for disorder W = 1, 2, 4 and
anisotropies (a) � = 1, (b) � = 1.5. In the low-ω regime, the con-
ductivity is well described by power laws, Re σ (ω) ≈ σdc + a|ω|α ,
with α = 1, cf. Refs. [123,124]. We have β = 0, L = 16, and N =
100 in all cases.

DQT data are somewhat noisy due to the finite chain length,
the QMC curves are naturally very smooth. Moreover, due
to difficulties within the analytic continuation, it is hard to
resolve certain fine structures of Cq(ω) in QMC simulations
such as, e.g., the double peak in Fig. 10(c) (see also the
discussion in [62]).

For the smallest momentum q = π/8 available [Figs. 10(a)
and 10(b)], we find that Cq(ω) behaves qualitatively similar
for � = 1 and � = 1.5. Specifically, in both cases Cq(ω) has
a pole at ω ≈ 0, reminiscent of the β = 0 results discussed in
Figs. 7(b) and 7(c). Moreover, the maximum of Cq(ω) seems
to be slightly shifted to finite frequencies ω > 0, although
this can be a finite-size effect. Next, for momenta q ≈ π/2
[Figs. 10(c)–10(f)], we find that Cq(ω) exhibits a distinct
excitation mode in the isotropic case, whereas the spectrum
for � = 1.5 is rather flat. Furthermore, as shown in Figs. 10(g)
and 10(h), there is high spectral weight at q = π , and Cq(ω)
has a pronounced peak at ω ≈ 0 for � = 1.5 (consistent with
a Néel phase for this � at low T [121]).

C. Disordered model at high temperatures

Eventually, let us study the effect of disorder on the spin
dynamics, focusing on high temperatures β = 0. Due to the
additional numerical costs caused by the necessity to average
over different disorder realizations, we here restrict ourselves
to a maximum system size of L = 16.

Analogous to Sec. V A, we start our discussion with cur-
rent dynamics. In Fig. 11, the conductivity σ (ω) is shown
for � = 1, 1.5 and various values of disorder W = 1, 2, 4.
Overall, we find a very similar behavior for both values of the
exchange anisotropy. Specifically, for all cases shown here,
one observes that σ (ω) has a well-defined dc conductivity
σdc, which decreases for larger W . Moreover, one finds that
the maximum of the conductivity σmax > σdc is shifted to
larger and larger ω if disorder is increased. Furthermore, for
W = 2, 4 and low frequencies ω � 1, the conductivity is well
described by a power law, Re σ (ω) ≈ σdc + a|ω|α , with α = 1
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FIG. 12. Broadening of density profiles Cl,L/2(t ) for different
values of disorder (a) W = 1, (b) W = 4. We have � = 1.5, β = 0,
L = 16, and N = 100 in both cases.

[87,122]. Note that qualitatively similar results for S = 1/2
can be found in Refs. [123,124].

Next, let us also discuss the dynamics of spatiotemporal
correlations Cl,L/2(t ) in the presence of disorder. We here
particularly focus on the easy-axis regime � = 1.5. For this
value of �, we have unveiled various signatures of diffusion
in the disorder-free case W = 0, cf. Figs. 3–7. These data now
serve as a benchmark for the study of W > 0. In Figs. 12(a)
and 12(b), contour plots of Cl,L/2(t ) are shown for W = 1 and
4, respectively. Analogous to Fig. 3, Cl,L/2(t ) initially exhibits
a δ peak at t = 0, which broadens for times t > 0. However,
this broadening becomes slower if W is increased, with more
weight remaining close to the center of the chain.
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FIG. 13. Cl,L/2(t ) at fixed times t = 1, 5, 10 for W = 1 [(a)–
(c)] and W = 4 [(d)–(f)] in a semilogarithmic plot. Curves indicate
Gaussian or exponential fits. We have � = 1.5, β = 0, L = 16, and
N = 100 in all cases.
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For a more detailed analysis, Fig. 13 shows cuts of Cl,L/2(t )
at fixed times t = 1, 5, 10 for both weak disorder W = 1
[(a)–(c)] and stronger disorder W = 4 [(d)–(f)]. On the one
hand, for W = 1 we find that Cl,L/2(t ) is again in good
agreement with a Gaussian profile at short times t = 1. In
comparison with the W = 0 data shown in Fig. 6(a), this
agreement becomes slightly less convincing for later times
t = 5 [Fig. 13(b)]. On the other hand, for W = 4, Cl,L/2(t )
exhibits a completely different behavior. For times t = 5 and
10, cf. Figs. 13(e) and 13(f), the profiles are not described by
Gaussians anymore but are rather of triangular shape in the
semilogarithmic plot used. Such exponentially decaying tails
are clearly inconsistent with diffusion and might suggest the
presence of a nondiffusive regime [118,125,126].

Furthermore, the equal-site correlation function CL/2,L/2(t )
is shown in Fig. 14 for W = 0, 1, 2, 4 in a logarithmic plot.
While the curves for W = 0 and 1 are still very similar to
each other, we find that CL/2,L/2(t ) decays slowly for strong
disorder W = 4 and is inconsistent with ∝ t−1/2. (For a study
of the Fourier transform of CL/2,L/2(t ) in disordered spin-1/2
models, see [127].)

Figure 15(a) shows the intermediate structure factor Cq(t )
for the smallest nonzero momentum q = π/8. For increasing
W , we find that the slope of Cq(t ) becomes more and more
flat, which can be interpreted as a shrinking of the diffusion
constant. In particular, for strong disorder W = 4, Cq(t ) es-
sentially does not decay at all on the timescales depicted. The
nondecaying behavior of Cq(t ) is also reflected in its Fourier
transform Cq(ω), which is shown in Figs. 15(b) and 15(c) in
terms of a contour plot for W = 1 and 4, respectively. While
Cq(ω) still exhibits a broad excitation continuum in the center
of the Brillouin zone [cf. Fig. 9(b) for W = 0], we find that
Cq(ω) additionally develops a high contribution at ω = 0 if
W is increased. On the one hand, for W = 1, this peaked
structure is pronounced for q → 0, e.g., due to diffusion. On
the other hand, for strong disorder W = 4, the high contri-
bution in Cq(ω) can be clearly identified for all momenta q
in the Brillouin zone. Note that a very similar behavior has
also been observed in the case of spin S = 1/2 [124]. To
illustrate the development of this high contribution, Fig. 15(d)
shows Cq(ω) for W = 0, 1, 2, 4 at the fixed momentum q =
π . Note that the data for different values of W are artificially
shifted in the vertical direction to improve visibility. For all
values of disorder shown here, we find that Cq=π (ω) has an
almost featureless shape for finite ω and roughly extends
up to ω � 5. However, one can clearly observe that the

0.01

0.1

1

0 10 2 0

W = 0, 1, 2, 4

0

1

2

3

0 3

50
W = 0, 1, 2, 4

C
q=

π
/
8(

t)

t

0

5

ω

0

2

4

6
Cq(ω)W = 1

q/π

0

5

q/π

W = 4

C
q=

π
(ω

)
ω

L = 16
L = 10

FIG. 15. (a) Cq(t ) at momentum q = π/8 for disorder W =
0, 1, 2, 4 in a semilogarithmic plot. (b, c) Contour plots of Cq(ω) for
disorder W = 1 and W = 4, respectively. (d) Cq(ω) at momentum
q = π for disorder W = 0, 1, 2, 4. For W = 0, we additionally com-
pare to ED (L = 10). The curves for W > 0 are shifted by constant
offsets in order to improve the visibility. We have � = 1.5, β = 0,
L = 16, and N = 100 in all cases.

high contribution at ω ≈ 0 becomes more pronounced for
increasing W .

The numerical data presented in Figs. 11–15 suggest that
the spin-1 XXZ chain undergoes a transition between a dif-
fusive regime and a nondiffusive phase for sufficiently strong
disorder.

VI. CONCLUSION

To summarize, we have studied the magnetization dynam-
ics in the one-dimensional S = 1 XXZ model for various
anisotropies and temperatures, as well as in the presence of
quenched disorder induced by a random magnetic field.

As a main result, we unveiled that high-temperature spin
transport is diffusive in the easy-axis regime for strong ex-
change anisotropies. This finding was based on the combina-
tion of numerous signatures, such as (i) Gaussian spreading
of correlations, (ii) a time-independent diffusion coefficient,
(iii) power-law decay of equal-site correlations, (iv) exponen-
tially decaying long-wavelength modes, and (v) Lorentzian
line shapes of the dynamical structure factor. Additionally,
we provided evidence that some of these signatures are not
exclusively restricted to the infinite-temperature limit but can
persist at lower temperatures as well. For these lower temper-
atures, we particularly found a very good agreement between
the pure-state typicality approach and additional quantum
Monte Carlo simulations.
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In contrast, we demonstrated that a proper analysis of
magnetization dynamics is considerably more delicate for the
isotropic case � = 1. Specifically, we found that even for
the largest system sizes amenable to our numerical approach,
the signatures (i)–(v) are either less pronounced or entirely
absent. Therefore, our numerical analysis suggests that high-
temperature spin transport might be superdiffusive in the
S = 1 Heisenberg chain despite the nonintegrability of the
model. This finding is consistent with recent results in
Ref. [83].

Eventually, upon introducing a random on-site magnetic
field, we observed a breakdown of diffusion and distinctly
slower dynamics. Moreover, our results exhibit qualitative
similarities to disordered spin-1/2 chains and might be con-
sistent with the presence of a nondiffusive regime.

Promising directions of research include, e.g., the applica-
tion of the pure-state approach to spin dynamics for S � 1 at
finite and infinite temperature. In particular, a more detailed
analysis of a putative transition to a many-body localized
phase in models with S � 1 is an interesting avenue of future
work.
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APPENDIX: TYPICALITY RELATION

Let us briefly derive the typicality relation given in Eq. (22)
of the main text. To this end, we start with a correlation
function at formally infinite temperature,

Tr
[
Sz

l (t )(Sz
l ′ + 1)

]
d

= Tr
[
Sz

l (t )Sz
l ′
]

d
+ Tr

[
Sz

l (t )
]

d
= Cl,l ′ (t ),

(A1)

where we have used that Tr[Sz
l ] = 0. Thus, the expression

Tr[Sz
l (t )(Sz

l ′ + 1)]/d is equivalent to the correlation function
Cl,l ′ (t ) from Eq. (9). Exploiting this fact, we can now write

Tr
[
Sz

l (t )(Sz
l ′ + 1)

]
d

= Tr
[√

Sz
l ′ + 1Sz

l (t )
√

Sz
l ′ + 1

]
d

≈ 〈ϕ| √Sz
l ′ + 1Sz

l (t )
√

Sz
l ′ + 1 |ϕ〉

〈ϕ|ϕ〉
= 〈ψ̃ (t )| Sz

l |ψ̃ (t )〉, (A2)

where we have used the cyclic invariance of the trace and the
definition of the pure state |ψ̃ (t )〉 = e−iHt |ψ̃ (0)〉, cf. Eq. (23).
Note that the statistical error ε of the typicality approximation
has been dropped for clarity in Eq. (A2).
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