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Transport properties of the classical antiferromagnetic XXZ model on the square lattice have been theoretically
investigated, putting emphasis on how the occurrence of a phase transition is reflected in spin and thermal
transports. As is well known, the anisotropy of the exchange interaction � ≡ Jz/Jx plays a role to control the
universality class of the transition of the model, i.e., either a second-order transition at TN into a magnetically
ordered state or the Kosterlitz-Thouless (KT) transition at TKT, which respectively occur for the Ising-type
(� > 1) and XY-type (� < 1) anisotropies, while for the isotropic Heisenberg case of � = 1, a phase transition
does not occur at any finite temperature. It is found by means of the hybrid Monte Carlo and spin-dynamics
simulations that the spin current probes the difference in the ordering properties, while the thermal current does
not. For the XY-type anisotropy, the longitudinal spin-current conductivity σ s

xx (=σ s
yy) exhibits a divergence at

TKT of the exponential form σ s
xx ∝ exp [B/

√
T/TKT − 1 ] with B = O(1), while for the Ising-type anisotropy, the

temperature dependence of σ s
xx is almost monotonic without showing a clear anomaly at TN and such a monotonic

behavior is also the case in the Heisenberg-type spin system. The significant enhancement of σ s
xx at TKT is found to

be due to the exponential rapid growth of the spin-current relaxation time toward TKT, which can be understood
as a manifestation of the topological nature of a vortex whose lifetime is expected to get longer toward TKT.
Possible experimental platforms for the spin-transport phenomena associated with the KT topological transition
are discussed.

DOI: 10.1103/PhysRevB.100.144416

I. INTRODUCTION

Transport phenomena in magnetic systems reflect dynam-
ical properties of interacting spins, such as magnetic exci-
tations and fluctuations. Of recent particular interest is spin
transport which is becoming available as a probe to study
magnetic properties thanks to the development of experimen-
tal methods in the context of spintronics [1–6]. This demands
to explore the fundamental physics underlying the association
between the spin transport and magnetic phase transitions. In
this paper, we theoretically investigate transport properties of
two-dimensional antiferromagnetic insulators, putting empha-
sis on the effects of magnetic anisotropy which plays a role of
controlling the universality class of the system.

A minimal model of two-dimensional antiferromagnets
with magnetic anisotropy would be the classical nearest-
neighbor (NN) antiferromagnetic XXZ model on the square
lattice. The spin Hamiltonian of the system is given by

H = −J
∑
〈i, j〉

(
Sx

i Sx
j + Sy

i Sy
j + �Sz

i Sz
j

)
, (1)

where Sα
i is α component of a classical spin Si at a lattice

site i, 〈i, j〉 denotes the summation over all the NN pairs,
J < 0 is an antiferromagnetic exchange interaction, and � >

0 is a dimensionless parameter characterizing the magnetic
anisotropy. The ground state of this system is the conventional
two-sublattice antiferromagnetic order, whereas the finite-
temperature properties depend on the magnetic anisotropy �.
In the isotropic case of � = 1, Eq. (1) is nothing but the
isotropic Heisenberg model, so that a phase transition does not

occur at any finite temperature. In the anisotropic case of � >

1 (� < 1), the system belongs to the Ising (XY) universality
class and exhibits a magnetic (Kosterlitz-Thouless topological
[7]) phase transition at a finite temperature TN (TKT). The
purpose of this work is to clarify how the difference in the
ordering properties among the three cases, � > 1, � < 1, and
� = 1, is reflected in the transport properties. Our main focus
is on whether a signature of a phase transition shows up in the
spin and thermal transports or not.

In the ordered phase at lower temperatures, spin and ther-
mal currents should be carried by spin waves or magnons.
With increasing temperature, thermally activated nontrivial
excitations and fluctuations would come into play. In par-
ticular, in the case of the XY-type anisotropy (� < 1), free
vortices dissociated at higher temperature above TKT may
strongly affect the current relaxation because the topological
object of the vortex is generally robust against weak per-
turbations, resulting in a relatively long lifetime compared
with the damping of the spin-wave mode [8–11]. As we will
demonstrate below, this is actually the case for the spin-
current relaxation. In this paper, we will investigate temper-
ature dependence of the conductivities of the spin and thermal
currents in the Ising-type (� > 1), XY-type (� < 1), and
Heisenberg-type (� = 1) spin systems by means of the hybrid
Monte Carlo (MC) and spin-dynamics simulations.

Our result is summarized in Fig. 1. The longitudinal ther-
mal conductivity κxx, which is the response to the temperature
gradient ∇T , is insensitive to the difference in the ordering
properties. κxx increases toward T = 0 as a power function
of temperature T in all the three cases of � > 1, � < 1,
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FIG. 1. System setups for the measurements of (a) thermal con-
ductivity and (b) spin-current conductivity. In (b), the magnetic-
anisotropy axis, which corresponds to the polarization direction
of the spin current denoted by a black arrow, is assumed to be
perpendicular to the two-dimensional sample plane. (c) Summary
of our result: schematic temperature dependence of the longitudinal
thermal conductivity κxx (red curves) and spin-current conductivity
σ s

xx (blue curves) in the Ising-type (� < 1), XY-type (� < 1), and
Heisenberg-type (� = 1) spin systems in the thermodynamic limit.
In contrast to κxx commonly following a power-law behavior at
low temperatures, σ s

xx exhibits temperature dependence character-
istic of the three different universality classes. In particular, in the
XY case, σ s

xx exhibits a divergent sharp peak at the KT transition
temperature TKT.

and � = 1, without showing a clear anomaly at TN and TKT.
In contrast, the longitudinal spin-current conductivity σ s

xx,
which is the response to the magnetic-field gradient ∇H ,
exhibits temperature dependence characteristic of the three
different universality classes. For the XY-type anisotropy, σ s

xx
exhibits a divergent sharp peak at TKT, while for the Ising-type
anisotropy, the temperature dependence of σ s

xx is monotonic
without showing a clear anomaly at TN . In the Heisenberg-
type isotropic case, σ s

xx shows an exponential increase toward
T = 0. The significant enhancement of σ s

xx at TKT is due to the
spin-current relaxation getting slower toward TKT, which can
be understood as a manifestation of the topological nature of
the vortex whose lifetime is expected to get longer toward TKT.

This paper is organized as follows: In Sec. II, the theoreti-
cal framework for transport phenomena in magnetic insulators
will be given. We derive the expressions for the conductivities
of the spin and thermal currents, and explain the details of our
simulations. In Sec. III, low-temperature transport properties
will be discussed based on analytical calculations within the
linear spin-wave theory. Numerical results on the thermal and
spin transports will be shown in Secs. IV and V, respectively.
We end this paper with summary and discussions in Sec. VI.

II. THEORETICAL FRAMEWORK FOR TRANSPORT
PHENOMENA IN MAGNETS

In this section, starting from the introduction to the equa-
tion of motion for the spin dynamics, we first derive the spin
and thermal currents by using this spin-dynamics equation,

and then, formulate the spin-current conductivity σ s
μν and the

thermal conductivity κμν within the linear response theory.
Subsequently, we will explain numerical methods to integrate
the equation of motion, taking account of temperature effects.

A. Spin dynamics

The spin dynamics, i.e., the time evolution of the spins for
the Hamiltonian (1), is determined by the following semiclas-
sical equation of motion:

dSi

dt
= Si × Heff

i ,

Heff
i = J

∑
j∈N (i)

(
Sx

j , Sy
j ,�Sz

j

)
, (2)

where N (i) denotes all the NN sites of i. Since Eq. (2) is a
classical analog of the Bloch equation, namely, the Heisenberg
equation for the spin operator, all the static and dynamical
magnetic properties purely intrinsic to the Hamiltonian (1)
should be described by the combined use of Eqs. (1) and
(2). A familiar alternative way to examine the spin dynam-
ics is solving the Landau-Lifshitz-Gilbert (LLG) equation
[12] which includes a damping term originally introduced
phenomenologically. In this work, we use Eq. (2) instead
of the LLG equation for the following two reasons: (i) In
the LLG equation, the damping, which is characterized by a
dimensionless parameter α, may be either intrinsic or extrinsic
to the spin Hamiltonian. Equation (2), on the other hand, cor-
responds to the LLG equation without the phenomenological
damping term, so that any relaxation described by Eq. (2) has
its origin in the Hamiltonian (1). As our focus in this paper
is on fundamental aspects intrinsic to the spin Hamiltonian
(1), we use Eq. (2). (ii) As we will see in the following
subsection, the conventional forms of the spin and thermal
currents [13–21] are derived from the Heisenberg equation
or its classical analog without the damping term, so that it
is self-consistent to use Eq. (2) rather than the LLG equation
with the additional damping term.

B. Conductivities of spin and thermal currents

In this section, we will derive the spin current Jz
s and

the thermal current Jth, and then, introduce the spin-current
conductivity σ s

μν and the thermal conductivity κμν . We
shall start from the general discussion on a current in the
continuum limit. Suppose that a conserved physical quan-
tity O = ∫ drO(r, t ) should satisfy the continuity equa-
tion ∂

∂t O(r, t ) + ∇ · jO(r, t ) = 0 with associated local current
density jO(r, t ). By multiplying the both sides of the equation
by r and integrating over the whole r region, we obtain∫

dr r
∂

∂t
O(r, t ) = −

∫
dr r ∇ · jO(r, t ) =

∫
dr jO(r, t ).

(3)
Thus, the net current JO(t ) is given by [22]

JO(t ) =
∫

dr jO(r, t ) =
∫

dr r
∂

∂t
O(r, t ). (4)

In the present XXZ model given by Eq. (1), the con-
served quantities are the z component of the magnetiza-
tion Mz =∑i Sz

i and the total energy H =∑i Hi with
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Hi = −J
2

∑
j∈N (i) (Sx

i Sx
j + Sy

i Sy
j + �Sz

i Sz
j ), so that the associ-

ated currents, namely, the spin and thermal currents (Jz
s and

Jth), are given by

Jz
s(t ) =

∑
i

ri
dSz

i

dt

= −J
∑

i

ri

∑
j∈N (i)

(S j × Si )
z

= J
∑
〈i, j〉

(ri − r j )(Si × S j )
z, (5)

Jth(t ) =
∑

i

ri
−J

2

∑
j∈N (i)

d

dt

(
Sx

i Sx
j + Sy

i Sy
j + �Sz

i Sz
j

)

= J2

2

∑
i

ri

∑
j∈N (i)

⎛
⎝∑

k∈N (i)

{
(S j × Sk )zSz

i

+�
[
(Si × S j )

zSz
k + (Sk × Si )

zSz
j

]}
+
∑

k∈N ( j)

{
(Si × Sk )zSz

j

+�
[
(S j × Si )

zSz
k + (Sk × S j )

zSz
i

]}⎞⎠

= J2

4

∑
i

∑
j,k∈N (i)

(r j − rk )
{
(S j × Sk )zSz

i

+�
[
(S j × Sk )xSx

i + (S j × Sk )Sy
i

]}
, (6)

where Eq. (2) has been used in going from the first line to the
second line for each current. The obtained result is essentially
the same as the previously obtained expressions [13–21]. We
note that Eqs. (5) and (6) for the classical spin systems can
also be applied for quantum spin systems by merely replacing
Sα

i with the associated spin operator Ŝα
i . Indeed, one can verify

that with the use of the Heisenberg equation instead of Eq. (2),
the same expressions as Eqs. (5) and (6) are obtained.

Next, we turn to the conductivities of the spin and thermal
currents. We first introduce the theoretical framework for the
quantum mechanical systems, and then, take the classical
limit. In general, driving forces for the spin and thermal
currents are magnetic-field and temperature gradients ∇H and
∇T , respectively [see Figs. 1(a) and 1(b)], so that the linear
response equations are given by(

js
jth

)
=
(

Ls,s Ls,th

Lth,s Lth,th

)( ∇H
∇T/T

)
(7)

with the spin and thermal current densities js and jth

[15,16,22]. Then, the spin-current conductivity σ s and the
thermal conductivity κ are expressed as

σ s = Ls,s, κ = T −1Lth,th. (8)

Note that in the present model without a magnetic field,
Ls,th = Lth,s = 0 is satisfied because these quantities are odd
with respect to spins. In the linear response theory [23], the
coefficients La,b can be calculated from the formula

La,b
μν (ω) =

∫ ∞

0
dt e−iωt−ηt

∫ 1/T

0
dλ 〈 ja,ν (−ih̄λ) jb,μ(t )〉, (9)

where 〈. . . 〉 denotes the thermal average in the equilibrium
state. Now, we will take the classical limit of Eq. (9). In the
classical system, by making h̄ → 0 [23], we have

La,b
μν (0) = 1

T

∫ ∞

0
dt 〈 ja,ν (0) jb,μ(t )〉. (10)

Thus, in the present classical XXZ model, we obtain the
following expressions for the spin-current and thermal con-
ductivities:

σ s
μν = 1

T L2

∫ ∞

0
dt
〈
Jz

s,ν (0) Jz
s,μ(t )
〉
,

(11)

κμν = 1

T 2 L2

∫ ∞

0
dt 〈Jth,ν (0) Jth,μ(t )〉,

where we have used the relation between the total current and
its current density js = Jz

s/L and jth = Jth/L, with L being a
linear system size [14–16,18]. Now, the problem is reduced to
calculate the time correlations of the spin and thermal currents
at various temperatures. In the present square lattice, the total
number of spin Nspin and the system size L are related by
L2 = Nspin a2, where a is a lattice constant. Noting that the
time t is measured in units of |J|−1, it turns out that σ s

μν is
a dimensionless quantity and κμν has the dimension of |J|.
Although in Eqs. (5) and (6), the currents themselves involve
the dimension of length, the conductivities in the present
two-dimensional system do not, so that the length scale of
the lattice constant a is not relevant and, thus, we take a = 1
throughout this paper except for the case where a is explicitly
written.

C. Numerical method

The time evolutions of Jz
s and Jth are determined micro-

scopically by the spin-dynamics equation (2), so that we nu-
merically integrate Eq. (2) and calculate the time correlations
〈Jz

s,ν (0) Jz
s,μ(t )〉 and 〈Jth,ν (0) Jth,μ(t )〉 at each time step. In the

numerical integration of Eq. (2), we use the second-order
symplectic method which guarantees the exact energy con-
servation [24–26]. We have confirmed that numerical results
shown below are not altered if the fourth-order Runge-Kutta
method is used instead of the symplectic method. To properly
evaluate the integral over time in Eq. (11), we perform long-
time integrations typically up to t = 100 |J|−1 − 800 |J|−1

with the time step δt = 0.01 |J|−1 until the time correlations
〈Jz

s,ν (0) Jz
s,μ(t )〉 and 〈Jth,ν (0) Jth,μ(t )〉 are completely lost.

Since Eq. (2) does not have a phenomenological dissipation
term, the thermal fluctuations are only one possible cause
for the current relaxation. Although Eq. (2) itself is deter-
ministic, such a temperature effect can be incorporated by
using temperature-dependent equilibrium spin configurations
as the initial states for the equation of motion (2). In order
to thermalize the system to given temperature T , we perform
MC simulations for the spin Hamiltonian (1). The thermal
average is taken as the average over initial equilibrium spin
configurations generated in the MC simulations. In this work,
at each temperature, we prepared 2000–4000 equilibrium
spin configurations by picking up a spin snapshot in every
1000 MC sweeps after 105 MC sweeps for thermalization,
where one MC sweep consists of the 1 heat-bath sweep and
successive 10–30 over-relaxation sweeps.
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By carefully analyzing the system-size dependence of the
spin-current conductivity σ s

μν and the thermal conductivity
κμν at given temperatures, we will discuss the temperature
dependence of σ s

μν and κμν in the thermodynamic limit (L →
∞) of our interest.

III. ANALYTICAL RESULTS IN THE
LOW-TEMPERATURE LIMIT: CALCULATIONS BASED

ON THE LINEAR SPIN-WAVE THEORY

Before discussing numerical results, we should know how
κμν and σ s

μν should behave in the low-temperature limit. In
this section, we will analytically investigate the temperature
dependence of κμν and σ s

μν based on the linear spin-wave
theory (LSWT). As a low-temperature ordered state is a
starting point in LSWT, one might be afraid that LSWT
cannot be applied to the Heisenberg case because of the
absence of the long-range order at any finite temperature.
As long as there is a long-range order at T = 0, however,
the spin-wave expansions could still be done locally within
the regions smaller than the spin-correlation length ξs [27].
Thus, in the Heisenberg case, we introduce a lower cutoff in
the momentum space which corresponds to the inverse spin-
correlation length ξ−1

s , and take the temperature dependence
of ξs ∼ a exp[bH |J|/T ] into account, where bH � 2π is a
universal constant [28].

In this section, we will start from the theory of the corre-
sponding quantum spin system and, then, take the classical
limit of relevant physical quantities. By performing the spin-
wave expansion, one can obtain the magnon representation
of the Hamiltonian (1) and the spin and thermal currents in
Eqs. (5) and (6). Since in Eq. (11), the time correlation func-
tions 〈Jth,ν (0) Jth,μ(t )〉 and 〈Jz

s,ν (0) Jz
s,μ(t )〉 are essential for

κμν and σ s
μν , we will first examine the associated static ther-

modynamic quantities, the equal-time correlation functions
〈Jth,ν (0) Jth,μ(0)〉 and 〈Jz

s,ν (0) Jz
s,μ(0)〉. Then, the dynamical

quantities, i.e., κμν and σ s
μν due to the magnon propagation,

will be calculated, putting emphasis on their temperature
dependence in the classical limit. As we will see below,
the temperature dependence of the thermal conductivity κμν

is almost independent of the magnetic anisotropy �, while
the spin-current conductivity σ s

μν is sensitive to the ordering
properties controlled by �.

A. Magnon representation

Although our target system in this paper is the classical
XXZ model, we consider, for convenience, the corresponding
quantum spin system throughout this section. The magnon
representation of the Hamiltonian (1) and the spin and thermal
currents in Eqs. (5) and (6) can be derived by using the spin-
wave expansions. In the Ising case of � > 1, the quantization
axis of spin is in the z direction, so that we introduce the
transformation from the laboratory frame to the rotated frame
with y being the rotation axis,

⎧⎪⎨
⎪⎩

Sx
i = S̃z

i sin(θi ) + S̃x
i cos(θi ),

Sz
i = S̃z

i cos(θi ) − S̃x
i sin(θi ),

Sy
i = S̃y

i ,

where θi = Q · ri and Q = (π, π ) is the ordering vector of the
two-sublattice antiferromagnetic order. Then, the Hamiltonian
reads as

H = J

2

∑
i

∑
j∈N (i)

[
S̃x

i S̃x
j − S̃y

i S̃y
j + �S̃z

i S̃z
j

]
. (12)

By using the Holstein-Primakoff transformation⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S̃z
i = S − â†

i âi,

S̃x
i + iS̃y

i = √
2S
(

1 − â†
i âi

2S

) 1
2
âi = √

2S âi + O(S− 1
2 ),

S̃x
i − iS̃y

i = √
2Sâ†

i

(
1 − â†

i âi

2S

) 1
2 = √

2S â†
i + O(S− 1

2 )

(13)

with â†
i and âi being, respectively, the bosonic creation and

annihilation operators and the Fourier transformation of these
operators

â†
i = 1√

N

∑
q

â†
qe−iq·ri , âi = 1√

N

∑
q

âqeiq·ri , (14)

we obtain

H = 1

2

∑
q

[Aq(â†
qâq + âqâ†

q) − Bq(â†
qâ†

−q + âqâ−q)]

+ const + O(S0),

where Aq = −4JS�, Bq = −4JSγq, and γq = 1
2 [ cos(qx ) +

cos(qy)]. The above Hamiltonian for the âq magnons can be
diagonalized with the help of the Bogoliubov transformation⎧⎪⎪⎪⎨

⎪⎪⎪⎩
âq = uq b̂q + vq b̂†

−q,

uq = u−q = 1
2

[(
Aq+Bq

Aq−Bq

)1/4
+
(

Aq−Bq

Aq+Bq

)1/4]
,

vq = v−q = 1
2

[(
Aq+Bq

Aq−Bq

)1/4
−
(

Aq−Bq

Aq+Bq

)1/4]
,

where b̂†
q and b̂q are the creation and annihilation operators

for magnons. In the XY (� < 1) and the Heisenberg (� = 1)
cases, we take the quantization axis in the x and z directions,
respectively. The diagonalized magnon Hamiltonian in the
three cases, � > 1, � = 1, and � < 1, is summarized as
follows:

H �
∑

q

εq b̂†
qb̂q, εq =

√
A2

q − B2
q,

Aq = 4|J|S
{
� (� � 1),
1 − 1

2 (1 − �)γq (� < 1),

Bq = 4|J|S
{
γq (� � 1),
1
2 (1 + �)γq (� < 1),

γq = 1
2 [cos(qxa) + cos(qya)], (15)

where we have dropped constant and higher-order terms. Note
that in the XY and Heisenberg cases of � � 1, the magnon
is a gapless excitation, while in the Ising case of � > 1, the
magnon excitation has the gap �gp = 4|J|S√

�2 − 1.
In the same manner, the thermal and spin cur-

rents in Eqs. (6) and (5) can be expressed by the b̂q
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magnons as follows:

Jth = (4|J|S)2
∑

q

ε̃q ṽq b̂†
qb̂q + O(S1), (16)

Jz
s =

⎧⎪⎪⎨
⎪⎪⎩

2|J|S∑q ṽq

[
Aq

Bq
(b̂†

qb̂†
−q+Q + b̂qb̂−q+Q)

− (b̂†
qb̂q+Q + b̂qb̂†

q+Q)
]

+ O(S0) (� � 1),

O(S1/2) (� < 1),
(17)

where

ε̃q = εq

4|J|S ,

ṽq = vq

4|J|S , vq = ∇qεq. (18)

Since vq = ∇qεq represents the magnon velocity, the thermal
current Jth can be regarded as the energy flow carried by the
magnons. In contrast to the thermal current Jth having the
common magnon-representation independent of the magnetic
anisotropy �, the spin current in the Ising and Heisenberg
cases (� � 1) is expressed in the form fundamentally differ-
ent from the one in the XY case (� < 1). The former has
the leading-order contribution of the order of O(S1), while
the latter does not. In the XY case, the spin current due
to the magnon propagation is of the order of O(S1/2). As the
spin-wave expansion is the expansion with respect to 1/S,
such a higher-order term is dropped in spirits of LSWT, so
that Jz

s vanishes in the low-temperature ordered phase of the
XY-type spin systems. The difference between � � 1 and
� < 1 cases stems from the difference in the direction of the
quantization axis of spin: for � � 1, the quantization axis is in
the z direction, whereas for � < 1, it is in the xy plane which
is perpendicular to the spin polarization of the spin current Jz

s.
Remember that although the spin current has its foundation on
the conservation of the magnetization, only the z component
of the magnetization is conserved in the present anisotropic
XXZ model in Eq. (1).

B. Static physical quantities

As the magnon Hamiltonian (15) is already diagonalized,
one can easily calculate the thermal average of the current-
related static quantities 〈Jth,ν (0) Jth,μ(0)〉 and 〈Jz

s,ν (0) Jz
s,μ(0)〉.

First, we consider the thermal average of the equal-time
correlation function for the thermal current 〈Jth,ν (0) Jth,μ(0)〉.
With the use of the magnon representation in Eq. (16), we
have

〈Jth,ν (0) Jth,μ(0)〉 =
∑
q,q′

εqεq′vq,μvq′,ν〈b̂†
qb̂qb̂†

q′ b̂q′ 〉

= δμ,ν

∑
q

[εq vq,μ]2 fB(εq)[1 + 2 fB(εq)],

(19)

where we have used the formula

〈b̂†
qb̂qb̂†

q′ b̂q′ 〉 = T 2

Z

∂2 Z

∂εq∂εq′
,

Z = Tr

[
exp

(
− 1

T

∑
q

εqb̂†
qb̂q

)]

=
∏

q

[− fB(−εq)] (20)

with the Bose-Einstein distribution function fB(x) = (ex/T −
1)−1. Note that in Eq. (19), the off-diagonal term of μ = ν

vanishes after the summation over q because vq,μ ∝ sin(qμ)
is an odd function of q.

Now, we shall move on to the classical spin system. In the
classical limit of

fB(x) → T

x
, (21)

the equal-time correlation for the classical spins
〈Jth,ν (0) Jth,μ(0)〉cl is obtained as

〈Jth,ν (0) Jth,μ(0)〉cl = δμ,ν2 T 2
∑

q

[vq,μ]2. (22)

At this point, the T 2 dependence of 〈Jth,ν (0) Jth,μ(0)〉cl is clear
at least in the Ising and XY cases. In the Heisenberg case,
however, the additional temperature dependence due to the
spin-correlation length ξs comes in through the summation
over q. As we mentioned in the beginning of this section,
ξs enters in the form of the lower cutoff in the q space, i.e.,
ξ−1

s � |q|. For completeness, we shall evaluate the summation
over q in Eq. (22) in all the three cases. Since the dominant
contribution comes from the low-energy excitation near |q| �
0, we have

εq �

⎧⎪⎪⎨
⎪⎪⎩

√
�2

gp + (4|J|S)2

2 |q|2 (� > 1),

2
√

2|J|S |q| (� = 1),

2|J|S√
1 + � |q| (� < 1).

Then, the q summation can be replaced with the following
integral over εq:

∑
q

� L2

(2π )2

∫ 2π

0
dφq

∫ εmax

εmin

dεq D(εq),

εmin =

⎧⎪⎪⎨
⎪⎪⎩

�gp (� > 1),

2
√

2|J|S
ξs/a

(� = 1),

0 (� < 1),

(23)

where the density of states D(εq) and the higher-energy cutoff
εmax are given by D(εq) = 2εq/(4|J|S)2 and εmax ∼ 4|J|S�

for � � 1, and D(εq) = [4/(1 + �)]εq/(4|J|S)2 and εmax ∼
4|J|S for � < 1. Note that in the Heisenberg case of � = 1,
the low-energy cutoff εmin possesses the temperature depen-
dence via the spin-correlation length ξs/a ∼ exp[bH |J|/T ].
As we will see below, this additional temperature dependence
coming from ξs is negligibly small for the thermal transport,
but not for the spin transport. By using Eq. (23) and perform-
ing the integral over εq, we can evaluate the q summation in
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Eq. (22) to yield

〈Jth,ν (0) Jth,μ(0)〉cl/L2

� δμ,ν

T 2

8π
(4|J|S)2

×

⎧⎪⎪⎨
⎪⎪⎩

1 − (�2−1
�

)2 + 2 �2−1
�

ln
(

�2−1
�

)
(� > 1),

1 − 1
2

(
a
ξs

)2
(� = 1),

2 − 4�
(1+�)2 (� < 1).

(24)

As the correction (a/ξs)2 in the � = 1 case is negligibly
small, 〈Jth,ν (0) Jth,μ(0)〉 in the classical limit exhibits the
T 2 behavior at low temperatures, being independent of the
magnetic anisotropy �.
Next, we calculate the equal-time correlation function for the
spin current in the classical limit 〈Jz

s,ν (0) Jz
s,μ(0)〉cl. Since in

the XY case of � < 1, the spin current is absent within the
leading-order magnon contribution [see Eq. (17)], we only
consider the � � 1 case in which after some manipulations,
we have〈

Jz
s,ν (0) Jz

s,μ(0)
〉

= −1

4

∑
q,q′

vq,νvq′,μ

{
(δq,q′ + δq,q′+Q)

× [ fB(εq) fB(−εq+Q) + fB(−εq) fB(εq+Q)]

− Aq

Bq

Aq′

Bq′

(
δq,q′ + δq,−q′+Q

)

× [ fB(εq) fB(ε−q+Q) + fB(−εq) fB(−ε−q+Q)]

}
. (25)

Note that Eq. (25) is obtained for the quantum spin system.
Now, we take the classical limit of Eq. (25). As the relations
A±q+Q = Aq, B±q+Q = −Bq, and v±q+Q = ±vq are satisfied
for � � 1, the classical limit Eq. (21) yields

〈
Jz

s,ν (0) Jz
s,μ(0)
〉
cl = δμ,ν

∑
q

[vq,μ]2

(
1 + A2

q

B2
q

)
T 2

ε2
q

. (26)

By using Eq. (23), one can evaluate the summation over q in
Eq. (26). The final result is summarized as follows:〈

Jz
s,ν (0) Jz

s,μ(0)
〉
cl/L2

� δμ,ν

T 2

4π

×

⎧⎪⎨
⎪⎩

(3�2 − 1) ln
(

�√
�2−1

)− 3
2 (� > 1),

ln(8) − 1
2 + 2 ln

(
ξs

a

)+ 1
4

a2

ξ 2
s

(� = 1),
0 (� < 1).

(27)

Note that in the XY case of � < 1, 〈Jz
s,ν (0) Jz

s,μ(0)〉cl is
zero because the spin current is absent within the leading-
order magnon contribution [see Eq. (17)]. In the Ising
case of � > 1, the equal-time correlation of the spin
current 〈Jz

s,ν (0) Jz
s,μ(0)〉cl has the same T 2 dependence as

〈Jth,ν (0) Jth,μ(0)〉cl. In the Heisenberg case of � = 1, on
the other hand, 〈Jz

s,ν (0) Jz
s,μ(0)〉cl includes a non-negligible

correction term coming from the temperature-dependent
ξs, i.e., T 2 ln(ξs/a) ∼ bH |J| T and, thus, takes the form

of 〈Jz
s,ν (0) Jz

s,μ(0)〉cl/L2 ∼ δμν (const T 2 + T ). The correction
term (∝T ) becomes the leading-order contribution at lower
temperatures, which is in sharp contrast to 〈Jth,ν (0) Jth,μ(0)〉cl

with the irrelevant correction terms [see Eq. (24)]. As we will
see below, such a situation is also the case for the dynamical
quantities.

C. Dynamical physical quantities

In the classical spin systems, the conductivities κμν and
σ s

μν are obtained from the time correlation of the associated
currents [see Eq. (11)]. Here, we consider the current dynam-
ics brought by the magnon propagation in the presence of the
magnon-magnon scatterings. In order to calculate the thermal
average of the time correlation, it is convenient to start from
the quantum-mechanical system and take the classical limit
of Eq. (21) afterward. In the quantum-mechanical system,
the dynamical correlation function La,b

μν (ω) in Eq. (9) can be
expressed in the following form [29]:

La,a
μν (ω) = −Qa,R

μν (ω) − Qa,R
μν (0)

iω
,

Qa,R
μν (ω) = Qa

μν (ω + i0), (28)

Qa
μν (iωn) = − 1

L2

∫ 1/T

0
〈Tτ Ja,μ(τ )Ja,ν (0)〉 eiωn τ dτ.

Here, Qa
μν (iωn) is a response function and ωn = 2πnT is the

bosonic Matsubara frequency. Then, the thermal conductivity
κμν and the spin-current conductivity σ s

μν are given by

κμν = 1

T
i
d Qth,R

μν (ω)

d ω

∣∣∣∣
ω=0

,

(29)

σ s
μν = i

d Qs,R
μν (ω)

d ω

∣∣∣∣
ω=0

.

We first calculate the thermal conductivity κμν . For the
thermal current carried by the magnons in Eq. (16), the
response function Qth

μν (iωn) is given by [29]

Qth
μν (iωn) = −1

L2

∑
q

ε2
qvq,μ vq,ν T

∑
ωm

Dq(iωm)Dq(iωm + iωn)

= −1

L2

∑
q

ε2
qvq,μ vq,ν

∫ ∞

−∞

dx

2π i

[
DR

q (x) − DA
q (x)
]

× [DR
q (x + iωn) + DA

q (x − iωn)
]

fB(x), (30)

where DR
q (x) [DA

q (x) = [DR
q (x)]∗] is the retarded (advanced)

magnon Green’s function obtained by analytic continuation
iωm → ω + i0 in the temperature Green’s function Dq(iωm)
defined by

Dq(τ ) = −〈Tτ b̂q(τ )b̂†
q(0)〉 = T

∑
ωm

Dq(iωm) e−iωmτ . (31)

With the use of Eq. (29), the thermal conductivity in the
quantum system is formally expressed as

κμν = T −1

4πL2

∫ ∞

−∞
dx
∑

q

ε2
q vq,μ vq,ν f ′

B(x)
[
DR

q (x) − DA
q (x)
]2

.

(32)
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Here, the magnon Green’s function DR
q (x) is given by

DR
q (x) = 1

x − εq + iα x
= [DA

q (x)
]∗

, (33)

where the dimensionless coefficient α represents the magnon
damping which corresponds to the Gilbert damping in the
LLG equation [30,31]. In general, the damping α originates
from the interactions associated with spins in solids, so that it
may be brought not only by the magnon-magnon scatterings
but also, for example, by magnon-phonon scatterings. In this
work, however, the starting point is the spin Hamiltonian
(1) and no further assumption is made. Thus, α is of purely
magnetic origin and brought by the magnon-magnon scatter-
ings. Since the temperature dependence of α has already been
calculated in the typical case of � = 1 [27,32], we will skip
the microscopic derivation of α in this paper.

In the classical spin system, the concrete expression of
Eq. (32) can straightforwardly be derived, as shown below.
Substituting Eq. (33) into Eq. (32) and taking the classical
limit of f ′

B(x) = −T/x2, we obtain the following expression
for the thermal conductivity in the classical spin systems κcl

μν

as

κcl
μν = 1

2L2

1 + α2

α

∑
q

1

εq
vq,μ vq,ν , (34)

where the equation∫ ∞

−∞

dx[
(x − εq)2 + (αx)2

]2 = π

2

1 + α2

ε3
qα

3
(35)

has been used. The summation over q can be evaluated in the
same manner as that for the static physical quantities. With the
use of Eq. (23), we obtain

κcl
μν � δμ,ν

1

12π

1 + α2

α
4|J|S

×

⎧⎪⎪⎨
⎪⎪⎩

(� − √
�2 − 1)3 (� > 1),(

1 −
√

2
2

a
ξs

)2(
1 +

√
2

4
a
ξs

)
(� = 1),

3
2 − 2�

(1+�)2 (� < 1).

(36)

Only the longitudinal components of the thermal conductivity
κcl

μμ are nonvanishing. When the magnon damping is suf-
ficiently small such that α � 1, it follows that κcl

μν ∝ 1/α,
which agrees with the results obtained in other theoretical
approaches [31,33].

One can see from Eq. (36) that in the Heisenberg case
of � = 1, although the spin-correlation length ξs rapidly
increases toward T = 0, such a temperature effect is irrelevant
at lower temperatures because ξs enters in κcl

μμ in the form of
1/ξs. Thus, in all the three (� > 1, � = 1, and � < 1) cases,
the temperature dependence of κcl

μμ ∝ 1/α is governed by the
magnon damping factor α.

The damping of the antiferromagnetic magnon due to
multimagnon scatterings has already been calculated by us-
ing Feynman diagram techniques in Refs. [27,32]. The tem-
perature dependence of α in the classical Heisenberg anti-
ferromagnet essentially follows the T 2 form, i.e., α ∝ T 2,
which results from the leading-order scattering process in-
volving four magnons. In the XY-type and Ising-type clas-

sical spin systems, although the concrete expression of α is
not available, the same temperature dependence α ∝ T 2 is
expected because the same types of the Feynman diagrams
(the same leading-order scattering processes) contribute to
the magnon damping. Of course, there must be quantitative
differences among the three cases. In particular, for the Ising-
type anisotropy of � > 1, the magnon excitation is gapped,
so that the phase space satisfying the energy conservation in
the calculation of the relevant Feynman diagrams would be
shrunk with increasing �, resulting in a smaller value of α.
Apart from such a quantitative difference which may become
serious for strong Ising-type anisotropies, the longitudinal
thermal conductivity κcl

μμ in the classical limit should behave
as κcl

μμ ∝ 1/α ∝ 1/T 2 in all the three (� > 1, � = 1, and
� < 1) cases.

Now, we will move on to the calculation of the spin-current
conductivity σ s

μν based on Eq. (29). As in the case of the
thermal current, starting from the magnon representation of
the spin current in Eq. (17), we can write the response function
Qs

μν (iωn) as

Qs
μν (iωn) = −1

4L2

∑
q,q′

vq,μ vq′,ν

{
(δq,q′ + δq,q′+Q)F+

q (iωn)

+ Aq

Bq

Aq′

Bq′
(δq,q′ + δq,−q′+Q)F−

q (iωn)

}
,

F±
q (iωn) = T

∑
ωm

Dq(iωm)[DQ±q(iωn ± iωm)

+DQ±q(−iωn ± iωm)]

=
∫ ∞

−∞

dx

2π i
fB(x)
{[
DR

Q±q(±x + iωn)

+DA
Q±q(±x − iωn)

]
× [DR

q (x)−DA
q (x)
]± [DR

Q±q(±x)−DA
Q±q(±x)

]
× [DR

q (x + iωn) + DA
q (x − iωn)

]}
. (37)

Then, the spin-current conductivity σ s
μν is formally written as

σ s
μν = 1

8πL2

∫ ∞

−∞
dx
∑
q,q′

vq,μ vq′,ν f ′
B(x)
[
DR

q (x) − DA
q (x)
]

×
{

(δq,q′ + δq,q′+Q)
[
DR

q+Q(x) − DA
q+Q(x)

]

− Aq

Bq

Aq′

Bq′
(δq,q′ + δq,−q′+Q)

[
DR

−q+Q(x) − DA
−q+Q(x)

]}
.

(38)

In the same manner as that for κμν , we take the classical limit
of Eq. (38). By substituting Eq. (33) into Eq. (38), taking the
classical limit of f ′

B(x) = −T/x2, and using Eq. (35) and the
formula

∫ ∞

−∞

dx

[(x − εq)2 + (αx)2][(x + εq)2 + (αx)2]
= π

2

1

ε3
qα

,
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we have the spin-current conductivity in the classical spin
systems σ s,cl

μν as follows:

σ s,cl
μν = 1

2L2
T
∑

q

vq,μ vq,ν

1

ε3
q

[
1 + α2

α
+ α

A2
q

B2
q

]
. (39)

By further using the approximation (23), we finally obtain

σ s,cl
μν � δμ,ν

1

8π

T

4|J|S

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�−√
�2−1√

�2−1

[− 2+α2

3α
1
�

+ 4+5α2

3α

(
� − √

�2 − 1
)]

(� > 1),
1+2α2

α

√
2 ξs

a − 2+3α2

α
+ 1+α2

α

√
2

2
a
ξs

(� = 1),
0 (� < 1).

(40)

In contrast to the thermal conductivity κcl
μν , the spin-current

conductivity σ s,cl
μν reflects the difference in the ordering prop-

erties. First of all, in the XY case of � < 1, σ s,cl
μν is zero

because the spin current is absent within the leading-order
magnon contribution [see Eq. (17)]. In the Ising case of � >

1, as one can see from Eq. (40), the temperature dependence
of σ s,cl

μμ is determined by that of T/α. Since for relatively
weak anisotropies, α ∝ T 2 is expected to be satisfied, the
longitudinal spin-current conductivity should exhibit the fol-
lowing temperature dependence: σ s,cl

μμ ∝ T/α ∝ T −1. In the
Heisenberg case of � = 1, one can see from Eq. (40) that
the spin-correlation length ξs enters in the form of ξs/α, so
that the longitudinal spin-current conductivity should diverge
toward T = 0 in the exponential form of σ s,cl

μμ ∝ ξs T/α ∼
exp[bH |J|/T ].

In the following sections, we will show numerical results
on κμν and σ s

μν , the low-temperature properties of which are
qualitatively consistent with the above analytical results. It
should be noted that the transport properties near the phase
transition, which is our main focus of this work, is out of the
applicability range of LSWT.

IV. NUMERICAL RESULTS ON THE THERMAL
CONDUCTIVITY

In this section, we will discuss the association between the
phase transition and the thermal transport based on numerical
results obtained in the Ising-type (� > 1), XY-type (� < 1),
and Heisenberg-type (� = 1) spin systems. In this paper, the
parameter values of � = 1.05 and 0.95 are basically used
in the Ising and XY cases, respectively, as typical values
slightly deviating from � = 1 of the isotropic Heisenberg
case. From the MC simulations (see Appendix), the transition
temperature in each case is estimated to be TN/|J| � 0.75 for
� = 1.05 and TKT/|J| � 0.6 for � = 0.95 [34–36].

In Eq. (11), the temperature dependence of κμν is de-
termined by the integrated value of the time correlation of
the thermal current 〈Jth,ν (0) Jth,μ(t )〉 except the trivial T −2

factor, so that we will start from the temperature dependence
of 〈Jth,ν (0) Jth,μ(t )〉. Figure 2 shows the time-correlation
function normalized by the system size 〈 jth,x(0) jth,x (t )〉 ≡
〈Jth,x (0) Jth,x (t )〉/L2 at different temperatures in the Ising-
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FIG. 2. The time-correlation function of the thermal current
〈 jth,x (0) jth,x (t )〉 at T/|J| = 0.74 (top), T/|J| = 0.66 (middle), and
T/|J| = 0.3 (bottom) in the (a) Ising-type (� = 1.05), (b) XY-type
(� = 0.95), and (c) Heisenberg-type (� = 1) spin systems. Time
t and 〈 jth,x (0) jth,x (t )〉 are measured in units of |J|−1 and |J|4,
respectively.

type (� = 1.05), XY-type (� = 0.95), and Heisenberg-type
(� = 1) spin systems. System-size dependence can hardly be
seen, suggesting that the thermal transport is a spatially local
phenomenon. As for the effect of the magnetic anisotropy,
there is no qualitative difference among the three cases. With
decreasing temperature, the time correlation decays more
slowly in time. In other words, the relaxation time of the
thermal current, which we denote as τth, becomes longer.
Thus, the associated thermal conductivity κμν is expected to
follow a common monotonic temperature dependence.

Figure 3 shows the longitudinal and transverse thermal
conductivities as a function of temperature T in the Ising-
type (� = 1.05), XY-type (� = 0.95), and Heisenberg-type
(� = 1) spin systems. Because the yy (xy) component of
κμν is equivalent to the xx (yx) component in the present
square-lattice NN model, only the the xx and yx components
κxx and κyx are shown. One can see from Fig. 3 that in all the
three cases, the transverse Hall response κyx is absent at 2σ

precision (see lower panels) and the longitudinal thermal con-
ductivity κxx gradually increases toward T = 0 (see the upper
main panels). Although the phase transition occurs in the
anisotropic spin systems, no clear anomaly can be seen in the
thermal conductivity at the magnetic transition temperature
TN or the KT topological transition temperature TKT. Thus, in
view of the main focus of this work, our conclusion is that the
strong association between the thermal conductivity and the
phase transition cannot be observed in the present NN XXZ
model in two dimensions. Below in this section, to shed light
on the basic properties of the thermal transport in the classical
spin systems, we will devote ourselves to the low-temperature
behavior of the longitudinal thermal conductivity κxx.

For the XY-type anisotropy � < 1, the temperature de-
pendence of κxx in Fig. 3(b) is not altered qualitatively by
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FIG. 3. The temperature dependence of the thermal conductivity κμν in the (a) Ising-type (� = 1.05), (b) XY-type (� = 0.95), and
(c) Heisenberg-type (� = 1) spin systems, where upper and lower panels show the longitudinal and transverse conductivities, respectively. κμν

is measured in units of |J|. In (a) and (b), red arrows indicate the magnetic and KT transition temperatures TN/|J| � 0.75 and TKT/|J| � 0.6,
respectively. Insets show T 2 κμν in the same temperature range as that of the main panels.

the change in �. For the Ising-type anisotropy � > 1, on
the other hand, the magnon excitation has the gap �gp =
4|J|S√

�2 − 1, so that the thermal current, which is the
energy flow carried by the magnons, and the associated con-
ductivity κxx are expected to be suppressed with increasing �.
Figure 4 shows the longitudinal thermal conductivity κxx as a
function of T/TN for various values of � > 1. Not only the
absolute value of κxx but also the divergent behavior toward
T = 0 is suppressed by the increase of �. At least for not
so strong Ising-type anisotropy, however, κxx tends to diverge
toward T = 0, roughly showing a power-law behavior. Here-
after, we will discuss the origin of such a power-law-type
temperature dependence, focusing on the almost isotropic spin
systems.

T/ T

κ
   
 

x x
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FIG. 4. The log-log plot of the longitudinal thermal conductivity
κxx as a function of T/TN in the cases of the Ising anisotropies of
� = 1.05 (top), � = 1.2 (middle), and � = 5 (bottom).

As one can see from Eq. (11), κxx involves the triv-
ial T −2 dependence. In order to extract the nontrivial
temperature dependence other than the T −2 factor, T 2κxx =∫

dt 〈 jth,x(0) jth,x(t )〉 is plotted in the insets of the upper
panels of Fig. 3 as a function of temperature. In the anisotropic
cases of � = 1, T 2κxx tends to saturate to a constant value at
the lowest temperature, whereas in the isotropic case of � =
1, it remains increasing toward T = 0. Except this difference
at the lowest temperature, T 2κxx shows a weak monotonic in-
crease below T/|J| � 0.8 in both the anisotropic and isotropic
cases. Thus, the divergent behavior toward T = 0 in κxx is
mainly due to the T −2 factor, but in the low-temperature
range of our simulations, κxx increases slightly faster than
T −2 due to the nontrivial contribution originating from the
thermal fluctuation T 2κxx = ∫ dt 〈 jth,x(0) jth,x(t )〉. The ana-
lytical result in Eq. (36), on the other hand, shows that the
thermal conductivity due to the magnon propagation should
behave as κxx ∝ 1/α ∝ T −2. As mentioned above, at least
in the temperature range of our simulations, the numerically
obtained κxx increases faster than T −2. In order to examine the
origin of the deviation between the numerical and analytical
results on the temperature dependence of κxx, we will look
into the details of the temperature dependence of the physical
quantities related to 〈 jth,x(0) jth,x(t )〉.

In Fig. 2, the time correlation 〈 jth,x(0) jth,x(t )〉 decays
exponentially in the form of e−t/τth with the relaxation
time of the thermal current τth, so that we could assume
〈 jth,x(0) jth,x(t )〉 � 〈| jth,x(0)|2〉e−t/τth . Then, by carrying out
the integral over time in Eq. (11), one can estimate the longi-
tudinal thermal conductivity as κxx � T −2 〈| jth,x(0)|2〉 τth. As
the data on the static quantity 〈| jth,x(0)|2〉 can be compared
directly with the analytical result given in Eq. (24), one can
relate τth to the magnon damping α via Eq. (36). If the
equal-time correlation 〈| jth,x(0)|2〉 follows the T 2 dependence
expected in LSWT, the relaxation time of the thermal current
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FIG. 5. The log-log plots of the temperature dependence of
〈| jth,x (0)|2〉 (left panels) and the relaxation time of the thermal
current τth (right panels) in the (a) Ising-type (� = 1.05), (b) XY-
type (� = 0.95), and (c) Heisenberg-type (� = 1) spin systems. τth

and 〈| jth,x (0)|2〉 are measured in units of |J|−1 and |J|4, respectively.
In the left panels, 〈| jth,x (0)|2〉 is multiplied by 100 such that the scale
of the vertical axis be the same as that in the right panels. In the left
panels, a dashed curve represents a power function of T obtained by
fitting the low-temperature data in each case, and in the right panels,
the analytically expected T −2 dependence is presented for reference.

τth corresponds to the inverse magnon damping 1/α which is
roughly proportional to T −2 in the lowest-order approxima-
tion [27,32].

Figure 5 shows the temperature dependence of 〈| jth,x(0)|2〉
and τth in the three cases of � = 1.05, � = 0.95, and � = 1,
where τth is extracted by fitting the 〈 jth,x(0) jth,x(t )〉 curve
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FIG. 6. The time-correlation function of the spin current
〈 jz

s,x (0) jz
s,x (t )〉 at T/|J| = 0.74 (top), T/|J| = 0.66 (middle), and

T/|J| = 0.3 (bottom) in the (a) Ising-type (� = 1.05), (b) XY-type
(� = 0.95), and (c) Heisenberg-type (� = 1) spin systems. Time t
and 〈 jz

s,x (0) jz
s,x (t )〉 are measured in units of |J|−1 and |J|2, respec-

tively. In (a), the inset shows the zoomed view of the short-time
region near t = 0 enclosed by a box in each main panel.

with the exponential form of e−t/τth . Since 〈| jth,x(0)|2〉 exhibits
a power-law behavior, we fit the low-temperature data with the
functional form of T x and find x = 1.8 ∼ 1.9. The resultant
fitting function T x in each case is represented by a dashed
curve together with the obtained value of x in Fig. 5. The
exponent x � 2 for 〈| jth,x(0)|2〉 is in good agreement with
the analytical result given in Eq. (24), so that the origin of the
discrepancy in the temperature dependence of κxx between the
numerical and analytical results consists in the relaxation time
τth which should satisfy the relation τth ∝ 1/α ∝ T −2. As
one can see from the right panels in Fig. 5, however, τth

diverges toward T = 0 slightly faster than T −2. A rough esti-
mation, which is done by fitting all the low-temperature data
for T/|J| � 0.6 with the functional form of T x, yields τth ∝
T −2.5 in all the three cases. The deviation from the expected
behavior 1/α ∝ T −2 may be attributed to the temperature
range considered. The temperature range available for fitting
might be higher than that assumed in the analytical calculation
where higher-order multimagnon-scattering processes are ne-
glected. With further decreasing temperature below the lowest
temperature of our simulation, τth and resultant κxx should
tend to obey the expected power-law form T −2. Actually, in
the Ising and XY cases, a precursor of such a tendency has
already been observed as the saturated behavior in T 2κxx (see
the insets of Fig. 3).

V. NUMERICAL RESULTS ON THE SPIN-CURRENT
CONDUCTIVITY

In Sec. III, based on the analytical calculations in LSWT,
we find that the effect of the magnetic anisotropy �, i.e.,
the difference in the ordering properties, is reflected in the
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FIG. 7. The temperature dependence of the spin-current conductivity σ s
μν in the (a) Ising-type (� = 1.05), (b) XY-type (� = 0.95), and

(c) Heisenberg-type (� = 1) spin systems, where upper and lower panels show the longitudinal and transverse conductivities, respectively. In
(a) and (b), red arrows indicate the magnetic and KT transition temperatures TN/|J| � 0.75 and TKT/|J| � 0.6, respectively. In (c), a dashed
curve in the upper panel represents the σ s

xx (T ) curve extrapolated to the thermodynamic limit of L → ∞ (see the main text).

low-temperature spin transport. In this section, we will discuss
the association between the phase transition and the spin-
current conductivity σ s

μν , based on numerical results.
We shall start from the time-correlation function of the

spin current 〈Jz
s,ν (0) Jz

s,μ(t )〉 which yields the nontrivial tem-
perature dependence of σ s

μν [see Eq. (11)]. Figure 6 shows
the time-correlation function normalized by the system size
〈 jz

s,x (0) jz
s,x(t )〉 = 〈Jz

s,x (0) Jz
s,x (t )〉/L2 at various temperatures

in the typical three cases, Ising-type (� = 1.05), XY-type
(� = 0.95), and Heisenberg-type (� = 1) spin systems.
These � values are the same as those in Figs. 2 and 3. At
the high temperature T/|J| = 0.74, one cannot see a clear
difference among the three cases. With decreasing tempera-
ture, 〈 jz

s,x (0) jz
s,x(t )〉 exhibits characteristic behaviors depend-

ing on the ordering properties. In the Ising case of � = 1.05,
〈 jz

s,x (0) jz
s,x(t )〉 shows an oscillating behavior in the very-short

timescale [see the insets of Fig. 6(a)], but its long-time relax-
ation whose characteristic timescale is denoted by τs becomes
slower at lower temperatures without showing the system-size
dependence. In the XY case of � = 0.95, the time correlation
persists for a long time at T/|J| = 0.66 slightly above TKT,
showing a large system-size dependence, whereas the time
correlation is lost within a short timescale at T/|J| = 0.3
much lower than TKT. In the Heisenberg case of � = 1, τs

becomes longer with decreasing temperature like in the Ising
case, but the system-size dependence is quite large. The above
difference is reflected in the spin-current conductivity σ s

μν

through the integration of 〈 jz
s,ν (0) jz

s,μ(t )〉 over the whole time
range.

Figure 7 shows the temperature dependence of the lon-
gitudinal (upper panels) and transverse (lower panels) spin-
current conductivities σ s

xx and σ s
yx for � = 1.05 (a), � = 1.05

(b), and � = 1 (c). As one can see from Fig. 7, in all the
three cases, the transverse Hall response σ s

yx (=σ s
xy) is absent

also for the spin transport as well as the thermal transport.
The longitudinal spin-current conductivity σ s

xx (=σ s
yy), on the

other hand, exhibits temperature dependence characteristic
of the three different universality classes. Here, we briefly
summarize the temperature dependence of σ s

xx, and a detailed
analysis in each case will be given in the following subsec-
tions. In the Ising case of � = 1.05, σ s

xx gradually increases
with decreasing temperature without showing a clear anomaly
at the magnetic transition temperature TN . Also, the system-
size dependence cannot be seen, as is already suggested from
the size-independent time-correlation functions in Fig. 6(a).
In the XY case of � = 0.95, σ s

xx exhibits a divergent sharp
peak toward the KT transition temperature TKT, and becomes
vanishingly small at lower temperatures below TKT. In the
Heisenberg case of � = 1, σ s

xx increases exponentially with
decreasing temperature, showing a large system-size depen-
dence at lower temperatures. Below in this section, we will
give a detailed description of the association between the
longitudinal spin-current conductivity σ s

xx and the ordering
properties of the system.

A. Ising-type spin system

In Fig. 7, for the Ising-type anisotropy of � = 1.05, a
clear signature of the magnetic transition at TN cannot be
seen in σ s

xx. We will first check that this result is not altered
qualitatively by the value of �, and subsequently discuss
the temperature dependence of σ s

xx in the long-range-ordered
phase below TN , making a comparison between the numerical
result and the analytical one in Sec. III.

The gap opening in the magnon excitation due to � is
expected to suppress σ s

xx, as is actually the case for the
thermal conductivity κxx. Figure 8 shows σ s

xx as a function
of T/TN for various values of � > 1. No clear signature of
the magnetic transition can commonly be seen near TN , and
as is expected, σ s

xx is suppressed by the increase of �. For
relatively weak magnetic anisotropies, σ s

xx increases toward
T = 0 and its temperature dependence is almost compatible
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dependence expected for an almost isotropic case is presented for
reference (see the main text).

with the analytical expectation σ s
xx ∝ T/α ∝ T −1, given in

Eq. (40). To look into the details of the temperature effect
on σ s

xx, we will examine the temperature dependence of the
current-related quantities for � = 1.05.

In Fig. 6(a), except for the short-time oscillating be-
havior, the time correlation 〈 jz

s,x(0) jz
s,x(t )〉 decays exponen-

tially in the form of e−t/τs , so that we could roughly write
〈 jz

s,x (0) jz
s,x(t )〉 ∼ 〈| jz

s,x(0)|2〉 e−t/τs . Then, from Eq. (11), the
longitudinal spin-current conductivity σ s

xx can be evaluated
as σ s

xx ∼ T −1 〈| jz
s,x(0)|2〉 τs. If the static quantity 〈| jz

s,x(0)|2〉
follows the T 2 behavior expected in LSWT [see Eq. (27)]
as is actually the case for the thermal transport, it follows
that σ s

xx ∼ T τs. By comparing this expression to Eq. (40), one
notices that τs is associated with the magnon damping α via
τs ∼ 1/α.

Figure 9 shows the temperature dependence of 〈| jz
s,x(0)|2〉

and τs, where τs is extracted by fitting the tail of
〈 jz

s,x (0) jz
s,x(t )〉 with e−t/τs . As one can see from the left panel

of Fig. 9, 〈| jz
s,x(0)|2〉 shows a power-law behavior of the form

T x in the ordered phase, and the exponent x is obtained by
fitting the low-temperature data as x = 2. The resultant fitting
function is represented by a dashed curve in the left panel of
Fig. 9. The obtained T 2 behavior for 〈| jz

s,x(0)|2〉 is in good
agreement with the analytical result in Eq. (27), so that τs ∼
1/α ∝ T −2 should be satisfied. The numerically obtained τs

shown in the right panel of Fig. 9 tends to obey the expected
power-law form T −2, but in the wide low-temperature range
of our simulation, it increases toward T = 0 slightly faster
than T −2. When we fit all the low-temperature data below
T/|J| = 0.6 with the functional form T x, the same tempera-
ture dependence as that of the thermal-current-relaxation time
τth is obtained for the spin-current-relaxation time, namely,
τs ∝ T −2.5, indicating that in the Ising-type spin systems, the
long-time relaxations of the spin and thermal transports are
of the same origin, namely, the magnon damping due to the
multimagnon scatterings.

In the short-time scale, on the other hand, one can see
the oscillating behavior in 〈 jz

s,x (0) jz
s,x(t )〉 [see the insets

in Fig. 6(a)], which is not observed in the thermal-current
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FIG. 9. The temperature dependence of the equal-time spin-
current correlation 〈| jz

s,x (0)|2〉 (left panel) and the relaxation time of
the spin current τs (right panel) in the case of the Ising anisotropy
of � = 1.05, where a red arrow indicates the magnetic transition
temperature TN . In the left panel, a dashed curve represents a power
function of T obtained by fitting the low-temperature data, and in the
right panel, the analytically expected T −2 dependence is presented
for reference. τs and 〈| jz

s,x (0)|2〉 are measured in units of |J|−1 and
|J|2, respectively. In the left panel, 〈| jz

s,x (0)|2〉 is multiplied by 100
such that the scale of the vertical axis be the same as that in the
right panel.

relaxation. Although the origin of the oscillation is not clear,
this suggests that the spin-current relaxation may involve not
only the ordinary magnon damping but also other effects of
the magnetic excitations. As we will see below, in the XY-type
spin systems, the vortex excitations come into play in the
spin-current relaxation, leading to the divergence of σ s

xx at
the KT transition temperature.

B. XY-type spin system

In the XY antiferromagnet with the weak anisotropy � =
0.95, as shown in Fig. 7(b), the longitudinal spin-current
conductivity σ s

xx (=σ s
yy) is significantly enhanced near TKT,

but once entering in the low-temperature phase below TKT,
σ s

xx becomes vanishingly small. These features are universal
in the XY-type spin systems, being independent of the values
of �. Furthermore, even if the antiferromagnetic exchange
interaction J < 0 is replaced with a ferromagnetic one J >

0, the universality class remains unchanged and the above
features in σ s

xx can be observed. Figure 10 shows the tem-
perature dependence of σ s

xx in the antiferromagnet (J < 0)
with � = 0.2 (a) and in the ferromagnet (J > 0) with � = 0
(b). In both cases, a divergent sharp peak can clearly be
seen near TKT. With increasing the system size L, the peak
height increases and the peak temperature approaches TKT

from above, suggesting that in the thermodynamic limit of
L → ∞, σ s

xx diverges at TKT. On crossing TKT from above, σ s
xx

drops to a vanishingly small value. Hereafter, we will discuss
the origin of this temperature dependence.

As discussed in Sec. III, in the ordered phase of the
XY-type spin system, the leading-order magnon spin current
is absent [see Eq. (17)] because of the orthogonal relation
between the quantization axis lying in the xy plane of the spin
space and the polarization direction of the spin current which
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current conductivity σ s

xx in the XY-type antiferromagnet (J < 0) with
� = 0.2 (a), and ferromagnet (J > 0) with � = 0 (b). A red arrow
indicates the KT transition temperature in the thermodynamic limit
TKT/|J| � 0.7 [34–36].

is in the z direction in the present XXZ model. The associ-
ated spin-current conductivity σ s

xx, therefore, should be van-
ishingly small, although higher-order magnon contributions
may have little effect on the spin transport. The low-
temperature feature observed below TKT in Figs. 7(b) and
10 is understood as a manifestation of this nature inherent
to the XY-type anisotropy. Thus, the nontrivial issue is the
significant enhancement of σ s

xx near TKT observed in the
numerical simulations.

Since the system-size-dependent divergent peak near TKT is
commonly observed for the XY-type anisotropy, we focus on
the case of � = 0.95 as a representative example and discuss
the thermodynamic limit (L → ∞) of σ s

xx. Figure 11(a) shows
the system-size dependence of σ s

xx at various temperatures.
One can see that at temperatures away from TKT/|J| � 0.6,
σ s

xx as a function of the system size L saturates to a con-
stant value, which corresponds to σ s

xx in the thermodynamic
limit. The extrapolated L → ∞ value of σ s

xx and the cor-
responding original finite-size data in Fig. 7(b) are plotted
in Fig. 11(b) on the semilogarithmic scale. The divergent
behavior toward TKT/|J| � 0.6 and the sudden drop across
TKT can clearly be seen. Noting that the spin-correlation length
ξs in the KT transition is known to diverge in the form of
ξs/a ∼ exp [bKT/

√
T/TKT − 1] with bKT � π/2 [37], we fit

the L → ∞ data of σ s
xx at T � TKT with the functional form

of A exp [B/
√

T/TKT − 1]. The fitting parameters A and B
are obtained as B = 2.26 ± 0.10 and A = 0.008 ± 0.002. The
σ s

xx(T ) curve extrapolated in this way is represented by a
dashed curve in Fig. 11(b). One can see that the obtained
exponential form well characterizes the numerically obtained
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xx (T ) curve extrapolated to the

thermodynamic limit (see the main text).

divergent behavior of σ s
xx, which, together with the obtained

B-value comparable to bKT, suggests that this pronounced
spin-transport phenomenon is closely related to the KT tran-
sition or, equivalently, the vortex binding-unbinding process.

In the KT transition, the spin-correlation length ξs corre-
sponds to the inter-free-vortex distance. With decreasing tem-
perature above TKT, the inter-free-vortex distance increases,
so that it becomes difficult for a single vortex to find out a
partner free antivortex to form a vortex pair. This means that in
terms of the time evolution, the single free vortex wanders for
a longer time until it collides with the partner free antivortex.
Thus, the lifetime of the single free vortex should get longer
on approaching TKT from above. Once across TKT, all the
vortices are paired up and a single vortex cannot be found any
more. Bearing this fundamental physics of the KT transition
in mind, we examine the temperature dependence of τs and
〈| jz

s,x(0)|2〉.
Figure 12 shows the temperature dependence of 〈| jz

s,x(0)|2〉
(a) and τs (b). The spin-current relaxation time τs is de-
termined by fitting the long-time tail of 〈 jz

s,x(0) jz
s,x(t )〉 in

Fig. 8(b) with the exponential form of e−t/τs . One can see from
Fig. 12 that on approaching TKT from above, τs is significantly
enhanced, while 〈| jz

s,x(0)|2〉 only shows a slight increase. In
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FIG. 12. The temperature dependence of the equal-time spin-
current correlation 〈| jz

s,x (0)|2〉 (a), and the spin-current relaxation
time τs (b), in the case of the XY-type anisotropy of � = 0.95, where
these quantities are measured in the same units as those in Fig. 9.
A red arrow indicates TKT and a dashed curve in (b) represents an
exponential function obtained by fitting the data above TKT.

the low-temperature phase below TKT, 〈| jz
s,x(0)|2〉 is strongly

suppressed as is expected from the analytical result that the
leading-order magnon spin current is absent and, correspond-
ingly, the relaxation becomes so rapid that τs cannot be
defined any more. The functional type characterizing the steep
increase in τs is also the exponential one. By fitting the data at
T � TKT with the form of Ã exp [B̃/

√
T/TKT − 1], we obtain

Ã = 0.013 ± 0.003 and B̃ = 2.58 ± 0.07. The extrapolated
τs(T ) curve is represented by a dashed curve in Fig. 12. One
can see that the obtained exponential form well characterizes
the numerically obtained divergent behavior of τs. As σ s

xx is
related to τs and 〈| jz

s,x(0)|2〉 via σ s
xx ∼ T −1 〈| jz

s,x(0)|2〉 τs, the
divergent behavior in σ s

xx originates from the divergence of
the spin-current relaxation time τs toward TKT. Actually, the
obtained values of B � 2.26 and B̃ � 2.58 almost coincide
with each other.

Now, we will address the physical interpretation of the
above result. In the KT topological transition, the distinct
feature above TKT is the existence of an isolated free vor-
tex and its dynamics. Since the vortex interacts with sur-
rounding magnons or spin waves, the vortex motion is
not ballistic, but rather diffusive [38–42]. Thus, the vor-
tex lifetime τvtx could be estimated roughly as τvtx ∝ ξ 2

s ∼
exp [2bKT/

√
T/TKT − 1], so that τvtx should get longer in the

exponential form toward TKT with 2bXT � π . Since the two
timescales τs and τvtx develop toward TKT in the almost same
manner as a function of temperature, it is naturally expected
that the vortex excitations play an important role in the spin-
current relaxation. Because σ s

xx is proportional to τs, we could
conclude that the divergent peak at TKT in the σ s

xx curve is

attributed to the topological excitations of the long-lifetime
vortices.

C. Heisenberg-type spin system

In the Heisenberg case of � = 1, the spin space is
isotropic, so that in contrast to the anisotropic cases of � = 1,
not only the z component of the magnetization, but also the
x and y components are conserved quantities. This enables
one to define the spin currents Jx

s and Jy
s as well as Jz

s, where
Jα

s = J
∑

〈i, j〉 (ri − r j )(Si × S j )
α can be derived in the same

manner as Eq. (5). Since all the spin currents Jx
s , Jy

s , and
Jz

s should be equivalent to one another, the associated spin-
current conductivities should also be equivalent. Thus, in the
Heisenberg case, we calculate the spin-current conductivity
averaged over the three spin components

σ s
μν = 1

T L2

∫ ∞

0
dt

1

3

(〈
Jx

s,ν (0) Jx
s,μ(t )
〉

+ 〈Jy
s,ν (0) Jy

s,μ(t )
〉+ 〈Jz

s,ν (0) Jz
s,μ(t )
〉)
, (41)

instead of Eq. (11). The spin-current conductivity so obtained
is shown in Fig. 7(c) as a function of temperature. In the
Heisenberg case, neither a magnetic transition nor a topolog-
ical one does not occur, so that the characteristic temperature
scale is absent except the exchange interaction |J|. In Fig. 7(c),
with decreasing temperature, the longitudinal spin-current
conductivity σ s

xx increases monotonically and a steep increase
sets in around T/|J| ∼ 0.8. As the system-size dependence
of σ s

xx becomes considerably larger at lower temperatures,
we will extrapolate the low-temperature σ s

xx(T ) curve in the
thermodynamic limit.

Figure 13(a) shows the system-size dependence of σ s
xx at

various temperatures. At lower temperatures, a larger system
size is necessary to obtain the thermodynamic-limit value of
σ s

xx, suggesting that in contrast to the thermal transport which
is a spatially local phenomenon, the spin transport captures
the long-length-scale magnetic properties. The extrapolated
thermodynamic-limit values of σ s

xx and the corresponding
original finite-size data in Fig. 7(c) are plotted in Fig. 13(b)
on the semilogarithmic scale as a function of the inverse
temperature 1/T . As the L → ∞ data at T/|J| � 0.8 are on
a straight line, we fit them by the exponential function of
AH exp [BH |J|/T ] with AH and BH being fitting parameters.
Note that in the Heisenberg model in two dimensions, ξs

increases in the exponential form of ξs/a ∼ exp [bH |J|/T ]
with bH � 2π [28]. The resultant fitting function with the ob-
tained values of AH = 0.0017 ± 0.0003 and BH = 5.1 ± 0.1
is represented by a dashed curve in Figs. 13(b) and 7(c). Since
the obtained value of BH � 5.1 is comparable to bH � 2π ,
it turns out that σ s

xx ∝ ξs, which is in good agreement with
the analytical result in Eq. (40). To get insight into the origin
of the rapid increase of σ s

xx, we examine the temperature
dependence of 〈| jz

s,x(0)|2〉 and τs like in the anisotropic cases
of � = 1.

The temperature dependence of 〈| jz
s,x(0)|2〉 and τs are

shown in Fig. 14, where τs is extracted from 〈 jz
s,x(0) jz

s,x(t )〉
in the same way as before. 〈| jz

s,x(0)|2〉 is size depen-
dent even at the lowest temperature, but its temperature
dependence is relatively weak. In LSWT, as shown in Eq. (27),
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FIG. 13. The longitudinal spin-current conductivity σ s
xx in the

Heisenberg case of � = 1. (a) The system-size dependence of σ s
xx

at various temperatures and (b) the semilog plot of σ s
xx as a function

of 1/T . In (a), an arrow represents the extrapolated L → ∞ value at
each temperature. In (b), a dashed curve represents the σ s

xx (T ) curve
extrapolated to the thermodynamic limit (see the main text).

ξs becomes relevant at lower temperatures, so that L � ξs

should be satisfied to evaluate the thermodynamic limit of
〈| jz

s,x(0)|2〉. As is suggested from the size-dependent data,
however, the maximum size of L = 384 seems to be still small
and the expected temperature dependence of const T 2 + T
cannot be seen. Compared with 〈| jz

s,x(0)|2〉, the temperature
dependence of τs is much more remarkable. As one can
see from Fig. 14(b), τs gets longer rapidly toward T = 0,
showing the considerably large system-size dependence. We
fit the almost size-independent data at 0.54 � T/|J| � 0.74
with the exponential form of ÃH exp [B̃H |J|/T ]. The resul-
tant curve with the obtained values of the fitting parameters
ÃH = 0.0006 ± 0.0002 and B̃H = 5.8 ± 0.2 is represented by
a dashed curve in Fig. 14(b). The obtained value of B̃H � 5.8
is close to bH � 2π and BH � 5.1. As σ s

xx is estimated roughly
as σ s

xx � T −1 〈| jz
s,x(0)|2〉 τs, the origin of the steep increase of

σ s
xx toward T = 0 is the enhanced relaxation time τs which

seems to have a direct association with the rapid growth of the
spin-correlation length ξs/a ∼ exp [bH |J|/T ].

VI. SUMMARY AND DISCUSSION

We have theoretically investigated transport properties
of the classical antiferromagnetic XXZ model on the
square lattice in which the anisotropy of the exchange
interaction � ≡ Jz/Jx plays a role to control the universality
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FIG. 14. The temperature dependence of the equal-time spin-
current correlation 〈| jz

s,x (0)|2〉 (a), and the relaxation time of the
spin current τs (b), in the Heisenberg case of � = 1, where these
quantities are measured in the same units as those in Fig. 9. A dashed
curve in (b) represents an exponential function obtained by fitting the
size-independent data at 0.54 � T/|J| � 0.74.

class of the system. In Ising-type (� > 1), XY-type (� <

1), and Heisenberg-type (� = 1) magnets, spins in the low-
temperature phase are, respectively, long-range ordered via a
magnetic phase transition, quasi-long-range ordered via the
KT topological transition, and disordered. Based on the linear
response theory, we have calculated the thermal conductivity
κμν and the spin-current conductivity σ s

μν by means of the hy-
brid Monte Carlo and spin-dynamics simulations. It is found
that σ s

μν reflects the effect of the anisotropy, i.e., the difference
in the ordering properties, while κμν does not with its longi-
tudinal component κxx (=κyy) increasing toward T = 0 as a
power function of temperature independently of �. For the
XY-type anisotropy, the longitudinal spin-current conductivity
σ s

xx (=σ s
yy) exhibits a divergence at the Kosterlitz-Thouless

(KT) transition temperature TKT obeying the exponential form
σ s

xx ∝ exp [B/
√

T/TKT − 1 ] with B = O(1), while for the
Ising-type anisotropy, the temperature dependence of σ s

xx is
almost monotonic without showing a clear anomaly at the
magnetic transition temperature TN . In the Heisenberg-type
isotropic case, σ s

xx exhibits a monotonic exponential increase
toward T = 0. By analyzing the time correlation of the spin
current at various temperatures, we find that the divergent
enhancement of σ s

xx at TKT is due to the exponential rapid
growth of the spin-current relaxation time toward TKT. Such
a long spin-current relaxation time can be interpreted as a
manifestation of the topological nature of a vortex whose
lifetime is expected to get longer toward TKT since the pair
annihilation of vortices should occur more sporadically with
the increase of the inter-free-vortex distance toward TKT. This
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suggests that the topological object of the vortex excitation
should be crucial for the spin transport.

Now, we will address possible experimental platforms to
investigate the pronounced enhancement of the longitudinal
spin-current conductivity σ s

μμ associated with the KT transi-
tion. As the divergent peak in the σ s

μμ(T ) curve toward TKT

can commonly be seen in both ferromagnets and antiferro-
magnets only if an XY-type anisotropy exists, good candidate
systems are quasi-two-dimensional magnets having the sig-
nature of the KT transition such as the S = 1

2 square-lattice
ferromagnet K2CuF4 [43–46], the S = 1 honeycomb-lattice
antiferromagnets BaNi2X2O8 (X = As, P, V) [47–53], the S =
5
2 honeycomb-lattice antiferromagnet MnPS3 [54–56], and the
stage-2 NiCl2 [57–59] and CoCl2 [60–62] graphite interca-
lation which are, respectively, S = 1 and S = 1

2 triangular-
lattice ferromagnets. In these compounds, a three-dimensional
interlayer coupling is extremely small, so that at first sight,
the system may be regarded as a two-dimensional XY-type
magnet. In reality, however, on approaching TKT at which
the spin-correlation length ξs diverges, the effective coupling
between neighboring layers grows rapidly as the area of the
correlated region ξ 2

s rapidly increases, eventually leading to a
three-dimensional long-range order as long as such a pertur-
bative coupling is nonzero. Indeed, all the above compounds
undergo a phase transition into a long-range-ordered state be-
fore reaching TKT. Nevertheless, they have a two-dimensional
XY-like crossover regime just above the magnetic transition,
in which the critical phenomena peculiar to the KT transition
have been observed. Thus, measurements of the spin-current
conductivity in this crossover regime could, in principle,
detect the pronounced enhancement of the longitudinal spin-
current conductivity toward the virtually existing TKT.

Here, we provide possible experimental setups to measure
the longitudinal spin-current conductivity σ s

μμ in the XY
magnets mentioned above. The measurement consists mainly
of two processes: injection and detection of the spin current.
We first consider the detection which can be done by using
the inverse spin-Hall effect. As shown in Fig. 1(b), the spin
current of our interest flows in the two-dimensional lattice
plane of the quasi-two-dimensional bulk XY magnets, with its
spin polarization being perpendicular to the easy (XY) plane.
Thus, a spin-Hall material such as Pt as a detector should be
attached to the XY magnet such that the interface between
the spin-Hall material and the magnet be perpendicular to
the easy plane. Then, the enhancement of σ s

μμ should be
observed as a large signal in the inverse spin-Hall detector.
The injection of the spin current, on the other hand, could be
done by using two different alternative mechanisms. One is
the spin Seebeck effect in which the spin current is generated
by a temperature gradient applied to the interface [63–68].
Since our main result, the significant enhancement of σ s

μμ,
is obtained in the critical region just above TKT, the spin
Seebeck effect applicable in this temperature region would be
the paramagnetic one [69,70] in which an external magnetic
field H is necessary to break the time-reversal symmetry.
If our result obtained at H = 0 is relatively robust against
the external magnetic field, the enhancement of σ s

μμ may be
observed in the spin Seebeck experiment. The other possible
mechanism to generate the spin current is the spin pumping
effect in which the spin current is injected from a ferromagnet

adjacently attached to the XY magnet [1,2,4,5,71]. In this
case, the experimental geometry for the spin pumping should
be set up such that the injected spin current flows in the two-
dimensional lattice plane with its polarization perpendicular
to the easy plane. In principle, such a spin current could
also be generated by applying a magnetic-field gradient [see
Fig. 1(b)], although a short-distance control of the strength of
the magnetic field might be challenging.

In the XY magnets, the true divergence associated with
the topological transition cannot be detected because the
three-dimensional long-range order inevitably appears before
reaching TKT. In Heisenberg magnets, however, such a diver-
gence might be detectable if there exists a magnetic frustration
leading to a noncollinear spin ordering. In such frustrated
Heisenberg magnets, a topological defect is the so-called Z2

vortex and the KT-type Z2-vortex transition is expected to
occur at Tv [72–74]. In contrast to the KT transition, although
the inter-free-vortex distance diverges at Tv , ξs remains finite
at any finite temperature. Thus, a divergent enhancement
associated with the Z2-vortex transition, if it occurs, is not
necessarily masked by a three-dimensional long-range order
in real materials. This may be an interesting issue, but we will
leave further detailed analysis for our future work.

As demonstrated in this paper, the thermal transport is
insensitive to the difference in the ordering properties. In
extracting the magnetic contribution from the total longitudi-
nal thermal conductivity, great care has to be taken because
it contains phonon contribution as well in the temperature
range typical for magnetic transitions. In contrast, the spin-
current conductivity should be of purely magnetic origin
unless a magnon-phonon coupling is strong enough, suggest-
ing that the spin-current measurements may be a promis-
ing probe to detect nontrivial magnetic excitations such as
vortices.
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APPENDIX: ORDERING PROPERTIES OF THE
CLASSICAL ANTIFERROMAGNETIC XXZ MODEL ON

THE SQUARE LATTICE

The ordering properties of the classical antiferromagnetic
XXZ model (1) on the square lattice can be investigated by
MC simulations. Figure 15 shows the temperature dependence
of the specific heat C (upper), the order parameter for the
two-sublattice antiferromagnetic order (middle), the ratio of
the spin-correlation length to the linear system size L (bottom)
for � = 1.05, 0.95, and 1. Here, in the Ising-type (� =
1.05), XY-type (� = 0.95), and Heisenberg-type (� = 1)
spin systems, the order parameters and the associated spin-
correlation lengths are, respectively, given by mz

AF and ξ z
s , mxy

AF
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and ξ
xy
s , and mAF and ξs which are defined by

mz
AF =
√

Gz(Q),

mxy
AF =
√

Gx(Q) + Gy(Q),

mAF =
√

Gx(Q) + Gy(Q) + Gz(Q),

ξ z
s = 1

2 sin(π/L)

√
Gz(Q)

Gz(Q + kmin)
− 1,

ξ xy
s = 1

2 sin(π/L)

√ ∑
α=x,y Gα (Q)∑

α=x,y Gα (Q + kmin)
− 1,

ξs = 1

2 sin(π/L)

√ ∑
α=x,y,z Gα (Q)∑

α=x,y,z Gα (Q + kmin)
− 1,

Gα (q) =
〈∣∣∣∣ 1

Nspin

∑
i

Sα
i ei q·ri

∣∣∣∣
2〉

,

Q = (π, π ), kmin = (2π/L, 0). (A1)

In our MC simulations, we perform 3 × 105 MC sweeps
and the first 105 sweeps are discarded for thermalization,

where one MC sweep consists of the 1 heat-bath sweep and
successive 10–30 over-relaxation sweeps. Observations are
done in every MC sweep, and the statistical average is taken
over 10 independent runs starting from different initial spin
configurations.

As one can see from Fig. 15(a), in the Ising case of � =
1.05, the specific heat C exhibits a sharp peak associated
with the antiferromagnetic transition at TN/|J| � 0.75. Corre-
spondingly, mz

AF starts growing up at TN and ξ z
s /L for different

system sizes cross one another at TN , which is usually the case
for ordinary continuous magnetic phase transitions.

In the XY case of � = 0.95, the KT transition temperature
is estimated to be TKT/|J| � 0.6 in Refs. [34–36]. Actually, as
one can see from Fig. 15(b), ξ

xy
s /L for different system sizes

merge one another below TKT, whereas the specific heat only
shows a broad peak slightly above TKT and mxy

AF is suppressed
with increasing L because of the absence of the true magnetic
long-range order.

In the Heisenberg case of � = 1, the specific heat shows
only a broad peak near T/|J| � 0.7 and the spin-correlation
length ξs is finite at any finite temperature as is suggested from
the fact that in Fig. 15(c) ξs/L continues to be suppressed with
increasing the system size L at all the temperatures.
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