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Oscillatory dynamics of the magnetic moment of a Pt/Co/Ir/Co/Pt synthetic antiferromagnet
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In this paper, we present a detailed study of the oscillating magnetic relaxation in the synthetic antiferromagnet
(SAF) with two ferromagnetic Co layers of different thicknesses separated by an Ir spacer. The four stable
magnetic states of the SAF are determined by the mutual alignment of magnetic moments in the layers and are
controlled by both the magnetic interlayer exchange interaction and the Zeeman energy. The specific variations
in the thicknesses of the layers and/or temperature allow the existence of a “triple point,” which corresponds
to a coincidence of the critical switching fields for two or three interstate transitions. In this case, two or
even three different types of magnetization reversals occur simultaneously and competitively. A nonmonotonic
dependence of the domain-wall speed vDW on magnetic field H and an oscillating time dependence of magnetic
moment M in a constant magnetic field were observed in a Pt/Co/Ir/Co/Pt synthetic antiferromagnet with
perpendicular anisotropy due to interplay between the magnetic nuclei produced by Dzyaloshinskii-Moriya
interaction. The proximity of two or three (triple-point) critical fields of SAF switching is the necessary condition
for both a nonmonotonic magnetic relaxation and the oscillating time variations of the magnetic moment. The
dynamical model describing the interaction and subsequent evolution of the magnetic nuclei demonstrates that
this nontrivial magnetic relaxation obeys a simple Schrödinger equation.
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I. INTRODUCTION

The spin valves and synthetic antiferromagnet (SAF) are
the simplest devices of spintronics. They consist of two
ferromagnetic thin films of different thicknesses (∼1 nm)
and a nonmagnetic spacer separating the films (Supplemental
Material, Fig. S1 [1]). A deliberately small thickness of the
ferromagnetic layers (typically <2 nm) provides the interface
with a perpendicular anisotropy which dominates the bulk
magnetic anisotropy. Ferromagnetic layers have either a single
domain (at linear size �10 nm) or a multidomain (at linear
size >100 nm) magnetic structure. Large SAFs are required as
a spin-valve platform for the industry of the magnetic sensors
applicable in the medical and biology analysis [2,3]. The
magnetization reversals and the dynamics of magnetic relax-
ation affect speed and critical switching field of the spin-valve
sensors and SAF structures [4,5]. Although a magnetization
reversal in single films is predictable and well described by
the Fatuzzo-Labrune model [6,7], the spin valves and SAF
structures prove to be a much harder nut to crack. In the case
of single films, only two types of the magnetic nuclei with
an “up” and “down” magnetic moment exist. The Fatuzzo-
Labrune model considers expansion of these nuclei via the
domain walls’ propagation and a simultaneous multiplication
of the nuclei number in the external magnetic field [7,8]. Un-
like the single films, the SAF possess an additional exchange

*morgunov2005@yandex.ru

coupling between the magnetic layers. This coupling is pro-
vided by the Ruderman-Kittel-Kasuya-Yosida exchange inter-
action oscillating with the distance between the ferromagnetic
layers. Depending on the spacer thickness there should exist
either ferromagnetic or antiferromagnetic interlayer coupling.
In the spin valves, the thickness of the spacer is typically
selected to provide maximal negative exchange interaction,
i.e., the spin valve is an artificial antiferromagnet or ferri-
magnet based on two exchange-coupled layers. In total, there
are four types of magnetic nuclei present in the spin valve
or SAF (see Fig. 1), in contrast with a single monolayer.
There are two “parallel” states (P+, P−) and two “antiparallel”
(AP+, AP−) states. The magnetic relaxation can in principle
be monotonic, just like in the ferromagnetic monolayer [5,8].
However, in this paper we are interested in a more complicated
nonmonotonic relaxation of magnetic moment [4] and in
the quasiperiodical magnetic variations [9] in Pt/Co/Ir/Co/Pt
SAF. Long (∼10-min period) magnetic oscillations reported
in Ref. [9] have no direct relation to the elegant and very
famous oscillations in Co-based SAF under a spin-polarized
current [10,11]. The phase portrait of the macroscopic mag-
netic oscillations plotted in Ref. [9] and the phenomenological
features of the process (long oscillation period, spontaneous
variations of the magnetic moment, very special requirements
to the balanced field, temperature, and layer thickness) were
very similar to those of the Belousov-Zhabotinsky reaction
[12] in the chemical physics. A remarkable example of long
periodical forced oscillations in an alternating magnetic field
was found in the SAF structure [13]. The SAF structures
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FIG. 1. Sketch of the spin valve, with the denoted areas filled by
AP+, AP−, and P− domains.

manifest the following features associated with the nonlin-
ear dynamical systems: temporal oscillations, an excitability,
a multistability, a thermoactivated nucleation instead of a
reaction-diffusion-driven formation of spatial patterns, and the
deterministic chaos corresponding to the Barkhausen noise.

In Ref. [4], the very first fingerprint of an oscillatory
magnetic relaxation was identified: a nonmonotonic magnetic
relaxation with one extremum which occurs when the system
goes through a nonequilibrium state in a constant magnetic
field. This naturally led to a question of whether there might
exist some other, more complex types of relaxation behavior,
particularly the ones that produce magnetic oscillations. The
nonmonotonic magnetic relaxation was described in Ref. [4]
in a framework of the macrospin theory applied to a number
of parallel relaxation processes each related to its own type of
magnetic nuclei. Unfortunately, that approach neglected the
multidomain structure, the interaction of the magnetic nuclei
of four types, the stray fields of the nuclei, Dzyaloshinskii-
Moriya interaction (DMI), and many other factors that proved
to be too difficult for a quantitative analysis. The experimental
microscopic details related to the magnetic nuclei multipli-
cation and interactions were also not included in the model
proposed in Ref. [4].

The Co/Ir and Co/Pt interfaces are well known in the liter-
ature due to clear evidence of DMI giving rise to noncollinear
spin states and producing a complicated dynamics of the
domain walls (DWs) [14,15]. An interfacial DMI stabilizes
the Néel-type DWs with a clockwise rotational sense [16], the
skyrmions [17], and the new topological spin textures such
as magnetic radial vortices [18]. A broken spatial symmetry
of the interface plays an extremely important role in the
current-induced DW propagation process in SAF [19]. In our
experiments, we have restricted ourselves to the simplest case
of a constant-valued magnetic field. Nevertheless, even with
this restriction, we have managed to find a nonmonotonic vDW

(H) dependence and to describe it in the frame of a DMI
model. The nonmonotonic field dependence of the domain-
wall velocity was observed in CoFeB structures [20].

In this paper, we utilize the magneto-optic Kerr effect
(MOKE) to analyze the dynamics of generation, expansion,
and interaction of the magnetic nuclei during the magnetic
relaxation of the SAF in a constant magnetic field. This

work was aimed at the analysis of the magnetic nuclei in-
teraction, specifically the field dependence of domain-wall
movement and the time dependence of magnetic moment of
Pt/Co/Ir/Co/Pt synthetic antiferromagnet. Special efforts were
made regarding the analysis of micromagnetic events caused
by the constant magnetic field close to the critical fields of
the interstate transitions. The work was focused on finding
the proper relation between the magnetic nuclei dynamics and
the time variations of the sample magnetic moment during the
relaxation in a constant magnetic field. The analytic model
of spontaneous long-periodic oscillations of the macroscopic
magnetic moment was developed.

II. EXPERIMENTAL TECHNIQUE

Multilayered structures Si/SiO2/Ta(3 nm)/Pt(3.2 nm)/
Co(1.1 nm)/Ir(1.4 nm)/Co(tCo)/Pt(3.2 nm), tCo= 0.60, 0.70,

0.80, and 1.00 nm of 4 × 4-mm2 sizes were grown by mag-
netron sputtering at T = 300 K (See Supplemental Material,
Fig. S1 [1]). The methods of sample preparation and their pre-
liminary chemical, structural, and magnetic attestation were
described in Refs. [4,21]. The Ta buffer layer facilitates (111)
texture of Co and Pt layers, which provides perpendicular
magnetic anisotropy of the synthetic antiferromagnet [21].
The samples satisfied the following conditions:

(1) A perpendicular magnetic anisotropy was provided by
hybridization of the 3d orbital moment of Co atoms and the 5d
orbital moment of the Pt and Ir atoms. The hybridization en-
hances an energy splitting between the Co 3dz

2 and Co 3dx2−y2

orbital states, and it induces the transfer of the spin-polarized
charge carriers between the ferromagnetic layers.

(2) The thickness of 1.4 nm of the Ir spacer was selected
to provide an antiferromagnetic interlayer exchange coupling
comparable with Zeeman energy. This circumstance gives an
ample opportunity to switch magnetic stable states of the SAF
using the external magnetic field.

Local hysteresis loops and images of the magnetic struc-
ture were recorded by Durham Magneto-optics NanoMOKE3
microscope based on the Kerr effect. The microscope was
equipped with the rotating sample holder, the quadrupole
electromagnet with field range ±1200 Oe, and provided a res-
olution of magnetic field 0.1 Oe. Scanning laser microscope
had magnification up to ×2000 and was equipped with a lens
allowing for the measurements of the polar Kerr effect. The
sample was mounted in focused laser spots with the diameter
of 6 μm. Velocity of the domain walls was determined by
the MOKE images. The sample was placed in the magnetic
field +800 Oe exceeding the saturation field before each
series of the experiments. After the sample saturation the
magnetic field was switched down to a negative value. The
recording of the series of MOKE images with 0.6-s time
interval was started immediately after the stabilization of a
value of the magnetic field (a duration of the field stabilization
was ∼0.1−0.5 s). The time interval used for plotting the
figures was 5–6 s, although intermediate points from the data
massive were also available.

The magnetic moment of the sample as a whole and its time
dependences were recorded by the MPMS 5XL Quantum De-
sign superconducting quantum interference device (SQUID)
magnetometer in H = 0 − 50 kOe range in out-of-plane
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FIG. 2. Hysteresis in Pt(3.2 nm)/Co(1.1 nm)/Ir(1.4 nm)/Co(1 nm)/Pt(3.2 nm) recorded MOKE technique at T = 300 K. The magnetic-field
sweeping direction is specified by arrows. The horizontal dashed lines indicate stable states, whose orientations are shown in the insets on the
right. The field rate is 1.6 kOe/s. Vertical dashed line corresponds to the switching field HC = −480 Oe.

orientation. A diamagnetic contribution of the Si/SiO2 sub-
strate was subtracted using the linear approximation of the
field dependence of a magnetic moment in high magnetic
fields (10–50 kOe). A contribution of the transition processes
of the magnetometer itself was tested on the Dy2O3 reference
paramagnetic sample. The amplitude of the intrinsic magne-
tometer relaxation was negligibly small, ∼10−3%, relating
to a typical change of the magnetic moment of the sample
studied in our work (see Supplemental Material, Fig. S2 [1]).
A delay of the relaxation measurements of 1.5 min appeared
during switching of the magnetic field from a positive to a
negative value. We always took into attention this delay when-
ever the approximation of the time dependences of magnetic
moment was used. The samples were mounted in magne-
tometer with an accuracy ∼5°, which includes the horizontal
x component of the external magnetic field applied to the
sample.

III. EXPERIMENTAL RESULTS

A. Competition of the AP− and P− phases
during the magnetic relaxation

Field dependence of the local magnetic moment of the
surface area recorded by MOKE technique (Fig. 2) allowed
one to identify equilibrium values of the SAF magnetic mo-
ment corresponding to different external magnetic fields and
to determine critical values of the fields switching between
these states. Hysteresis loops recorded by the MOKE tech-
nique (Fig. 2) identify four stable states of the SAF (see
insets on the left of Fig. 2). Figure 3 demonstrates typical
time sequences of the MOKE images recorded in different
magnetic fields in the range from −460 to −540 Oe, close
to the switching critical field of the free Co layer −480 Oe.
In the field −460 Oe, the nuclei of the AP− phase (white
areas) appear on the background of the AP+ phase (dark area)
at t = 6 s (Fig. 3, top line). In the constant magnetic field,
the expansion of the following AP− areas takes place. Other
processes accompany the magnetization reversal in −530-Oe
field. On the background of the starting AP+ phase (dark
area), two phases P− and AP− appear simultaneously at t = 6
(Fig. 3, bottom line). The P− phase emerges near surface
defects (scratches), while the AP− phase arises in the exact
same areas as observed for the −460-Oe field (Fig. 3, top
line). The P− phase is not an equilibrium state of the SAF

in the −530-Oe field. For that reason, at the end of magnetic
relaxation at t = 150 s the AP+ and P− phases end up being
suppressed by the AP− phase equilibrium in this field. In the
field −540 Oe, on the background of the AP+ phase (dark area
at t = 0) the nuclei of the P− phase appear near scratches prior
to the emergence of the P− phase (bottom line in Fig. 3). The
nonequilibrium P− nuclei rapidly expand and occupy a large
area of the SAF. The AP− phase starts noticeably later than
the P− phase. Over time the equilibrium AP− phase expands
slowly until it completely replaces the P− phase at t = 150 s.

B. Velocities of the domain boundaries

Linear size D of the few nuclei of the AP− phase was
determined by measurements in the same “horizontal” direc-
tion for all sequential frames of time. Series of the linear
size dependences on time were recorded in different con-
stant magnetic fields in the tCo = 1.0 nm SAF (Fig. 4). The
time dependences D(t) of the selected areas of the AP−

phase were close to linear dependences, whose slopes cor-
responded to the velocities of the domain boundary (Fig. 4).
Increasing the absolute value of magnetic field from −433 to

FIG. 3. Sequence of the MOKE images in Pt(3.2 nm)/Co(1.1
nm)/Ir(1.4 nm)/Co(1.0 nm)/Pt(3.2 nm) recorded with 6-s time inter-
val at Т = 300 K. Before the recording the sample had been saturated
in the +800-Oe field, after which the field has been turned down to
one of the values, represented on the left axis.
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FIG. 4. Field dependences of linear size of the AP− domain in
Pt(3.2 nm)/Co(1.1 nm)/Ir(1.4 nm)/Co(1 nm)/Pt(3.2 nm). Constant
magnetic fields of different values were utilized to observe a domain
expansion at Т = 300 K. The sample was placed in saturated mag-
netic field +800 Oe before field switching to a new value, indicated
in the upper-right corners of corresponding graphs. Pauses between
images were �t = 6 s.

−490 Oe led to a corresponding increase in the slope of the
D(t) dependence; however, subsequent increase in the field,
from −490 to −542 Oe, caused the slope to decrease (Fig. 4).

The velocities of the domain boundary vDW(H ) = dD/dt
of the AP− phase were calculated by differentiation of the
D(t) dependences shown in Fig. 4. Additional analogous
dependences for other values of external magnetic fields were
used to obtain vDW(H ) dependences in Fig. 5. Dependence
vDW(H ) for the AP− phase was nonmonotonic and possessing
a maximum at magnetic field −490 Oe close to the HC =
−480−Oe switching field from P− to AP− state (compare
with the vertical dashed line in Fig. 2).

FIG. 5. Field dependences of the AP− domain boundary speed
in Pt(3.2 nm)/Co(1.1 nm)/Ir(1.4 nm)/Co(1.0 nm)/Pt(3.2 nm) sample
on magnetic field applied in MOKE microscope at 300 K. The
dependences 1, 2 are the measurements of the domain-wall velocity
vDW(H ) by MOKE for two independent domains. The dependence
3 is the average rate of magnetic moment change �M/τ1(H ),
measured by SQUID magnetometer (see Fig. S3 in Supplemental
Material). The solid line is the approximation by formula (9). The
vertical dashed line corresponds to switching field HC = −480 Oe.

FIG. 6. Field dependence of the velocity of P− domain expan-
sion, corresponding to a displacement of a P−/AP+ domain boundary
in Pt(3.2 nm)/Co(1.1 nm)/Ir(1.4 nm)/Co(1.0 nm)/Pt(3.2 nm) at T =
300 K. Curve (1) is a direct measurement of domain-wall velocity
vDW(H ) by MOKE microscope. Curve (2) is the average relaxation
rate �M/τ2(H ) determined by SQUID. The solid line is the approx-
imation by formula (5).

A dynamics of expansion of the phase P− in constant
magnetic field was analyzed in the same manner (Fig. 6). We
used the bottom lines in Fig. 3 to determine the linear size D
of the P− nuclei corresponding to the spots of intermediate
brightness (shown by arrows). A domain boundary separating
P− and AP+ areas was observed, and its velocity vDW was
calculated as a derivative of the D(t) dependence for each
external field.

Dependence vDW(H ) for the AP− phase was well re-
producible for different nuclei (1 and 2 in Fig. 5) as
well as for different nuclei of the P− phase (1 and 2 in
Fig. 6). Dependence vDW(H ) for the P− phase was shown
to be monotonously decreasing (Fig. 6), in contrast with the
vDW(H ) dependence for the AP− phase (Fig. 5). Generation of
the P− phase started at larger absolute values of the magnetic
field exceeding −530 Oe in comparison with the AP− phase.

Field dependences of the velocities measured by MOKE
technique (Figs. 5 and 6) can be compared with correspondent
field dependences of the average relaxation rate estimated
from SQUID data. The nonmonotonic relaxation curves ac-
cordingly with Ref. [4] can be decomposed for two exponen-
tial functions with time constants τ1 and τ2 (Supplemental
Material, Fig. S3). An example of the fitting performed to
determine time constant τ1 of AP+ → AP− transition and
τ2, corresponding to AP+ → P− transition is shown in Sup-
plemental Material, Fig. S3. The average rate of magnetic
moment change determined from SQUID data (Supplemental
Material, Fig. S3) was estimated as �M/τ1 for the AP−

phase (Fig. 5) and �M/τ2 for the P− phase (Fig. 6). A good
correlation between the accurate velocity determined by a
MOKE microscope and the average velocity determined by
a SQUID magnetometer was observed, for both the AP− and
P− phases (Figs. 5 and 6). A presence and relative portions of
different phases change with time. At a low absolute value
of the field below −440 Oe the AP− and AP+ phases can
only be observed [Fig. 7(a)]. Starting from −510 Oe the three
types of the nuclei AP+, AP−, and P− can be simultaneously
observed [Fig. 7(b)]. Starting from −544 Oe, the initial AP+

phase, reaching a saturation at t = 0, disappears, being fully
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FIG. 7. MOKE images of the domains in Pt(3.2 nm)/Co(1.1
nm)/Ir(1.4 nm)/Co(1.0 nm)/Pt(3.2 nm) at T = 300 K in different
magnetic fields: (a) H = −433 Oe, (b) H = −532 Oe, (c) at H =
−544 Oe.

transformed into a P− phase [Fig. 7(c)]. Thus, we always
observe two of three phases simultaneously.

The thickness of the thin layer tCo affects the field de-
pendence of the velocity of the P−/AP+ domain boundary
(Fig. 8). Reaching the tCo value close to the thick layer thick-
ness of 1.1 nm effectively alters a monotonic field dependence
by changing it into a nonmonotonic one. An equivalence of

FIG. 8. Field dependences of the domain-wall velocity for the
P−/AP+ domain boundary in the SAFs with different thicknesses of
the thin layer tCo = 0.6, 0.7, and 1.0 nm.

FIG. 9. (a) Magnetic relaxation of the Pt(3.2 nm)/Co(1.1
nm)/Ir(1.4 nm)/Co(1.0 nm)/Pt(3.2 nm) sample measured by MOKE
microscope in different magnetic fields: (1) −439 Oe, (2) −444 Oe,
(3) −475 Oe, (4) −535 Oe, (5) −537 Oe, (6) −542 Oe, (7) −544 Oe,
(8) −546 Oe, (9) −547 Oe at T = 300 K. (b) The interval of absolute
values of the external magnetic field �H , where the nonmonotonic
magnetic relaxation is observable, versus the temperature T and the
thickness tCo of the Co thin layer. An example of the interval �H is
presented in Supplemental Material, Fig. S4 [1].

both ferromagnetic layers increases the contribution of the
nonlinear interaction between the magnetic nuclei of different
types. Nonmonotonic field dependences of the domain-wall
velocity take place in those conditions, at which the non-
monotonic time dependences of SAF magnetic moment were
observed.

C. Nonmonotonic time dependences of SAF magnetic moment

In Ref. [4], a nonmonotonic time dependence of the mag-
netic moment of the Pt/Co/Ir/Co/Pt has been described and
analyzed in detail. The monotonic relaxation mode from the
AP+ state to the AP− state [curves 1–3 in Fig. 9(a)] changes
to a nonmonotonic relaxation passing first through the P−
states [curves 4–9 in Fig. 9(a)] in constant magnetic field
applied during the MOKE recording. An apparent cause for
the change in the character of relaxation was a closeness
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of the external field value to the critical field of transition
(see Fig. 2, vertical line). Such behavior could be expected
in a fast sweeping magnetic field, which rapidly changes a
nonequilibrium state of the system. Surprisingly, a nonmono-
tonic relaxation also exists in the constant field. The interval of
absolute values of the external magnetic field �H, where the
nonmonotonic magnetic relaxation is observable, is shown in
Fig. 9(b) versus temperature T and thickness tCo of the Co thin
layer. Observation of a nonmonotonic magnetic relaxation in a
constant magnetic field is only possible in a very narrow range
of the temperatures and thin-layer thicknesses [Fig. 9(b)].

The visualization of the interval is shown in Supplemental
Material, Fig. S4). One can see a clear direct dependence of
the temperatures, permitting for the nonmonotonic relaxation,
on the thin-layer thickness [Fig. 9(b)]. The equality of the
magnetic anisotropies to the correspondent potential barrier
heights of the magnetization reversal of the two layers is,
probably, a necessary condition for the nonmonotonic mag-
netic relaxation observed by both the MOKE (Fig. 9) and
the SQUID [Figs. 10(a) and 10(b)] techniques. In this paper,
we report a more complicated magnetic relaxation similar to
decaying magnetic oscillations [Figs. 10(c) and 10(d)]. At a
room temperature the oscillations can be observed in a sample
with 1.0-nm Co thin-layer thickness close to the hard Co layer
thickness (1.05 nm) [Figs. 10(c) and 10(d)]. Decreasing the
temperature has allowed one to observe the oscillations of
the magnetic moment in a sample with a smaller thin-layer
thickness. Figures 10(c) and 10(d) demonstrate the oscillating
behavior in a sample with 0.7-nm thin-layer thickness at
100 K. Cooling bridges the gap between the energies of
the magnetic anisotropy of the free and the thick layers [8].
According to data [8], these energies become equal to each
other near 100 K, despite the fact that the thicknesses of
the layers are quite different. Thus, in order to control the
similitude of the layers one can change their temperature in-
stead of their thicknesses. If one of the layers strongly differs
from another layer by a magnetic anisotropy, a magnetization
reversal of the thick layer effectively “pulls” the magnetic
moment of the thin layer to a simplest exponential magnetic
relaxation specific for the single layer. A competition between
the different types of domains and the suppression of the
energetically unfavorable rapidly grown domains P− create
the prerequisites for the oscillating behavior of the magnetic
moment and even for bypassing of the equilibrium level a few
times depending on the field used [Figs. 10(c) and 10(d)].

IV. DISCUSSION

A. The dynamics of magnetic relaxation

We can propose a straightforward analogy between the
magnetic oscillations and one very famous model of os-
cillations of the concentrations in chemical reactions [12].
Similarly to the famous Belousov-Zhabotinskii reaction the
magnetic nuclei can arise, annihilate, and disappear. Since the
nonmonotonic and the oscillating time dependences of mag-
netic moment, which we have described above, all result from
the interplay between P− and AP− nuclei, we can introduce a
dimensionless share of AP+ nuclei z varying between 0 and
1; a share of P− nuclei x (0 � x � 1); a share of the AP−

nuclei y (0 � y � 1); an efficiency of the P− nuclei generation

FIG. 10. Some possible types of magnetic relaxation in Pt(3.2
nm)/Co(1.1 nm)/Ir(1.4 nm)/Co(0.7 nm)/Pt(3.2 nm) in magnetic fields
−1350 Oe (a), −1360 Oe (b), −1354 Oe (c), −1370 Oe (d) at T =
100 K. The solid lines are exact solutions of the dynamical system
(2).
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α(H,T) from the AP+ phase; and an efficiency of the AP−

nuclei generation γ (H,T) from the AP+ phase.
If one assumes the noninteracting AP+, P−, and AP−

nuclei, their concentrations will be described by the corre-
spondent dynamical linear system:

dx

dt
= αz − βx

dy

dt
= γ z + βx

x + y + z = 1 (1)

Initial conditions corresponding to the starting AP+ state
at t = 0 are z = 1, x = 0, y = 0. We will consider a SAF
with a 1.1-nm thickness of the thick layer and a 0.7-nm
thickness of the thin layer. Denoting the saturating magnetic
moment of the thick layer by MS1, and that of the thin
layer by MS2, one can describe the magnetic relaxation by
accounting for the contributions of all three states AP+,
AP−, P− : M(t ) = MS1(−x − 0.36y = +z). This expression
defines, how the x, y, and z shares were used to calculate
magnetic moment. The factor 0.36 corresponds to relative
difference between magnetic moments of the thick and thin
layers (1.1 − 0.7 nm)/1.1 nm ≈ 0.36. The system (1) predicts
a trivial monotonous exponential behavior of the net magnetic
moment M(t ) ∼ exp(−t/τ ), τ = 5 min, involving contribu-
tions of all three phases with their weight factors proportional
to the correspondent magnetic moments. Approximation of
the monotonic relaxation by dynamical system (1) is pre-
sented in Fig. 10(a).

The final state of the system is y(t → ∞) = 1, the asymp-
totic magnetic moment is −0.4 MS1 = −2.7 × 10−6 emu cor-
responding to the saturation magnetic moment of the thick
layer MS1 = −9 × 10−6 emu and thin-layer MS2 = 6.3 ×
10−6 emu [Fig. 10(a)].

Nonmonotonic solutions can be obtained from the nonlin-
ear system, where interaction between the magnetic nuclei
accelerates the P− → AP− transition. An additional term
should be proportional to the probability δxy of the nuclei

approaching each other. The coefficient δ describes the effi-
ciency of the P−-phase absorption by AP− phase, when these
nuclei casually meet each other. Correspondent dynamical
system with the same initial conditions z(0) = 1, x(0) = 0,
y(0) = 0 is

dx

dt
= αz − βx − δxy

dy

dt
= γ z + βx + δxy

x + y + z = 1 (2)

This dynamical model of the magnetic nuclei evolution
confirms the possibility of the oscillating magnetic relaxation
controlled by an interplay between the nuclei of different
types. The exact analytic solution of system (2) as well as
its derivation is presented in the Appendix. In particular, the
system (2) is proven to be equivalent to the Schrödinger
equation, whose regular solutions are shown to be degenerate
hypergeometric functions of different orders n (see the Ap-
pendix). The resulting time dependences are well described in
the case n = 2 [Figs. 10(a)–10(c)]. The solution of the system
(2) for n = 1 is too simple to describe an oscillating magnetic
relaxation presented in Figs. 10(c) and 10(d). However, the
second order of the solution n = 2 gives simultaneous satis-
factory approximation of the oscillating magnetic relaxation
[solid lines in Figs. 10(c) and 10(d) as well as monotonic
[Fig. 10(a)] and nonmonotonic [Fig. 10(b)] dependences. We
have derived the following formula for a time dependence of
nuclei contributions (see the Appendix):

x = m2z(1 − z)[(1 + 2m)z + 1]

m(1 + 2m)z(mz + 2) + m2 + 4m + 2

y = (1 − z)[m(2 + 3m)z + m2 + 4m + 2]

m(1 + 2m)z(mz + 2) + m2 + 4m + 2

z = e−ρt , (3)

and a correspondent dependence of the magnetic moment

M = −3(m2 + 4m + 2)

10[m(1 + 2m)z(mz + 2) + m2 + 4m + 2]

+z[2(3m2 − 23m − 13) + mz(20m2 − 49m − 26 − 20m(1 + 2m)z)]

10[m(1 + 2m)z(mz + 2) + m2 + 4m + 2]
, (4)

with the parameters m and ρ expressed by the initial parame-
ters α, β, γ , δ:

δ

γ
= m,

α

γ
= m2

1 + 2m
,

β

γ
= 5m + 3

1 + 2m
,

ρ

γ
= (1 + m)2

1 + 2m
.

The asymptotic behavior of (3) and (4) obeys obvious
physical conditions corresponding to a final AP− state of the
SAF:

lim
t→∞ x(t ) = lim

t→+∞ z(t ) = 0, lim
t→∞ y(t ) = 1.

The magnetic moment M(t → ∞) = −0.36Ms1 =
−2.7 × 10−6 emu. In Fig. 10(c) a theoretical curve (solid
line) which gives a satisfactory approximation to experimental
results (blue circles) is presented. This approximation resulted

in m = 17 ± 1; ρ = 0.1 ± 0.01 min−1 for H = −1354 Oe
[Fig. 10(c)]. Corresponding initial parameters of the system
(2) are a = 0.045 ± 0.005 min−1, β = 0.013 ± 0.002 min−1,
γ = 0.005 ± 0.0005 min−1, δ = 0.09 ± 0.01 min−1. On the
other hand, in a slightly different magnetic field, −1360 Oe,
we got a = 0.074 ± 0.005 min−1, β = 0.015 ± 0.002 min−1,
γ = 0.006 ± 0.0005 min−1, δ = 0.151 ± 0.01 min−1

[Fig. 10(b)]. Thus, a small change of the magnetic field
practically does not affect frequency β of the P+ → AP−
transitions and frequency γ of the transformation of the
P− nuclei to the AP− nuclei. Magnetic-field change from
−1354 Oe until −1360 Oe accelerates frequency of the
absorption of the P− phase by AP− phase, δ, and frequency
of the AP+ → P− transitions, α, up to 1.6 times both. Field
dependences of the parameters of the system (2), extracted
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from approximation of the nonmonotonic relaxation curves,
are presented in the Supplemental Material, Fig. S5 [1]. The
reason for the inverse relationship between the values of the
parameters and the magnetic field is easy to understand once
we recall that as we increase the field, it deviates further
and further from the critical value Hc, which corresponds
to a simultaneous emergence of all three transitions. These
transitions then simply become energetically less favorable
the further the field gets from Hc.

One can conclude that for the oscillatory relaxation a strict
dominance of the α and δ parameters (shown for oscillatory
curves by dashed lines in Supplemental Material, Fig. S5) is
something which by all means should emerge. This meshes
well with a hypothesis that the growth of a nonequilibrium
phase described by α and the probability of the nuclei col-
liding described by δ should both be significantly high, in
order to provide an oscillatory magnetic relaxation. Thus, the
field-dependent interaction between the nuclei is necessary to
explain the process of oscillating magnetic relaxation.

B. Thermoactivation of the domain walls

In thin ferromagnetic films, there could exist three different
modes of domain walls depending on the external magnetic
field: a creep in the low field, a depinning in the intermediate
field, and a gliding in the strong magnetic field [19]. The
creep mode manifests itself as a nonlinear dependence of the
domain-wall velocity vDW on the applied magnetic field H.
First, we will describe the monotonic field dependence of the
P− domain boundaries. The P− domains appear in magnetic
fields H < −526 Oe. A displacement of the domain walls
proceeds by jumping from one obstacle to another and is
accompanied by the formation of the microsized prominences
of the P− phase (Fig. 7). A field dependence of the ther-
moactivated velocity of the domain boundary of P− phase in
the creep mode can be described by the following expression
[22,23]:

vDW = v0 exp

(
− α

kBT
H−μ

)
, (5)

where v0 is the characteristic speed, α = UCHd is the creep-
scaling constant, UC is the height of the defect-induced
pinning-energy barrier, Hd is the depinning field, μ is a
universal dynamic exponent equal to 1/4 for a 1D interface
moving in a 2D weakly disordered medium [22], kB is the
Boltzmann constant, and T is the temperature. The logarithm
of domain-wall velocity ln(v) was plotted with respect to
H−1/4 in Fig. 6. It is clear from Fig. 6 that the speed v for each
sample follows the creep-scaling law [23]. The parameter α is
the most important characteristic here, because there exists a
simple relationship between this parameter and the constant
of the magnetic anisotropy e in single Co films α ∝ K5/8. In
our experiments, the value α = 8.6 × 10−10 erg Oe−1/4 was
extracted from the slope of the ln(v)(H−1/4) dependence in
Fig. 6. The value thus obtained is compatible with α = 13.4 ×
10−10 erg Oe−1/4 in single Co film of tCo = 0.5-nm thickness
determined in Ref. [23]. In Ref. [24], the values of the pa-
rameter α = 0.86 − 9.4 × 10−10 erg Oe−1/4 were determined
for the series of the Pt(4.5 nm)/Co(tCo)/Pt(3.5 nm) structures
with tCo = 1 − 3 nm.

The function vDW(H ), which describes the dependence of
the AP− domain boundaries upon the magnetic field, behaves
in a more complex and interesting manner (Fig. 5). The move-
ment of the rough boundaries of the AP− domain phase is
characterized by a creep mode in the magnetic fields ranging
from −448 to −490 Oe. First, we should distinguish between
the stationary and nonstationary modes of the domain-wall
displacement. The stationary mode corresponds to a spatial
translation of the domain wall with no overall change in the
domain boundary structure. In ferromagnets with a perpendic-
ular anisotropy, the stationary mode exists when the magnetic
fields do not exceed the critical field H < HW , known as
the Walker field and corresponding to the Walker velocity vW

[25,26]:

vW = 2πmS�γ , (6)

where mS is saturation magnetization, � is a width of the
domain wall, γ is the hyromagnetic ratio. If the magnetic
field exceeds the Walker limit H > HW the movement of the
domain wall becomes nonstationary [26], owing to the fact
that the demagnetizing field is capped by 4πmS, so the rate
of precession of magnetization as well as the velocity of the
domain walls are both bounded from above. For thin single
films in the magnetic fields exceeding the Walker limit HW ,
the velocity of the domain wall decreases with an increase
in a magnetic field. An estimation of the Walker field in a
single Co layer of tCo = 1-nm thickness gives HW = 2200 Oe
[26], and this is about 4–5 times higher than the magnetic
field at the maximum of Fig. 5. Furthermore, expression (6)
provides us with a theoretical value of the limiting Walker
velocity vW = 830 μm/s, which happens to be few orders
of value higher, than the determined value for the AP−

domain vDW = 18 μm/s. Thus, the nonmonotonic vDW(H )
dependence cannot be explained by a mere switch from a
stationary to a nonstationary mode upon reaching the Walker
limit.

Consider an expansion of the AP− domain via the absorp-
tion of the AP+ domain (i.e., AP+ → AP− transition). In this
case the displacement of the domain boundary is produced
by multiple simultaneous displacements of the domain walls
in the thick and thin layers. In contrast, the AP+ → P−
transition corresponds to the P− domain boundary movement
which is restricted to the thick layer, while the thin-layer
magnetic moment changes. Similarly, the transition P− →
AP− is accompanied by a movement of the AP− boundary,
which is strictly a thin-layer phenomenon, as the magnetic
moment of the thick layer remains constant. The reason for
a decrease in the velocity of the domain boundary AP−/P−
with the absolute value of the magnetic field exceeding −480
Oe lies in the formation of the P− nuclei, serving as obstacles
for the expansion of the AP− areas. The difference between
the full energies (i.e., the sum of Zeeman, exchange, and
anisotropy energies) of the AP− and AP+ states is greater
than the difference between the energies of the AP− and P−
states. For that reason, a transition from AP+ to AP− state is
favorable. If the magnetic field drops below −480 Oe, the said
difference between the AP− and P− states starts diminishing
and so does the rate of the P− → AP− transition. Then,
as the field reaches the value H = −570 Oe, the P− state
becomes energetically favorable compared to AP−. In the
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absence of the P− areas at magnetic fields from +480 to −570
Oe, the rate of the AP+ → AP− transition increases as the
magnetic field falls down. The field H = −480 Oe, at which
the dependence vDW(H ) for the AP+ → AP− transition stops
growing and starts to diminish, corresponds to the critical field
of the P− → AP+ transition in the hysteresis loop (Fig. 2).
The P− nuclei appear at the field values below the critical
transition field near the film defects. The locations of the P−
nuclei form a pattern akin to scratches [Figs. 3 and 7(b)].
The pattern is well reproducible in subsequent magnetic-field
cycling.

C. The Dzyaloshinskii-Moriya interaction
between the magnetic nuclei

A nucleation of a P− domain in a thin layer introduces a tilt
in the magnetic moment with respect to the normal to the film
plane. A nonzero angle between the magnetic moments for the
top and bottom layers indicates DMI coupling, which serves
as an additional energy barrier for the magnetization reversals.
When the AP− domain wall moves towards the P− nuclei and
attempts to spread over it, the DMI coupling inside the P−
nuclei acts as an additional barrier for AP+ → AP− transition
as well. The energy barrier, associated with DMI, is EDMI =
NDStSbsinα, where D is the DMI coupling energy, N is the
number of spins present in the activation volume, the St and Sb

are the coupled spins, correspondingly, in the top and bottom
layers, and α is the angle between the directions of local
magnetizations of these layers. According to our previous
work, the energies of the AP+ and AP− states depend on
the magnetic moments Mt and Mb and the antiferromagnetic

interlayer exchange-coupling energy EEX, as EAP+ = EEX −
(Mb − Mt )H and EAP

− = EEX + (Mb − Mt )H . The pertinent
energy barrier for the AP+ → AP− magnetization reversal
would therefore consist of a difference between these two
energies, plus the domain pinning energies Et and Eb in the
top and bottom layers, plus the DMI coupling energy EDMI:

�E = Et + Eb + EDMI − 2(Mb − Mt )H.

This energy barrier competes with the thermal fluctuation
energy kBT , so the dependence of the velocity of domain wall
on the applied magnetic field is

v = v0 exp

(
−Et + Eb + NDStSb sin α − 2(Mb − Mt )H

kT

)
.

(7)

In order to determine how sin (α) depends on the ap-
plied magnetic field, we had to analyze the brightness of
P− domains on the MOKE images. Independently on the
mechanism of magnetization reversal the dependence of sin
α on magnetic field H can be approximated by the equation
(Ref. [2])

sin α ∼ M/MS =
(

1 + exp

(
H − H0

�H

))−1

∼
(

1 + exp

(
HMt − Et

kT

))−1

, (8)

where H0 and �H are the switching-field mean value and the
width of switching-field distribution of the AP+ → P− mag-
netization reversal, respectively. From our experiment, H0 ∼
−490 Oe and �H ∼ 40 Oe. Finally, the field dependence of
AP+ → AP− magnetic domain-wall velocity is

v = v0 exp

(
− 1

kT

(
Et + Eb + NDStSb

(
1 + exp

(
HMt − Et

kT

))−1

− 2(Mb − Mt

)
H )

)
. (9)

Approximation of the experimental v(H) dependence
(Fig. 5) by Eq. (9) yields the following parameters:
(Et + Eb)/kT = 70, NDStSb/kT = 23. The ratio of the de-
pinning energy of the domain wall to the DMI energy is
r ∼ 3. Therefore, the obtained value of a DMI coupling is
comparable with the domain unpinning energy barriers, which
lies in a good agreement with the previously collected data in
the literature for the DMI coupling in Pt/Co systems [27,28].
Thus, both monotonic and nonmonotonic field dependences
of the domain-wall velocity can exist and be observed in
the same sample; which type one gets depends solely on the
corresponding type of the transition (Supplemental Material,
Fig. S6 [1]).

Hitherto, the evidence of the DMI coupling in Ir/Co/Pt and
Ta/Co/Pt systems has been proven by several experimental
techniques: (1) the modulation of a curvature of the domain
boundary under the HX field, applied in plane, and the HZ

field, applied out of plane [27]; (2) the difference between
the domain propagation velocities in the right and the left
directions of T junctions [29]; (3) an asymmetric hysteresis
loop and the reduction of out-of-plane coercivity under the

magnetic field, applied in plane [30]; (4) a shift of the nucle-
ation centers in the bubble domains, either in the right or in the
left direction, which depends on the direction of the magnetic
field, applied in plane [31]; (5) a reduction in the velocity of
a domain wall under field, applied in plane and out of plane
[32]; and (6) a shift experienced by the Stokes and anti-Stokes
peaks in the Brillouin light-scattering measurements [33]. In
our experiment, a reduction in DW velocity corresponding to
an increase of the applied z field has been observed. A small
projection of the field onto the x axis is not excluded due
to a possible ∼5° slope inadvertently introduced during the
installation of the sample in the SQUID cell.

Structure of the domain wall can strongly affect their
dynamics in magnetic field. The DMI coupling stabilizes Néel
type of the domain walls and provides proximity magnetism
of the transition metal contacting with ferromagnetic metal
in Co/Pt and Co/Ir structures [14]. The domain-wall chirality
induced by the DMI at interfaces [34] can influence domain-
wall dynamics in our experiments. The DMI can be adjusted
to stabilize either left-handed or right-handed Néel walls. The
possible contribution of the domain-wall chirality is a factor
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requiring following investigation. We cannot clarify its role in
this work.

D. Coincidence of critical fields as a reason
for magnetic oscillations

The oscillating magnetic relaxation can be explained by
a coincidence of the critical magnetic fields for different
transitions. The energies of four stable states of the SAF are

EP+ = −(Mb + Mt ) · H + EAF, (10)

EAP+ = −(Mb − Mt ) · H − EAF, (11)

EAP− = (Mb − Mt ) · H − EAF, (12)

EP− = (Mb + Mt ) · H + EAF, (13)

where Mb and Mt are the magnetic moments of the thick
(bottom) and thin (upper) layers, correspondently; EAF is the
energy of an interlayer antiferromagnetic coupling. A diagram
of the SAF energy versus the magnetic field is presented in
Fig. 11. The energies of the P+, AP+, AP−, and P− states are
denoted by solid lines. A transition from the AP+ to the AP−

state is possible for certain values of the field, provided that
the excess of the energy of the AP+ state over the energy of
the AP− state is greater than the potential barrier UAP+→AP− of
this transition. Since the transition AP+ → AP− corresponds
to a remagnetization of the two layers, the barrier UAP+→AP−
is just the sum of the energies of the upper �t and bottom �b

layers, i.e., UAP+→AP− = �t + �b. The necessary condition
of the AP+ → AP− transition is EAP+ � EAP− + �t + �b.
Using the expressions (10)–(13), this condition can be rewrit-
ten as

−(Mb − Mt )H − EAF = (Mb − Mt )H − EAF + �t + �b.

(14)

In Fig. 11(a), Eq. (14) corresponds to the intersection of the
solid-line AP+ and dashed-line AP−, which is shifted along
the energy axis from the AP− solid line by the value �t + �b.
Equation (14) gives the critical switching field of the transition
from the AP+ to the AP− state:

HAP+→AP− = −1

2

�t + �b

Mb − Mt
. (15)

The other critical fields corresponding to the rest of transi-
tions AP+ → P− and P− → AP− can be obtained by similar
calculations:

−(Mb − Mt )H − EAF = (Mb + Mt )H + EAF + �b (16)

The critical field of the AP+ → P− transition is

HAP+→P− = −2EAF + �b

2Mb
. (17)

An energy balance for the P− → AP− transition is:

(Mb + Mt )H + EAF = (Mb − Mt )H − EAF + �t. (18)

The critical field of the P− → AP− transition is

HP−→AP− = −2EAF − �t

2Mt
. (19)

FIG. 11. Energy diagrams versus the magnetic field: (а) the case
of anisotropy barriers �b (bottom layer) and �t (top layer) much
smaller than interlayer antiferromagnetic coupling EAF. Switching
fields for all interstate transitions differ from each other. (b) The case
of large anisotropy barriers �t and �b corresponding to a simul-
taneous presence of both AP+ → AP− and P− → AP− transitions
(critical fields of these transitions are situated at the same H value).

We have considered the case when the critical fields of
the AP+ → AP− and AP+ → P− transitions coincide. In this
case, two kinds of the domains (AP− and P−) will appear si-
multaneously in the same external field. Competition between
these two types of the domains results in a suppression of
one domain type in favor of the other. A concurrence of the
critical transition field of the AP+ → AP− and P− → AP−
processes results in two paths of the AP− state filling: one
direct AP+ → AP− transition, or two successive AP+ → P−
and P− → AP− transitions [3]. Changes of the magnetic mo-
ment of the SAF accompanying mentioned transitions will be
nonmonotonic [Fig. 10(b)]. First, the magnetic moment falls
down until it reaches its minimal value in the P− state, after
which the magnetic moment grows back again, up to the value
corresponding to the AP− equilibrium state. In this field, the
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energy of the P− state is higher than energy of the AP− state.
Coincidence of the critical fields of the three AP+ → AP−,
AP+ → P−, and P− → AP− transitions (triple point) causes
branched pathways of the relaxation between AP+ and AP−

states. In this case, the AP− domains grow from two other
AP+ and P− states simultaneously. This initiates a cascade
of the local AP+ → P− → AP− chain transitions in different
areas of the SAF. These transitions are separated in time. Since
the AP+ → P− and P− → AP− transitions correspond to the
opposite signs of the change of the magnetic moment, an
independent transformation of those states in different areas of
the SAF induces an oscillating behavior in the total magnetic
moment of the sample [Figs. 10(c) and 10(d)].

The condition of the coincidence of the critical fields of
the above-mentioned transitions can be obtained by setting
the corresponding critical fields (15), (17), and (19) equal to
each other. In other words, the AP+ → AP− and AP+ → P−
transitions would appear in the same field if the following
condition is satisfied:

−1

2

�t + �b

Mb − Mt
= −2EAF + �b

2Mb
. (20)

The condition of the simultaneous passing of the AP+ → P−
and P− → AP− transitions is

−2EAF + �b

2Mb
= −2EAF − �t

2Mt
. (21)

Conversion of the expressions (20) and (21) results in

�t = 2EAF

(
1 − Mt

Mb

)
− �b

Mt

Mb
(22)

The condition (22) satisfies both (20) and (21). Thus, the
two processes—that of the P− and AP− domain formation
from the AP+ state, and the backward magnetization reversal
from the AP+ to AP− state thought the intermediate P−
state—are energetically equivalent to each other. In Fig. 11(b),
energy diagram of the SAF state is shown for the case when
the condition (22) is fulfilled. The C point corresponds to a
transition carried on by two types of the domains. The solid
line belonging to the AP+ state crosses two dashed lines
corresponding to the P− state shifted up by �b value, and the
dashed line AP−, shifted up by �b + �t value along energy
axis. The D point corresponds to the transition P− → AP− at
the same external field as the C point.

V. CONCLUSIONS

(1) In Si/SiO2/Ta/Pt/Co/Ir/Co/Pt synthetic antiferro-
magnet, magnetic relaxations of different types can be de-
scribed by the nonlinear dynamical system equivalent to
the Schrödinger equation. Regular solutions expressed via
the degenerate hypergeometric functions of the second order
successfully describe the monotonic exponential relaxation,
the nonmonotonic relaxation with a single extremum, and
the magnetic relaxation containing two extrema. Field de-
pendences of the extracted parameters indicate a necessity of
the term describing the stochastic collisions of the magnetic
nuclei of the P− and AP− types, in order to explain the
observed oscillatory magnetic relaxation.

(2) Tuning of the thin-layer thickness and temperature
produces a coincidence of the critical magnetic fields of the
two or even three interstate transitions. Double coincidence
results in the nonmonotonic magnetic relaxation possessing a
single extremum, while the triple point (a coincidence of the
three critical fields) causes oscillatory magnetic relaxation.

(3) Nonmonotonic field dependence of the domain-wall
velocity was observed in constant magnetic fields H =
−480 Oe close to the critical field, switching P− state to
the AP− state. This phenomenon is accompanied by the
emergence of the P− phase and a low velocity of the AP−/P−
domain boundaries. The origin of the observed nonmono-
tonic dependence of the magnetic nuclei expansion can be
explained by Dzyaloshinskii-Moriya interaction.

(4) A convergence in the thicknesses of two ferromagnetic
layers significantly enhances the domain interaction, which
results in a nonlinear field dependence of the domain-wall
velocity and a nonmonotonic time dependence of the mag-
netic relaxation manifesting oscillating behavior. An increase
of the thin-layer thickness is equivalent to a decrease of
the temperature, stimulating the convergence of the magnetic
anisotropies of the hard and thin layers to each other, and
resulting in nonmonotonic time dependences of the magnetic
relaxation.
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APPENDIX

In order to simplify the system (2) in the main text we sum
up first and second equations and then remove the x and y
variables altogether via a third equation. This yields a simple
first-order separable differential equation:

ż = −(α + γ )z,

with general solution

z = z0e−ρt , (A1)

where ρ is a positively defined constant:

ρ = α + γ .

According to (2), this implies that x and y are related to each
other in the following fashion:

y = 1 − x − z0e−ρt . (A2)

Upon substitution of (A1) and (A2) into (2) we end up with
an equation this time depending just on x:

ẋ = αz0e−ρt + [δz0e−ρt − β − δ + δx]x. (A3)

Equation (A3) is a Riccati equation and as such can be
linearized by the following change of variable:

x(t ) = −1

δ

d

dt
ln f (t ). (A4)
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Furthermore, if we additionally rescale the variable f (t) as

f (t ) = exp

[
−1

2

(
σ t + δz0

ρ
e−ρt

)]
V (t ), σ = β + δ,

then Eq. (A3) turns into a standard Schrödinger equation for
the variable V(t):

V̈

V
= δ2

4
e−2ρt + δ

2
[ρ − σ − 2α]e−ρt + 1

4
σ 2. (A5)

Therefore, the entire problem reduces to finding a regular
solution of (A5) which does not vanish for any given t > 0
(so that the right-hand side of (A5) remains well defined), and
then using it to find x:

x(t ) = σ

2δ
− z0

2
e−ρt − 1

δ

V̇ (t )

V (t )
. (A6)

In order to achieve our goal it would actually be handy to
replace a time variable t with an independent variable ξ by the
formula

ξ = e−ρt .

The Schrödinger equation (A5) would have to be adjusted and
turned into

V ′′ + 1

ξ
V ′ −

[
a2 + ab

ξ
+ c2

ξ 2

]
V = 0, (A7)

where denotes the derivative with respect to the variable ξ ,
V = V (ξ ), and

a = δ

2ρ
, b = 1 − σ + 2α

ρ
, c = σ

2ρ
.

Let us now take a closer look at the behavior of the
solutions of (A7) for both very small and very large ξ . In
order to study the asymptotic behavior of V (ξ ) around ξ = 0
we shall dispense in with all but the dominant term in square
braces in (A5):

V ′′ + 1

ξ
V ′ − c2

ξ 2
V = 0.

It is easy to see that the general solution of this linear differ-
ential equation has the form

V (ξ ) = c1ξ
−c + c2ξ

+c,

where c1 and c2 are arbitrary real constants. Taking into
account that by assumption V cannot be equal to zero (so
c1 �= 0), we conclude that when ξ → 0

V → ξ−c.

By a similar argument, one can show that for ξ → ∞
V → e±aξ .

Therefore, one can utilize a variable w(ξ ), defined as

V = ξ−cekaξw(ξ ), k = ±1,

which, upon substitution into (A5), further reduces our
problem to the equation for the degenerate hypergeometric

function:

d2w(ζ )

dζ 2
+ (1−2c−ζ )

dw(ζ )

dζ
− aλ(k − 2ck − b)w(ζ ) = 0,

(A8)

where ζ = −2kaξ . It is advisable to represent the solution of
(A8) as

V (t ) = eσ t/2

[
c1 exp

(
δ

2ρ
e−ρt

)
w+(t )

+ c2 exp

(
− δ

2ρ
e−ρt

)
w−(t )

]
. (A9)

Here, as before, c1 and c2 are arbitrary real constants, the
functions w+ and w− are defined as follows:

w+(t ) = F

(
α

ρ
, 1 − σ

ρ
, − δ

ρ
e−ρt

)

w−(t ) = F

(
1 − σ + α

ρ
, 1 − σ

ρ
,

δ

ρ
e−ρt

)
, (A10)

and the function F in (A10) is given by the following conver-
gent series:

F (A, B, ζ ) = 1 + A

B

ζ

1!
+ A(A + 1)

B(B + 1)

ζ 2

2!
+ . . . . (A11)

At this step it is very important to note that by itself the
convergence of the series in (A11) does not guarantee the
regularity of solutions of Eqs. (2). This is due to the fact that
for arbitrary c1 and c2 the solution (A10) will have at least
one zero which will manifest itself as a pole of both x(t )
and y(t ) [see (A6) and (A2)]. Fortunately, the very form we
have chosen for V (t ) in (A7) readily gives us the means to
overcome this hurdle. For that end, let us choose c1 = 0 [thus
getting rid of w+(t ) and the alternating series it represents],
and then pick the parameters A and B for F (A, B, ζ ) in w_(t )
[see (A10) and (A11)] as follows:

A = −N

B = 1 − N − γ

ρ
, (A12)

where N is an arbitrary natural number. This particular choice
of parameters not only has the benefit of turning the series
(A12) into a finite positively defined sum—it provides us with
infinitely many solutions VN (t ), parametrized by the natural
number N:

VN (t ) = exp

[
− δ

2ρ
e−ρt + σN t

2

]

× F

(
−N, 1 − N − γ

ρ
,

δ

ρ
e−ρt

)
, (A13)

where

σN = γ + Nρ.
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We conclude this section by providing the explicit formulas
for the first three of those positively defined regular solutions:

V1(t ) = exp

[
− δ

2ρ
e−ρt + 1

2
(γ + ρ )t

](
1 + δ

γ
e−ρt

)
,

V2(t ) = exp

[
− δ

2ρ
e−ρt + 1

2
(γ + 2ρ )t

]
·

×
(

1 + 2δ

ρ + γ
e−ρt + δ2

γ (ρ + γ )
e−2ρt

)
,

V3(t ) = exp

[
− δ

2ρ
e−ρt + 1

2
(γ + 3ρ )t

]
·

×
(

1 + 3δ

2ρ + γ
e−ρt + 3δ2

(2ρ + γ )(ρ + γ )

× e−2ρt + δ3

(2ρ + γ )(ρ + γ )γ
e−3ρt

)
.

These solutions are for n = 2 formulas presented in the
main text.
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