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Origin of magnetic anisotropy in the spin ladder compound (C5H12N)2CuBr4
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The S = 1/2 spin ladder compound (C5H12N)2CuBr4 (BPCB) is studied by means of high-resolution inelastic
neutron scattering. In agreement with previous studies we find a band of triplet excitations with a spin gap of
∼0.8 meV and a bandwidth of ∼0.6 meV. In addition, we observe a distinct splitting of the triplet band of
50(1) μeV or 40(2) μeV at the band minimum or maximum, respectively. By comparison to a strong-coupling
expansion calculation of the triplet dispersion for a spin ladder with anisotropic exchange, weakly anisotropic
leg interactions are identified as the dominant source of magnetic anisotropy in BPCB. Based on these results,
we discuss the nature of magnetic exchange anisotropy in BPCB and in related transition-metal insulators.
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I. INTRODUCTION

The Heisenberg model is arguably the most important
construct in quantum magnetism. Experimentally, it is usually
studied in transition metal oxides and metal-organic salts.
Unfortunately, symmetry-breaking magnetic anisotropy is un-
avoidable in such compounds. Even when weak compared to
the dominant Heisenberg exchange, it can have a significant
influence on the magnetic and dynamical properties. In un-
derstanding these, existing microscopic theories are usually
disregarded in favor of minimalistic empirical models. For
example, magnetic exchange interactions in insulators are
described within Anderson’s theory of superexchange [1–3].
In the presence of weak spin-orbit coupling it predicts both
symmetric (Ising) and antisymmetric (Dzyaloshinskii-Moriya
[DM]) exchange anisotropy always occurring in combination
and at a fixed ratio [4–6]. Yet, experimental data are often
successfully analyzed in comparison to a Heisenberg model
with only an added DM term [7–11] even though such a model
lacks microscopic justification. Even more often, signatures
of weak magnetic anisotropy are detected in experiments, but
their origin remains unknown altogether [12–14]. In short,
anisotropy is ubiquitously present, yet pinpointing its micro-
scopic origin is almost never possible.

Here we present a detailed case study: the effect of
very weak magnetic anisotropy on spin excitations in the
almost ideal Heisenberg quantum spin ladder compound
(C5H12N)2CuBr4 (BPCB) [15–21]. On this compound we
have obtained exceptionally high-resolution inelastic neutron-
scattering data showing a small but distinct anisotropy split-
ting of the triplet excitations as described in Sec. II. At
the same time, BPCB is an excellent realization of a strong
rung spin ladder. It is described by only two exchange cou-
plings: the rung exchange and an almost four times smaller
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leg coupling. For this model, the excitation spectrum in the
presence of various possible exchange anisotropies can be
precisely calculated as detailed in Sec. III. This combination
of high-resolution spectroscopic data and precise calculations
of the excitation spectrum allows a detailed discussion of the
anisotropy’s microscopic origins in BPCB (Sec. IV). These
findings we compare to the microscopic theory of anisotropic
superexchange and we discuss how the present case study may
guide our understanding of magnetic anisotropy in related
compounds.

II. EXPERIMENT AND RESULTS

A. The compound (C5H12N)2CuBr4: Crystal structure and
magnetic interaction pathways

The compound (C5H12N)2CuBr4, bis-piperidinium copper
bromide or BPCB for short crystallizes in a monoclinic crys-
tal structure with space group P21/c and room-temperature
lattice parameters a = 8.49, b = 17.22, c = 12.38 Å, and
β = 99.3◦ [15]. The spin ladders are formed by the magnetic
Cu2+ cations carrying a spin S = 1/2 linked by superex-
change bridges via Br− anions [16]. The ladders run along the
crystallographic a axis and are well separated by nonmagnetic
organic piperidinium ions as depicted in Fig. 1 [22].

There are two crystallographically equivalent spin ladders
in BPCB, related by the glide plane symmetry of the P21/c
space group. Furthermore, the center of each ladder rung
corresponds to a crystallographic center of inversion sym-
metry. For this reason, on the ladder rungs, only symmetric
exchange is possible [23], while for the ladder legs there
are no symmetry restrictions and both symmetric and anti-
symmetric exchange are in principle allowed. On the ladder
leg, the antisymmetric exchange contribution is parametrized
by a Dzyaloshinskii-Moriya vector D. These DM vectors
are uniform within every ladder leg and antialigned between
the two legs of each ladder. The DM vectors of the two
crystallographically equivalent ladders are again related by
the reflection of the glide plane symmetry as sketched in
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FIG. 1. Schematic of the crystal structure of BPCB. The spin
ladders are formed by the magnetic Cu2+ cations and linking Br−

anions. Crystallographic centers of inversion symmetry are marked
by green dots. Anisotropic Dzyaloshinskii-Moriya interactions, by
symmetry, are only allowed on the ladder legs and possible DM
vectors D are sketched as blue arrows on these bonds. Note that for
this monoclinic structure, in both plots the third axis (projection axis)
is not perpendicular to the plane of the figure.

Fig. 1. Besides these relations, the DM vectors may point in
any direction and are not further constrained by symmetry.
Similarly, The g tensors for the magnetic moments residing
on the different Cu2+ ions show different principal axes for the
two types of ladders. Thus, in an applied magnetic field, the
two types of ladders become inequivalent, except for special
orientations of the magnetic field [19,20]. In the present study,
however, we exclusively focus on zero-field properties where
the two ladders remain equivalent.

B. Inelastic neutron scattering

Neutron-scattering experiments were performed on four
fully deuterated single crystals of total mass 2.07 g,
co-aligned to better than 1◦ effective mosaic spread. The

FIG. 3. Cuts through the data shown in Fig. 2 at the band
extrema: (a) Cut at the band minimum q‖/2π = −0.5 through the
1.35-meV data set. (b),(c) Cuts at the band extrema q‖/2π = −0.5 or
q‖/2π = 0, respectively, through the 2.20-meV data set. Solid lines
correspond to Gaussian fits. At the band minimum we find a slightly
larger splitting of �min = 50(1) μeV than at the band maximum
where �max = 40(2) μeV.

measurements were carried out at the LET cold neutron
time-of-flight spectrometer [24] at the ISIS facility, UK.
The sample was mounted on a 3He-4He dilution refrigera-
tor with the crystallographic b axis vertical. Making use of
repetition rate multiplication, data were collected simultane-
ously using neutrons of incident energies Ei = 1.35, 2.20,
4.20, and 11.0 meV. For these configurations we find an
approximately Gaussian energy resolution of 19, 36, 97, and
410 μeV at full width at half maximum, respectively, for elas-
tic scattering (h̄ω = 0) and improving towards higher energy
transfer.

C. Experimental results

An overview of the neutron-scattering data [25] collected
for Ei = 2.2 and 1.35 meV at a temperature of 0.35 K
is presented as false color intensity plots in Fig. 2. For
this quasi-one-dimensional spin ladder system, the measured

FIG. 2. False-color maps of the inelastic neutron-scattering intensity measured using (a) Ei = 2.20 meV and (b) Ei = 1.35 meV incident
energy neutrons at T = 0.35 K. With the lower incident energy, a superior energy resolution is achieved but only the low-energy parts of the
dispersion can be probed.
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scattering intensity is plotted versus reduced wave-vector
transfer parallel to the ladder q‖ = Q · a and integrated fully
along the nondispersive b∗ and c∗ directions.

We observe a band of excitations with an excitation gap
of � ∼ 0.8 meV and a bandwidth of � ∼ 0.6 meV. The
linewidth of gapped excitations in one-dimensional (1D) sys-
tems is known to show activation behavior [26]. With kBT �
�, in the present experiment these excitations are long lived
and their apparent width corresponds to the experimental
resolution.

Cuts through both data sets at the band extrema are shown
in Fig. 3. These correspond to the data of Fig. 2 inte-
grated in thin slices of q‖/2π = −0.5 ± 0.02 and q‖/2π =
0 ± 0.03, respectively (the dispersion is less curved at the
maximum allowing to integrate a wider slice for improved
counting statistics). To these cuts we fit two Gaussian peaks
of equal width and a linear background shown as a solid
lines in Fig. 3. We find a splitting of �min = 50(1) μeV
at the band minimum and �max = 40(2) μeV at the band
maximum.

III. TRIPLET DISPERSION FOR A SPIN LADDER WITH EXCHANGE ANISOTROPY

A. Isotropic Heisenberg ladder

For an isotropic spin S = 1/2 ladder we denote the rung and leg Heisenberg exchange constants as J⊥ and J‖, respectively.
In the limit of λ = J‖/J⊥ � 1, the spin ladder can be understood as a 1D array of weakly interacting spin dimers. For λ = 0
the ground state corresponds to a product state of singlets and the low-energy excitations are triplet excitations. In the presence
of weak leg coupling, these excitations become mobile and for small λ their dispersion can be calculated in a strong-coupling
expansion [27]. For an isotropic ladder with Hamiltonian

H = J⊥(H⊥ + λH‖), H⊥ =
L∑

R=1

SR,1 · SR,2, H‖ =
L∑

R=1

2∑
α=1

SR,α · SR+1,α, (1)

up to third order in λ, the following dispersion is obtained in Ref. [27], degenerate for the three σ = {+, 0,−} triplet branches:

εσ (k)/J⊥ = 1 + γ cos(k) + γ 2

4
[3 − cos(2k)] + γ 3

8
[3 − 2 cos(k) − 2 cos(2k) + cos(3k)]. (2)

In the following we do the same calculation for a ladder with anisotropic rung or leg exchange, respectively. Some details of
these computations are given in the Appendix.

B. Anisotropic rung interactions

In addition to the isotropic rung and leg couplings, here Ising-type anisotropy on the ladder rungs is considered. We choose
the z axis parallel the Ising axis and consider the Hamiltonian

H = J⊥(H⊥ + λH′), H′ = H‖ + C HRung,Ising, HRung,Ising =
L∑

R=1

Sz
R,1Sz

R,2, (3)

where the Ising anisotropy on the ladder rungs is parametrized by C. Using the same strong-coupling expansion as applied to the
isotropic case in Ref. [27], up to third order in λ we find

ε0(k)/J⊥ = 1 + λ cos(k) + λ2

4
[3 − cos(2k)] + λ3

8
[3 − 2C − 2 cos(k) − 2 cos(2k) + cos(3k)], (4)

ε±(k)/J⊥ = 1 + λ

[
C

2
+ cos(k)

]
+ λ2

4
[3 − cos(2k)] + λ3

8
[3 − 2C − 2 cos(k) + (C − 2) cos(2k) + cos(3k)]. (5)

C. Anisotropic leg interactions

Finally, we consider anisotropic exchange on the ladder legs with both symmetric and antisymmetric contributions. Assuming
a center of inversion symmetry on the ladder rungs, we consider a uniform DM vector +D on one leg and −D on the other leg.
Furthermore we include Ising anisotropy of independent magnitude but pointing in the same direction as D. We choose the z
axis parallel to D and consider

H = J⊥(H⊥ + λH′), H′ = H‖ + BHLeg,DM + AHLeg,Ising, (6)

HLeg,DM =
L∑

R=1

2∑
α=1

(−1)αez · (SR,α × SR+1,α ), HLeg,Ising =
L∑

R=1

2∑
α=1

Sz
R,αSz

R+1,α. (7)
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Up to third order in λ we find the following triplet dispersion:

ε0(k)/J⊥ = 1 + λ(1 + A) cos(k) + λ2

4

[
3 − 4B2 + 2A + A2 + 4B2 cos(k) − (

1 + 2A + A2
)

cos(2k)
]

+ λ3

8

[
3 + 3A − (

2 + 4B2 + 4A + 4AB2 + 3A2 + A3
)

cos(k) − (
2 + 2A − 4B2 − 4AB2

)
cos(2k)

+ (
1 + 3A + 3A2 + A3

)
cos(3k)

]
, (8)

ε±(k)/J⊥ = 1 + λ cos(k) + λ2

4

[
3 − 2B2 + 2A + A2 − cos(2k)

]

+ λ3

8

[
3 + 3A −

(
2 + 12B2 + A + A2

2

)
cos(k) − (

2 + 2B2 + 2A + 2AB2
)

cos(2k) + 1

8
cos(3k)

]
. (9)

IV. DISCUSSION

A. Discussion of experimental results

The experimental data shown in Fig. 2 closely resemble
previously published results on BPCB with dispersive triplet
excitations [16,19]. In these experiments the resolution was
not sufficient to detect the small band splitting and those data
were very well described using a model of an isotropic spin
ladder with J⊥/kB = 12.7(1) K and J‖/kB = 3.54(3) K [21].
Only with the superior resolution of the present experiment is
the small splitting of the triplet band observed.

In our data, perpendicular to the one-dimensional ladders,
no dispersion is observed within the experimental resolution.
This validates BPCB as an exceptionally one-dimensional
ladder compound and it corroborates that the observed band
splitting is inherent to the spin ladders and is not related to
residual 3D interactions. In addition, interladder interactions
were previously estimated on the order of a few 10s of mK
[18] (a few μeV)—much smaller than the observed band
splitting.

A previous ESR study on BPCB [20] found clear signa-
tures of magnetic anisotropy, of exactly the same magnitude
as the band splitting observed in the present experiments. By
a careful study of the angular dependence of the ESR signal,
an anisotropy axis tilted approximately 50◦ from the b axis
in the (b, c�) plane could be identified as a special direction.
However, the origin of this anisotropy remained unclear.

One source of magnetic anisotropy is dipolar interactions
present in all materials [28]. For classical magnetic moments
at the shortest Cu-Cu distance found in BPCB, dipolar inter-
actions are estimated as Jdipolar/kB ≈ 6 mK (<1 μeV), much
smaller than the observed band splitting. Dipolar interactions
clearly can be ruled out as the primary cause of magnetic
anisotropy in BPCB. Since for the S = 1/2 Cu2+ ions there
cannot be any single-ion anisotropy, exchange anisotropy
must be the dominant cause of the observed small splitting of
the triplet band. Before further analyzing our data in this re-
gard, we first discuss the nature of anisotropic superexchange
interactions in the following section.

B. Anisotropic superexchange

Most generally, the effective exchange interaction between
two spins takes the form H1,2 = S1�S2 where � is a tensor.
Decomposing � into its symmetric and antisymmetric parts

and choosing a basis such that the symmetric part is diagonal,
this can be written as

H1,2 = J S1 · S2 + D · (S1× S2) +
∑

α=x,y,z

Gα Sα
1 Sα

2 . (10)

Here, J is the isotropic (Heisenberg) exchange. The so-called
Dzyaloshinskii-Moriya vector D quantifies the antisymmet-
ric exchange and Gα (α = x, y, z) determine the symmetric
(Ising) exchange anisotropy where

∑
α Gα = 0.

Including spin-orbit coupling (SOC) into Anderson’s the-
ory of superexchange [1] indeed all these contributions are
obtained [2,3]. However, in this setting, symmetric and anti-
symmetric interactions are not independent and, for a single
bond, to a good approximation the superexchange interaction
Hamiltonian reads [4–6]

H1,2 =
(

J − |D|2
4J

)
S1 · S2

+ D · (S1 × S2) + 1

2J
(D · S1)(D · S2). (11)

Here a single vector D defines both the symmetric and anti-
symmetric exchange. This expression, although not obvious,
is fully invariant under spin rotations [5,6]: While the term
D · (S1 × S2) acts to confine the spins to a plane perpendicular
to the vector D, the Ising contribution acts to align the spins
with D. Thus, for a single bond, anisotropic superexchange
will never single out a particular direction. Nonetheless, for
multiple connected bonds, frustration of the D vectors may
still break spin rotation symmetry and lead to the appearance
of anisotropy [5,6].

Besides this mechanism, considering multiple orbitals of
the ligands transmitting the superexchange interactions in the
presence of SOC may result in additional sources of exchange
anisotropy, beyond Eq. (11). However, these additional effects
have been argued to be much smaller in magnitude [29,30].

This leaves us with the following situation: When con-
sidering superexchange interactions, to first approximation
symmetric and antisymmetric anisotropy contributions always
come together pointing in the same direction and at a fixed
ratio. In this case, if the center of a bond corresponds to
a center of inversion symmetry, not only is antisymmet-
ric exchange anisotropy forbidden by symmetry as is com-
monly known [23], but we also expect symmetric exchange
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FIG. 4. Triplet dispersion for a spin ladder with exchange anisotropy: (a) Ising anisotropy on the ladder rungs, (b) Ising anisotropy on
the legs, (c) DM anisotropy on the legs, and (d) both Ising and DM anisotropy on the ladder legs, in the ratio as predicted for a simple
superexchange mechanism [Eq. (11)]. For these plots, isotropic J⊥/kB = 12.7 K and J‖/kB = 3.54 K were used, approximately describing the
ladders in BPCB. Further, in all four cases the anisotropy parameter was chosen such that the triplet splitting at the band minimum amounts to
50 μeV. In all plots, the blue line shows the doubly degenerate ε±(k) dispersion and the orange line shows the ε0(k) triplet.

anisotropy to vanish. Only additional mechanisms may then
lead to Ising-type anisotropy which is in principal allowed on
a bond with inversion symmetry.

C. Exchange anisotropy in BPCB

For the compound BPCB with centers of inversion sym-
metry on the ladder rungs, we consider the following cases
compatible with the crystallographic symmetry:

(a) Ising anisotropy on the ladder rungs;

(b) Ising anisotropy on the ladder legs;
(c) DM anisotropy on the ladder legs;
(d) both DM and Ising anisotropy on the ladder legs as

predicted for simple superexchange [Eq. (11)].
Using the results of Sec. III, for these four cases, the

triplet dispersion is plotted in Fig. 4. For these plots, we have
used the Heisenberg exchange constants J⊥/kB = 12.7 K and
J‖/kB = 3.54 K approximately describing BPCB [21]. In all
cases the anisotropy parameter was chosen such that the triplet
splitting at the band minimum amounts to 50 μeV.

Comparing the dispersion calculated for Ising-type ex-
change anisotropy on the ladder rungs [Fig. 4(a)] to the data
of Fig. 2, we can clearly rule out this case as the dominant
source of anisotropy in BPCB. The data qualitatively disagree
with the calculated dispersion. For the case of anisotropic
leg exchange, all three types of anisotropy considered give
qualitatively the same dispersion [Figs. 4(b)–4(d)]. There
is a doubly degenerate band with a smaller bandwidth and
a nondegenerate band with larger bandwidth. In all cases
the calculated anisotropy splitting is slightly larger at the
band minimum than at the band maximum, just as in our
data [31].

In Fig. 5 we show the triplet dispersion extracted from
our data. These points were obtained from Gaussian fits to
constant-q‖ cuts, similar to the ones shown in Fig. 3. The ver-
tical bars denote the width of the observed peaks. Fitting the
calculated dispersions with anisotropic leg exchange [cases
(b)–(d)] to these data, we find excellent agreement for all three
cases. Indeed, the three calculated dispersions are so similar,
that from our data, it is impossible to determine which type
of exchange anisotropy on the ladder legs actually causes the
observed band splitting in BPCB. As an example, in Fig. 5

the solid line shows the dispersion calculated for anisotropic
exchange on the ladder legs given by Eq. (11) [case (d)] with
fitted parameters

J⊥/kB = 12.77(1) K,

J‖/kB = 3.55(1) K, (12)

D‖/kB = 1.44(2) K.

In the parametrization of the Hamiltonian of Sec. III C,
the coefficients are J̃‖ = J‖ − D2

‖/(4J‖), λ = J̃‖/J⊥, A =
D2

‖/(2J‖J̃‖), and B = D‖/J̃‖. Here, we stress that the numer-
ical value of D‖/kB = 1.44 K cannot serve as an estimate
for the overall magnitude of the magnetic anisotropy which
should be estimated from the band splitting of 50 μeV, i.e.,
≈0.6 K in units of kelvin.

This leaves the question of how one might experimentally
determine the type of leg exchange anisotropy dominant in
BPCB. The most promising route to answering this question
would be to measure the triplet dispersion as a function of

FIG. 5. Position of the triplet bands extracted from the neutron
scattering data of Fig. 2. The dispersion drawn as a solid line
represents a model with anisotropic interactions on the ladder legs
[case (d)] as described in the text.
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orientation and strength of a small applied magnetic field.
In combination with calculations also including an applied
magnetic field, such data might indeed allow us to determine
the precise type of exchange anisotropy on the ladder legs
in BPCB. However, this is clearly beyond the scope of the
present work.

D. Final remarks

In BPCB the interactions on the ladder rungs are the
strongest ones by far (J⊥ ≈ 3.6 J‖). On these bonds, antisym-
metric exchange anisotropy is prohibited by symmetry and
only Ising-type exchange anisotropy is allowed. It may thus
seem plausible to expect this to be the dominant source of
anisotropy. Yet, experimentally we find that the anisotropy
is predominantly due to the much weaker leg interactions of
the ladder. Indeed, this is fully consistent with the theory of
superexchange interactions, where symmetric and antisym-
metric anisotropy contributions are always coupled. If either
is prohibited by symmetry, also the other will vanish. The
negligible Ising anisotropy on the ladder rungs in BPCB we
thus see as supporting evidence, for the theory of anisotropic
superexchange [5,6].

Since the theory of superexchange predicts DM anisotropy
B ∝ |D| and Ising anisotropy A ∝ |D|2, initially the latter was
considered subdominant [2,3]. However, both contributions
are now understood to be equally important [4–6]. While
not immediately intuitive, the triplet dispersions calculated in
Sec. III C illustrate this effect: In the obtained expressions A
appears linearly, while B only appears to second order as B2.

Finally, we mention an apparent contradiction: Superex-
change can never give rise to DM anisotropy exclusively.
Yet, oftentimes pure DM interactions are used very success-
fully to explain anisotropy effects observed experimentally.
Here, the present case study offers some illustration. For the
spin ladder, different types of exchange anisotropy on the
ladder legs lead to almost identical triplet dispersions that
all explain our data equally well. We speculate that also
in other systems one might encounter similar situations and
it is for this reason that pure DM anisotropy is used so
successfully to explain experimental findings, even though
(within the theory of superexchange) it lacks any microscopic
justification. We are only aware of one experimental study on
the helimagnet Ba2CuGe2O7, where a model employing the
full Hamiltonian for anisotropic superexchange interactions
[Eq. (11)] was compared to experimental data and indeed
better agreement was found than for a model employing DM
anisotropy only [32].

Further case studies of the nature of magnetic exchange
anisotropy would certainly be interesting. We also sug-
gest that whenever a model with pure DM interactions is
considered, it would be enlightening to also consider a
model with both Ising and DM anisotropy, compatible with
superexchange.

V. CONCLUSION

The prototypical spin ladder compound (C5H12N)2CuBr4

(BPCB) has been studied by means of high-resolution inelas-
tic neutron scattering. We find a small splitting of the triplet

band of 50(1) μeV at the band minimum and 40(2) μeV at
the band maximum. Further, for a spin ladder with exchange
anisotropy, the triplet dispersion is calculated in a strong-
coupling expansion.

The Ising-type anisotropy allowed by crystallographic
symmetry on the ladder rungs (by far the strongest bonds) we
find to be negligible, in line with the theory of anisotropic
superexchange. Three models with exchange anisotropy on
the ladder legs all describe the data equally well. While we
cannot distinguish these by comparison to our data, we note
that only one is compatible with superexchange interactions.
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APPENDIX

In this Appendix we give some details on the strong-
coupling expansion calculation of the triplet dispersion in a
strong rung spin ladder following Ref. [27]: First, consider
a single Heisenberg S = 1/2 spin dimer with Hamiltonian
H0 = J⊥ S1 · S2. The eigenstates are given by a singlet state
|s〉 with energy Es = − 3

4 J⊥ and three triplet states |tσ 〉 with
energy Et = 1

4 J⊥ and Sz spin component σ = −1, 0, 1. In
all cases our calculations start from the strong rung limit,
where the spin ladder is nothing but an array of L independent
Heisenberg spin dimers,

H⊥ = J⊥
L∑

R=1

SR,1 · SR,2.

The ground state is a product of singlets |0〉 = |s . . . s〉 with
energy E0 = LEs. The first excited states are the 3L degenerate
single triplet states |R, σ 〉 = |s . . . tσ

R . . . s〉 where the Rth rung
is excited to an Sz = σ triplet.

Now we introduce the much weaker interaction H′ as
a perturbation. It connects the individual dimers giving the
spin ladder Hamiltonian H = J⊥(H⊥ + λH′) with λ � 1. In
Sec. III A, H′ describes Heisenberg exchange connecting the
dimers via the ladder legs. In addition to this, in Secs. III B
and III C, H′ also contains anisotropic exchange contributions
on the ladder rungs or legs, respectively.

The ground-state energy in the presence of H′ we denote
as Ẽ0. It is computed using standard nondegenerate Rayleigh-
Schrödinger perturbation theory. The triplet states however
are 3L-fold degenerate and some care is required. The L-fold
degeneracy is lifted to first order in λ and the appropriate
eigenstates are Bloch waves,

|k, σ 〉 = 1√
L

L∑
R=1

eikR|R, σ 〉,

for k = n
2π

, n = 0, . . . , L − 1. In the absence of H′ they have
energy Ek,σ = E0 + J⊥. Further we note that all H′ com-
mute with Sz = ∑L

R=1 Sz
R and thus with the unperturbed H⊥.
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Therefore, they will never mix triplets with different quantum
numbers σ . Starting with the |k, σ 〉 triplet Bloch waves we
can therefore again use nondegenerate perturbation theory to
obtain their energy Ẽk,σ in the presence of the perturbation H′.

Calculating the ground-state energy Ẽ0 and the triplet energy
Ẽk,σ to third-order perturbation theory in λ, we obtained the
triplet dispersions εσ (k) = Ẽk,σ − Ẽ0. For the different H′,
these are given in Sec. III.
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