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We theoretically study the ground-state phase diagram of strongly interacting bosons on a generalized zigzag
ladder model, the railroad-trestle (RRT) model. By means of analytical arguments in the limits of decoupled
chains and the case of vanishing fillings as well as extensive DMRG calculations, we examine the rich interplay
between frustration and interaction for various parameter regimes. We distinguish three different cases, the
fully frustrated RRT model where the dispersion relation becomes doubly degenerate and an extensive chiral
superfluid regime is found, the antisymmetric RRT with alternating π and 0 fluxes through the ladder plaquettes
and the sawtooth limit, which is closely related to the latter case. We study detailed phase diagrams which include
besides different single-component superfluids, the chiral superfluid phases, the two component superfluids, and
different gaped phases, with dimer and a charge-density wave order.
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I. INTRODUCTION

Frustrated systems are one of the most interesting as
well as widely explored yet still most challenging prob-
lems in the field of condensed matter physics. Frustrations
in one and quasi-one-dimensional systems, such as quasi-
one-dimensional magnetic materials [1–4], are of paramount
importance due to the strong correlations which in interplay
with the geometric frustration lead to nontrivial and intriguing
physics. Theoretically in particular the J1-J2 spin model,
with a frustrated next-nearest neighbor tunneling amplitude
J2, has been extensively studied during the recent decades
and important milestones include the famous analytical so-
lution for the isotropic spin-1/2 J1-J2 model by Majumdar
and Ghosh [5] or the Ising type phase transition between
the critical Luttinger-liquid XY and the gapped dimerized
(D) phase [6,7]. Detailed ground-state properties in different
regimes and for various spins S � 1/2 have been discussed
both numerically and analytically [8–14] in the ferromagnetic
[15] as well as antiferromagnetic regime [16–18].

Recent experiments on ultracold quantum gases in optical
lattices [19–22], as well as irradiated graphene [23,24] or
photonic lattices [25–27], have paved the path towards the
manipulation of lattice frustration to establish a situation to
mimic condensed matter phenomena. The seminal experimen-
tal emulation of geometric frustration in a triangular optical
lattice by Struck et al. [20] has attracted enormous interest
to understand the physics of lattice frustration at ultralow
temperature. In recent years, various interesting predictions
have been made in the context of geometric frustration in low-
dimensional lattices such as zigzag lattices which resembles
the quantum J1-J2 model under proper conditions: studies on
systems of bosons in frustrated zigzag lattices have predicted
the presence of chiral phases [28] whose existence have also
been predicted in various bosonic ladder systems [29–34] and
recently observed in cold atom experiments [35]. which arise
due the spontaneously breaking of the inversion symmetry of

the system. On the other hand, it has been shown that the
supersolid phases can be stabilized in a system of hardcore
bosons in a frustrated zigzag lattice with dipole-dipole interac-
tions [36,37]. Recently, interesting extensions to an arbitrary
rectified flux have been discussed [38].

A natural extension of the zigzag ladder is to allow for
a difference in the tunneling amplitudes between upper and
lower legs. One of the interesting variant of the frustrated
zigzag lattice model is the sawtooth model which exhibits
nontrivial physics due to the existence of a flat band. It has
been shown that a solid order emerges at quarter filling in
a frustrated one-dimensional sawtooth model by Huber and
Altman [39] by means of an effective model valid in the
flat-band regime. Interestingly, a numerical analysis of this
model has shown that also a supersolid phase can be stabilized
in the absence of long-range interactions [40]. The existence
of this supersolid phase can be attributed to the presence of
alternating flux in the consecutive plaquettes of the lattice
which occurs due the lattice geometry.

In this paper, we widen the scope of study to the general
railroad-trestle (RRT) model where one considers different
hopping amplitudes in the legs of the ladder as shown in the
Fig. 1. The RRT model and its variant the sawtooth model
have been analyzed in the context of fermions [41–47], but the
bosonic or spin analog of this model is still a open problem. In
particular, given the interest in the sawtooth model due to un-
conventional transport properties and supersolidiy, and a pos-
sible experimental realization of the zigzag ladder like models
in the foreseeable future [38,48,49], the RRT model as asym-
metric variant of the paradigmatic J1-J2 model poses an inter-
esting problem to study. In this paper, we present a detailed
analysis of the ground-state properties of the bosonic RRT
model in different limits to understand the effects of geometric
frustration. We study three major variants of the RRT model
using different analytical arguments in the limiting cases. The
exact ground-state properties are studied using the density
matrix renormalization group (DMRG) method [50,51].
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FIG. 1. Railroad-trestle (RRT) lattice which is a most general
model for zigzag ladder with tunneling amplitudes t1, t2, and t3.

II. MODEL

The RRT model as sketched in Fig. 1 is defined by the
following Hamiltonian:

H (t1, t2, t3) = − t1
∑

j

(a†
j b j + b†

ja j+1 + H.c.)

− t2
∑

j

(a†
j a j+1 + H.c.)

− t3
∑

j

(b†
jb j+1 + H.c.). (1)

Here, a(†)
j and b(†)

j are the bosonic annihilation(creation) op-
erators for the upper (B) and lower (A) legs, respectively (see
Fig. 1). While t1 is the hopping amplitude between the legs, t2
and t3 correspond to the hoppings along the leg A and leg B,
respectively. The local onsite interactions can be introduced in
the model as

Hint = U

2

∑
ν∈{A,B}, j

nν
j

(
nν

j − 1
)
, (2)

where U is the onsite repulsion and nν
j stands for the number

operators at site j. In the following we assume the energy
unit t1 = 1 (unless stated otherwise) making all other physical
quantities dimensionless. The primary focus of this work is
to study the ground-state properties of the Model (1) in the
limit of hardcore bosons (U → ∞) for different values of
t2 and t3 considering the frustrated regime, i.e., t2 < 0. This
assumption on the sign of t2 introduces a π flux associated
with the Peierl’s phase in a plaquette. It is now useful to
introduce a dimensionless parameter

δ = t3/t2 . (3)

In the numerical treatment of the ladder, we order the lattice
sites along the zigzag direction of the ladder introducing L
lattice site alternating between A and B sites with bosonic
operators cl where cl = al/2 if l is odd and cl = b(l−1)/2 for
even l . With this the model (1) can be trivially rewritten

H (t1, t2, t3) = − t1
∑

j

(c†
l cl+1 + H.c.)

− t2
∑
l even

(c†
l cl+2 + H.c.)

− t3
∑
l odd

(c†
l cl+2 + H.c.) . (4)

The remaining part of the paper is organized as follows.
In this section, we analyze two limiting cases of the model
(1) such as the single-particle spectrum and the limit of two
decoupled chains, i.e., when |t1| � |t2|, |t3|. In the following

sections, we discuss three different families of parameters:
Sec. III is devoted for the fully frustrated RRT(FF-RRT)
model with π -π flux arrangements, i.e., t3 < 0. Sec. IV con-
stitutes the discussion on the π -0 flux case, with t3 > 0. In
Sec. V, we analyze the sawtooth ladder model i.e. t3 = 0. In
the end, we conclude in Sec. IV.

A. Single-particle spectrum

It is instructive to start the discussion of the physics of
model (1) from the single-particle prospective. The kinetic
part can be written in momentum space k as

H = −
∑

k

(
ak

bk

)†(
2t2 cos(2k) t1(1 + ei2k )

t1(1 + e−i2k ) 2t3 cos(2k)

)(
ak

bk

)
. (5)

Diagonalizing the 2 × 2 matrix one obtains the energy disper-
sion for generally two bands as

ε0,1(k) = ±
√

4t2
1 cos2(k) + (t2 − t3)2 cos2(2k)

− (t2 + t3) cos(2k) (6)

with the new creation and annihilation operators

αk = cos(θk )ak + sin(θk )ak ,

βk = sin(θk )ak − cos(θk )ak , (7)

with the corresponding Bolgoliubov coefficients θk . This ex-
pression for ε0(k) can give us insight into the physics of the
system.

In general we are interested in three different cases, distin-
guished by the parameter δ = t3/t2 (setting t2 < 0). In Fig. 2,
we show examples of the lowest band ε0(k) dispersion for
three different cases of δ and for each case we consider
different values of t2. For δ > 0, the flux through every unit
cell is equal to π [Fig. 2(a)]. Here the flux π corresponds
to the odd number of negative tunneling amplitudes in a
plaquette. Here one finds a parameter regime in which the
dispersion exhibits a doubly degenerate minimum. For the
case δ = 1, this model corresponds to the symmetric zigzag
ladder HS = H (t1, t2, t2) resembling the J1 − J2 model, which
has been studied extensively in the literature as discussed in
the introduction. In this case, the ε0(k) possesses single and
double degenerate minima as a function of t2 and becomes
quartic (∼(k − Q)4) at the so called Lifshitz-transition point,
t2 = −1/4.

While for small values of −t2 � 1 the single minimum
of the dispersion relation is at k = 0, for large values of
−t2 � 1 and δ �= 1 the dispersion relation will generally
exhibit a minimum at k = π/2. We will later on associate two
different single-component Luttinger-liquid phases with these
two dispersion minima, the superfluid at k = 0 which we call
the SF0 phase, and the corresponding SFπ/2 phase at k = π/2.
The situations in which the dispersion exhibits a degenerate
minimum will give rise to further interesting quantum phases
discussed below in detail.

On the other hand, for δ < 0, only every second plaquette
exhibits a π flux while the others have zero flux. In this case,
instead of a Lifshitz transition with a quartic dispersion rela-
tion, the single-particle spectrum becomes degenerate—fixing
δ—only at a single point t2 = t c

2 as shown in Fig. 2(b). This
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FIG. 2. Single-particle energies of the RRT model with (a) π -π -case δ = t3/t2 = 1/2, (b) 0 − π case δ = −1/2, and (c) sawtooth case
δ = 0. We choose t2 = −0.2, −0.4, −0.707, −1.0, and −1.2 (from top to bottom at k → π/2).

is, however, sufficient to induce a number of interesting effects
in the ground-state phase diagram which we will discuss later
on.

Finally, for the special case of δ = 0, the system is called
a sawtooth ladder. This exhibits a flat lowest band at t2 =
−1/

√
2 as shown in Fig. 2(c). Although apparently the saw-

tooth limit is the intermediate between the previous two cases,
i.e., δ < 0 and δ > 0, this situation resembles to some extent
the π -0-flux systems as one bond is absent [40]. The many-
body physics which translates from this kind of band picture
will be systematically discussed in the following sections.

Anticipating the results of the following discussion, in
Figs. 3 and 4, we sketch the local density, current and kinetic
energy configurations of the different quantum phases found
in the RRT model. While fermions and bosons exhibit the
same single-particle physics, the quantum phases at finite
density will differ strongly. For a model of free fermions, only
liquid phases corresponding to the SF0, the SFπ/2 are present.
Additionally one may observe a two-component liquid phase

SF0

CSF

SFπ/2

DW

D

FIG. 3. Local configurations of density (size of the bullets) and
bond kinetic energy (lengths and thickness of the lines) of some of
the quantum phases observed on the railroad-trestle model are shown
for δ = −1/2. The sketches adapted from DMRG simulations are
the superfluid phase at momentum k = 0 (SF0), the chiral superfluid
(CSF), the superfluid phase at momentum k = π/2 (SFπ/2), the
density wave phase at quarter filling (DW) and the dimerized phase
at half filling (D).

with four Fermi points, which will also be present in the
bosonic model, the two-component superfluid phase (2SF).
The inherent interaction in the hardcore boson model allows
for the emergence of a chiral superfluid phase (CSF) in the
regime of a degenerate dispersion minimum competing with
the 2SF phase.

B. Limit of decoupled chains |t1| � |t2|, |t3|
The phase diagram in the frustrated regime can be un-

derstood from the limit of two decoupled chains which is
|t1| � |t2|, |t3| or in other words when t1 → 0 the two chains
are independent. For an asymmetric system, i.e., if t2 �= t3,
both chains will in general be occupied by different particle
densities. In the decoupling limit, we expect only one chain
with the larger tunneling amplitude t3 > t2 to be occupied, if
the density n is small enough. This can be seen from a map-
ping to free fermions, which results in two bands −2t2 cos(k)
and −2t3 cos(k). Only the lowest band is occupied for

n < arccos

(
t2
t3

)
/2π. (8)

For larger fillings, the system enters a regime with two critical
Luttinger liquids or two-superfluids (2SF) phase, character-
ized by a central charge c = 2 [52].

The effect of a perturbative coupling between the
two chains, i.e., by adding a small zigzag hopping

CSF

DW

FIG. 4. Local configurations of density (size of the bullets) and
local chirality or current (lengths and thickness of the arrows) of the
chiral superfluid (CSF) and the density wave phase at quarter filling
(DW). Sketches adapted from DMRG simulations. As discussed in
the main text the nonvanishing chirality in the DW phase is probably
a finite size effect. In order to visualize the chirality (in the π -flux
model the local current vanishes), we manually break the symmetry
by adding a small complex phase ei0.01π to next-nearest neighbor
bonds—the rest of the data presented in this paper is obtained without
this trick and by directly calculating the corresponding chirality
correlation function.
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Hzz = H (t1, 0, 0) is best described by a bosonization treat-
ment of this case as presented in Ref. [9] for the sym-
metric case δ = 1. For each subchain, we introduce two
pairs of bosonic fields (θ1, φ1) and (θ2, φ2), with a†(b†) j ∼√

neiθ1(2) (x)[1 + 2 cos(2πnx + 2φ1(2)(x)) + · · · ] and x = j · d ,
d being the lattice spacing and the average density n. After
forming symmetric and antisymmetric combinations θ± =
(θ1 ± θ2)/

√
2, φ± = (φ1 ± φ2)/

√
2, the effective low-energy

model [28] is given by

HS =
∑
ν=±

vν

2π

[
π2(∂xφν )2

Kν

+ Kν (∂xθν )2

]

+ λ∂xθ+ sin
√

2θ− + · · · . (9)

λ, K±, and vν are phenemenological constants. The last term
is relevant and introduces a gap in the anti-symmetric sector
θ−, resulting in a finite chirality Oχ ∼ 〈sin

√
2θ−〉 [53]. In

the thermodynamic limit, it exhibits a nonvanishing local
boson current or chirality κ j = i

4 (a†
j b j + b†

ja j+1 − H.c.) in
the system which is a signature of the chiral superfluid(CSF)
phase. In a finite system this locally defined chirality is always
zero. However, the CSF phase is clearly characterized by the
long-range ordered chirality-chirality correlations defined as

Oχ = lim
| j− j′ |→∞

〈κ jκ j′ 〉. (10)

It is to be noted that the CSF phase possess a central charge
c = 1 and the 2SF phase does not exhibit a finite chirality.

Interestingly, for the antisymmetric zigzag model HA =
H (t1, t2,−t2), i.e., with δ = −1, we do not expect this gapping
mechanism to work. This can be understood by a simple gauge
transformation a(†)

j → (−1) ja(†)
j , and b(†)

j → b(†)
j . With this

we can map HA → HS , but the zigzag hopping acquires an
oscillating factor

Hzz →
∑

j

(−1) j (a†
j b j − b†

ja j+1 + H.c.). (11)

Due to this strong oscillatory term, the perturbation in general
becomes irrelevant and the system should stay in the 2SF
phase. Only for the case of a certain commensurabilities, such
as n = 1/4, however, the oscillation may be compensated in a
bosonization description. Here, with the above nomenclature
one obtains up to irrelevant terms

HA =
∑
ν=±

vν

2π

[
π2(∂xφν )2

Kν

+ Kν (∂xθν )2

]

+ λ′ cos
√

8φ+ cos
√

2θ− + · · · . (12)

We may again treat the last term in a mean-field way. It is
highly relevant and will open a gap as well in the symmetric
sector for any finite zigzag coupling (K+ < 4). Hence, we
expect the emergence of a stable gapped phase which is in
this case a density wave ordered phase at quarter filling for
the antisymmetric model in the large t2 � t1 limit.

Note that the asymmetric case (t2 �= t3) may be understood
as a combination of the symmetric and antisymmetric zigzag
model, i.e., H = t2+t3

2 HS + t2−t3
2 HA + Hzz. Hence, we might

naively expect the physics arising as a combination of both
the effects. In the following, we will examine these heuristic
arguments by means of more rigorous methods.

III. THE FULLY FRUSTRATED RRT (FF-RRT)
MODEL (π-π FLUX)

In this section, we begin the discussion with the case δ > 0
and then we compare our results with the already known case
of the symmetric zigzag chain. First we analyze the physics
in the dilute limit and then we extend our calculation by
increasing the density.

A. Dilute limit

The interplay between local interactions and geometric
frustration which gives rise to the various quantum phases
can be best understood in the limit of low fillings n → 0
or the dilute limit. In the presence of two nonequivalent
minima at k = ±Q, the ground state of a noninteracting boson
system is highly degenerate and the effect of interactions
becomes crucial which selects a particular ground state. The
particles at low energies mainly populate the two dispersion
minima at Q and −Q. We can interpret them as two different
bosonic flavors and map to an effective two component model
with intraspecies coupling g11 = g22 between bosons of the
same species and interspecies coupling g12 between different
flavors. Typically two different types of SF ground states may
be stabilized: either the bosons equally occupy both minima,
i.e., both flavors are present (the 2SF phase), or one of them is
spontaneously selected and a one component SF phase with a
spontaneously broken symmetry is realized.

If the intraspecies coupling g11 > g12, a two component
Luttinger-liquid phase (2SF) may be realized. In this case
both the dispersion minima are equally populated. On the
other hand a dominant interspecies coupling g11 < g12 results
a spontaneously broken state with a dominant occupation of
the dispersion minimum at k = Q or k = −Q.

While in general it is a useful observation [14] that both
coupling coefficients, g11 and g12, may be extracted from the
two particle scattering problem on the lattice, here we will
follow a slightly different approach. As shown in Ref. [14]
in the dilute limit it is possible to obtain the renormalized
intra- and intercomponent interactions analytically as an exact
solution of the corresponding Bethe-Salpeter equation. A
detailed analytical treatment can be found in Ref. [14].

For simplicity, we will project the interaction to the lowest
band. In momentum space, the Hamiltonian becomes

H =
∑

k

ε(k)βα
k

(
βα

k

)† + 1

2L

∑
k,k′,q

Vq(k, k′)β†
k+qβ

†
k′−qβkβk′ ,

(13)

where Vq(k, k′) is the interaction in the lowest band in the mo-
mentum representation and the operator β has been introduced
in Eq. (7). For a local Bose-Hubbard model like interaction
Eq. (2), this is given by

Vq(k, k′) = U

2
(cos(θk ) cos(θk′ ) cos(θk′−q) cos(θk+q)

+ sin(θk ) sin(θk′ ) sin(θk′−q) sin(θk+q)). (14)

While for the rest of the paper we discuss properties of U →
∞, here we use finite interactions and extrapolate afterwards
to the hardcore limit.
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We obtain the renormalized two-body interactions �11 and
�12 in the dilute limit by the following form of the Bethe-
Salpeter equations

�11
q (E ) = V 11(Q, 0) − 1

L

∑
p

V 11(q, p)�11
p (E )

εQ+p + εQ−p − E
(15)

and

�12
q (E ) = 2V 12(q, Q) − 1

L

∑
p

V 12(q, p)�12
p (E )

2εp + E
, (16)

where E is the total energy of the incoming particles with mo-
mentum k and k′. Here we have introduced the symmetrized
interactions

V 11(q, p) = 1
2 (Vq−p(Q + p, Q − p) + Vq+p(Q − p, Q + p)),

V 12(q, p) = 1
2 (Vq−p(−p, p) + Vq+p(p,−p)) . (17)

�11 and �12 may be related to the bare coupling strengths g11

and g12 as

1

�αβ (−E∗)
=

(
m

4E∗

)1/2

+ 1

gαβ

+ O(E1/2
∗ ), (18)

which corresponds to an off-shell regularization introducing a
negative energy E∗. For E∗ → 0, corresponding to the dilute
limit this procedure has been shown to be well defined. In the
following we directly solve Eqs. (15) and (16) numerically
by introducing a Fourier representation of �αβ

q (−E∗) using
a discretization of the equation and subsequent fast Fourier
transform algorithm. The resulting linear set of equation can
be solved using standard methods for finite values E∗ > 0 and
subsequent extrapolation to E∗ → 0. This procedure becomes
eventually unstable due to the presence of divergences in
�αβ

q (E∗).
In Fig. 5, we show the coupling constants as function

of U for the case t2/t1 = 0.6 and δ = 0.5. We extrapolate
gαβ with a third order polynomial to the limit E∗ → 0. For
weak interactions the interspecies couplings dominate. At a
finite U > Uc, we observe a crossing between g11 and g12

curves and hence, a transition to the intraspecies coupling
dominated 2SF phase. In the inset of Fig. 5, we show the
extracted transition points U = Uc as a function of δ for the
case t2 = −0.6. It can be seen that as the value of δ increases
the CSF phase becomes more robust and survives even in the
large U limit.

Now we perform numerical DMRG simulations to com-
pare the results with the above findings for the example
t2 = −0.6, also shown in Fig. 5. By considering a system of
hardcore bosons with a finite but small filling n = 0.1, we
compute different order parameters such as the chirality order
parameter Oχ as defined form the large distance properties
of the chirality-chirality correlations of Eq. (10) and the
momentum distribution function n(k). The momentum distri-
bution function is defined along the zigzag direction of the
lattice as

n(k) = 1

L2

∑
l,l ′

eik(l−l ′ )Gll ′ (19)

 0

 0.4

 0.8

 1.2

 1.6

 2

 0  10  20  30

g a
b

U

g11
g12

U

δ

2SF

CSF

 0

 30

 0  1

FIG. 5. Dilute limit intra-(inter)particle coupling constants
g11(g12) are plotted with respect to U for t2 = −0.6 and δ = 0.5.
Different curves correspond to (top to bottom) different values of
E∗ = 10−2, 10−3, and 10−4 and the cross-symbol denotes the extrap-
olation to E∗ → 0. It can be seen that the value of g11 dominates over
g12 after a critical value of U indicating the 2SF phase. The inset
shows the phase transition points between the dominant g11 and g12

corresponding to the 2SF and the CSF phases respectively as function
of U and δ for t2 = −0.6. The solid vertical line denotes the Lifsitz
transition between SF0 and frustrated phases. Close to this region our
numerical scheme becomes unstable.

with the single-particle Greens functions Gll ′ = 〈c†
l cl ′ 〉 along

the zigzag direction of the chain. In Fig. 6, we plot both
Oχ and the peak position of n(k) as a function of δ. One
may clearly distinguish three regimes. For small values of δ,
there exists one peak in the momentum distribution function
indicating an SF phase. At some δ > δc1, the momentum
distribution acquires a double peak structure with k �= 0 which
is a signature of the 2SF phase. For δ > δc2, the chirality
becomes finite and the system enters into the CSF phase.

Moreover, entanglement properties have been shown to
provide useful general measure for the detection of quantum
phase transitions [54,55]. In this regard, we calculate the

 0

 0.4

 0  0.2  0.4  0.6  0.8  1
 0

 0.04

k m
ax

 / 
π

O
χ

δ

S
F 0

2SF CSF

kmax
Oχ

FIG. 6. Chirality Oχ and peak position kmax of the momentum
distribution n(k) for the fully frustrated RRT model as function of
δ > 0 for small fillings (n = 0.1, t2 = −0.6, DMRG data, L = 80).
As kmax �= 0, two equivalent maxima at ±kmax are found.
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 0

 1

 0  0.2  0.4  0.6  0.8  1

S
vN

(x
)

x / L

δ = 0.02
δ = 0.14
δ = 0.42
δ = 0.58

(a)

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

c

δ

2SF CSF
SF0

(b)

FIG. 7. Entanglement scaling for the RRT model using the same
parameters as in Fig. 6 (DMRG data, t2 = −0.6, L = 201 sites,
filling n = 0.1). (a) Entanglement entropy SvN (x) for different bipar-
titions of the system x for various values of δ. The black dashed lines
depict a fit to Eq. (20). (b) The extracted central charge c from the
fitting procedure.

von-Neumann entropy which is defined as

SvN,L(x) = −tr(ρx ln ρx ) = c

6
ln

[
L

π
sin

(π

L
x
)]

+ g , (20)

where ρx is the reduced density matrix for a subsystem of
length x which is plotted as function of x/L in Fig. 7(a).
The right part of Eq. (20) is valid for conformally invariant
gapless states [52,55]. We fit the expression in the right-hand
side of Eq. (20) to the entanglement entropy curves obtained
using the DMRG method as shown in Fig. 7(a). From this
we extract the central charge c of the underlying field theory
which is shown in Fig. 7(b). Note that for the RRT model,
we perform simulations of system sizes with odd number of
sites in order to restore proper inversion symmetry at a central
bond. Consistent with our proceeding discussion in Fig. 6, we
find that the intermediate nonchiral region exhibits an central
charge c = 2 and hence, can be called a 2SF phase.

For the special case of a symmetric zigzag model δ = 1,
we repeat this analysis in the dilute limit and using the DMRG
method and obtain the phase diagram in the U -t2 plane which
is shown in Fig. 8. Close to the Lifsitz transition the 2SF
phase is realized. For large frustrations |t2| > 1/

√
8, no 2SF

phase is found and the system is in a CSF phase, which
remains true for the hardcore bosons case. We compare our
findings to DMRG results for various fillings and interaction
strengths and, as shown in the figure, find a good qualitative
agreement between the two results. The symbols in Fig. 8
shows the 2SF-CSF phase boundaries for different densities
such as n = 0.05 (cross), 0.1 (squares), and 0.2 (triangles).
Note that a direct comparison between the two methods
may become difficult as for finite dilute systems the order
parameter, i.e., the chirality vanishes.

B. Finite densities

In this section, we will analyze the complete ground-state
phase diagram of the asymmetric FF-RRT model for a fixed
δ = 1/2 as function of the chemical potential μ to understand

U

- t2 = - t3

n=0.05
n=0.1
n=0.2

 0

 10

 0  0.2  0.4  0.6

SF0 2SF CSF

FIG. 8. Dilute limit phase diagram of interacting bosons in the
symmetric zigzag model (δ = 1). The dash-dotted lines stem from
the dilute-limit analysis presented above. The data points show
results for the 2SF to CSF transition from DMRG simulations at
finite density n > 0.

the physics at finite densities. From the previous section, we

find that if δ = 1/2 for
√

3
√

33
2 − 17

2 < −t2 < 1, the lowest
band in Eq. (6) has a twofold degenerate minimum at Q =
± t1(3

√
2t2

1 −t2
2 −4t1 )

t2
2

. We explore the physics of this system for
different values of t2 by varying the chemical potential μ.
In Fig. 9, we show the phase diagram in the μ-t2 plane.
Consistent with the proceeding section we do not find the
emergence of a CSF phase at small values of δ in the dilute
limit. However, at larger fillings, the system enters an exten-
sive CSF region. Apart from this, other interesting features
appear in the phase diagram which we discuss below.

The phase transition points can be best read from the μ-n
diagrams of finite systems which is shown in Fig. 10 for
different values of t2. At the transition points between the
single-component superfluid phases such as the SF and the
SFπ/2 phases and the CSF or 2SF phases, the μ-n curve
exhibits a sharp kink. In order to distinguish the 2SF and
CSF phases, we use the chirality order parameter and the

μ

- t2

-2

-1

 0

 0  0.5  1  1.5  2

SF0

2S
F

CSF

D

DW

SFπ/2vac

FIG. 9. Phase diagram of the FF RRT model for δ = 1/2 as
a function of t2 = 2t3 and the chemical potential μ. The dot-
dashed lines correspond to the commensurate-incommensurate tran-
sitions. At fixed densities the transitions to the gapped phases is of
Berezinsky-Kosterlitz-Thouless (BKT)-type.
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 0

 0.25

 0.5

-6 -4 -2  0

n

μ

t2 = -0.4
t2 = -0.7
t2 = -1.2
t2 = -2.0

FIG. 10. μ-n curve for cuts through phase diagram Fig. 9 for δ =
1/2 and (from left to right) t2 = −2.0, −1.2, −1.0, and −0.7. The
curves have been shifted by 0.8 against each other along the x axis
for clarity.

central charge as discussed before. We observe the SFπ/2-CSF
transition for a critical density nc ≈ 0.18 (for t2 = −2) which
is consistent with nc = 1/6 that is already obtained in the
decoupled chain limit using Eq. (8).

The μ-n curves of Fig. 10 show a series of plateaus at
certain commensurate fillings, n = 1/4 and 1/2. These corre-
spond to the gaped insulating phases, a density wave (DW)
phase (at n = 1/4) and a dimerized (D) phase (n = 1/2),
which are stabilized due to frustration and asymmetry of the
model. As discussed in Ref. [28], at the Lifshitz transition,
the band curvature vanishes locally as the minimum becomes
quartic. Hence, as the effective mass diverges we may expect
the pinning of particles at weak interaction strengths resulting
into the emergence of gaped phases. In Fig. 9, we show the
approximate extent of the plateau regions bounded by the
dashed curves which are calculated for several finite system
sizes and then extrapolated to the thermodynamic limit by
means of a higher order polynomial. For the case of hardcore
bosons, the presence of a D phase at half filling n = 1/2 (for
zero magnetic field in the case of the corresponding spin-
1/2 model) has been discussed extensively [7,12]. Following
Okamoto and Nomura [7] we may extract the phase transition
points between the SF0 and the D phase by means of a level
crossing analysis. To further characterize the D phase we
compute the dimer-dimer order parameter as

OD = 1

L

∑
j

(−1)iB j, (21)

where Bj = 〈b j (b
†
j+1 + b†

j−1)〉 is the bond energy. In
Fig. 11(a), we show the behavior of OD at half filling as a func-
tion of t2 for different system sizes L = 20, 40, 80, and 160
along with the extrapolated curve in the thermodynamic limit.

Interestingly, for the RRT model we also find an emerging
density wave (DW) phase at quarter filling n = 1/4 close to
the Lifshitz line. The emerging DW order can be seen as a
peak in the density structure factor

S(k) = 1

L2

∑
i, j

eik(i− j)〈nin j〉, (22)

 0

 1

 0  2

O
D

- t2

(a)

 0

 0.3

 0  2

or
de

r p
ar

am
et

er
s

- t2

Oχ
S(π)

(b)

FIG. 11. Order parameters for different cuts through the phase
diagram for (a) n = 1/2 and (b) 1/4. The curves in lighter shadings
show the finite-size results for L = 20 (circle), 40 (diamond), 80 (tri-
angle), and 160 (box) sites—cross-symbols depict the extrapolation
to the thermodynamic limit using a higher-order polynomial.

where 〈nin j〉 is the density-density correlation between sites
i and j. In Fig. 11(b), we plot the values of S(k = π )(blue
symbols) and the chirality Oχ (red symbols) as a function of
t2/t1 for different lengths and also in the thermodynamic limit
at n = 1/4. This clearly shows the presence of the DW phase
for some intermediate range of t2 and the system possesses
finite chirality for larger values of t2 where a CSF phase is
found. Note that the chirality becomes finite abruptly with
the vanishing of the DW-order parameter as we enter the CSF
phase.

The phase transitions between SF0, SFπ/2 and the 2SF
or CSF phases are of commensurate-incommensurate type,
indicated by a kink in the n-μ curve of Fig. 10. These
transitions are denoted by dash-dotted lines in Fig. 9. At fixed
densities the transitions to the gapped D or DW phases are of
Berezinsky-Kosterlitz-Thouless (BKT)-type transitions.

C. Symmetric zigzag model

Contrary to the previously discussed case, for the symmet-
ric zigzag model (δ = 1), the dispersion relation is doubly
degenerate for every −t2 > 1/4. For completeness, we depict
the corresponding phase diagram in Fig. 12. Here, we find an
extended CSF phase for any filling as −t2 is large enough. For
small densities, close to the Lifsitz transition the interesting
interplay between the 2SF and CSF phases is observed. The
transition point from the low-density description is consistent
with the numerical simulations. Due to the symmetry of the
model the DW phase at quarter filling is absent. However,
there exists a D phase at n = 1/2 as a result of frustration.

IV. THE π-0 CASE

Let us now turn to the anti-symmetric case when δ < 0,
i.e., a model with a π flux through every second plaquette.
Here we analyze this model along the line discussed above
and obtain the complete phase diagram as shown in Fig. 13
for δ = −0.5. The phase diagram is obtained by analyzing the
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μ

- t2 = - t3

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1

SF0

2S
F

CSF

D

vac

FIG. 12. Phase diagram for hardcore bosons in a symmetric
frustrated zigzag ladder (δ = 1) in the t2 = t3 and μ plane.

plateaus in the μ-n plot (Fig. 14) and the order parameters as
done in the previous case. Figure 14 shows the emergence of
plateaus only at n = 1/4 which corresponds the DW phase.
This DW phase is denoted by the region bounded by the
dashed curve in Fig. 13. Interestingly a gapped phase at half
filling is absent in this case. The extent of the DW phase is
drastically enhanced compared to the case of a π -π flux. In
particular, for large values of −t2, we still observe a finite
gap after extrapolation of our numerical data to the thermo-
dynamic limit. The grey region bounded by the continuous
line is the empty state.

As discussed in Sec. II, there should not exist a CSF phase
in this scenario for weakly coupled chains, which we find to
remain valid also for a finite interleg hopping. We confirm
this using our DMRG calculation and indeed, we see a broad
region of the 2SF phase around the gapped DW phase marked
by the dashed-cross boundary. The transition to the 2SF phase
is characterized by a series of kinks in the μ-n curve (see
Fig. 13).

μ

- t2

-3

-2

-1

 0

 0  1  2

SF0

SFπ/2

2SF

DW

vac

FIG. 13. Phase diagram of the π -0 RRT model with δ = −1/2.
The dot-dashed lines correspond to commensurate-incommensurate
transitions. At fixed density the transition to the gapped phase is of
BKT-type. The dotted lines correspond to n = 1/8 and 3/8.

 0

 0.5

-4 -3 -2 -1  0

n

μ

t2 = -0.8
t2 = -1.0
t2 = -1.2
t2 = -1.4

FIG. 14. μ-n curve for cuts through phase diagram of Fig. 13 for
δ = −1/2 and t2 = −1.4, −1.2, −1.0, and −0.8 (from left to right).
The curves have been shifted by 0.4 against each other along the x
axis for clarity.

The SF0 and SFπ/2 phases are best understood by looking
at the momentum distribution function n(k) as plotted in
Fig. 15. We plot n(k) for two cuts through the phase diagram
of Fig. 13 along the x axis which correspond to two different
fillings n = 1/8 and 3/8 in Figs. 15(a) and 15(b), respectively.
For the cut along n = 1/8, the momentum distribution ex-
hibits one peak at k0, then three peaks and in the end two peaks
at k = ±π/2 as a function of t2. While the SFπ/2 phase is
characterized by peaks at k = ±π/2, which are equivalent, in
the 2SF phase region we find multipeak structure with peaks
at k = 0 and ±π/2. This means the system goes from the SF
to the 2SF phase and then to the SFπ/2 phase. In the case of
n = 3/8, there is a single transition from the SF to the 2SF
phase as can be seen from Fig. 15(b). The phase transitions
between these superfluid phases are marked by the vertical
dashed lines in Fig. 15. We also compute the central charge
c following the analysis done in the previous section and
show that the numerical estimation of the central charge is
consistent with c = 1 in the SF0 and SFπ/2 phases where as
c = 2 in the 2SF regions (see Fig. 16).

 0  1  2
- t2

-1

0

1

k 
/ π

 0

 0.3

n(
k)

(a)

 0  1  2
- t2

-1

0

1

k 
/ π

 0

 0.5

n(
k)

(b)

FIG. 15. Momentum distributions for filling n = 1/8 and 3/8
which corresponds to two cuts indicated by dotted lines in the phase
diagram of Fig. 13.
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 0

 1

 2

 0  0.2  0.4  0.6  0.8  1

S
vN

(x
)

x / L

t2 = -0.8, n=1/8
t2 = -1.0, n=1/8
t2 = -0.8, n=3/8
t2 = -1.4, n=3/8

(a)

 0

 1

 2

 3

 0.8  1  1.2  1.4

c

- t2

n = 1/8
n = 3/8

(b)

FIG. 16. Entanglement scaling for the δ < 0 RRT model using
the same parameters as in Fig. 6 (DMRG data, L = 201 sites, filling
n = 0.1). (a) Entanglement entropy SvN (x) for different bipartitions
of the system x for various values of δ. The black dashed lines depict
a fit to Eq. (20). (b) The extracted central charge c from the fitting
procedure.

V. THE SAWTOOTH CHAIN

In the end, we analyze the very special case of the RRT
model which is known as the sawtooth chain. As stated in
the introduction, for the sawtooth case (δ = 0) the lowest
band becomes exactly flat at the special value of t2 = −1/

√
2

[see Fig. 2(c)]. Here we analyze the sawtooth model for the
hardcore bosons case and obtain the interesting ground-state
phase diagram which is shown in Fig. 17. Examples of the
equation of state from which the main results can be deduced
are shown in Fig. 18.

The presence of the flat band leads, as for the Lifshitz
transitions, to an enhancement of correlations. As a result we
find an extensive D and DW phase around t2 = −1/

√
2 which

are bounded by the dashed curves in Fig. 17 at n = 1/2 and
1/4, respectively. The presence of the flat-band also leads to
macroscopically large jumps in density in the μ-n curve for
fillings below n = 1/4. The transition between the SF and
SFπ/2 phase is apparently direct, possibly of first order. For

μ

- t2

-2

-1

 0

 0  0.5  1  1.5  2

SF0

2SF

SFπ/2

D

DW

vac

FIG. 17. The phase diagram for the sawtooth ladder model for
hardcore bosons. Our simulation data suggests a direct first-order
transition between the SF0 and SFπ/2 phases for 1/4 < n < 1/2.

 0

 0.25

 0.5

-6 -4 -2  0

n

μ

t2 = -0.7
t2 = -1.0
t2 = -1.4
t2 = -2.0

FIG. 18. μ-n curve for t2 = −0.7, −1.0, −1.4, and −2.0 (right
to left) for the sawtooth model. The curves have been shifted by 0.8
against each other along the x axis for clarity.

the hardcore case, we do not observe an emerging supersolid
phase like the soft-core case discussed in Ref. [40], however,
we find a 2SF phase for large fillings and −t2 � 1.4. As seen
in Fig. 18, it is characterized by a sharp increase in the density
which indicates a very large but finite compressibility.

VI. SUMMARY

In summary, in this paper, we have studied the ground-
state physics of a very generic zigzag ladder model, with
asymmetric hopping strengths on the two legs. The interplay
between this asymmetry and the interactions of the bosonic
particles gives rise to various phenomena and quantum phases
including the 2SF and the CSF phases and different single-
component SF phases. At certain commensurate fillings den-
sity wave and dimerized phases can be observed. While for the
symmetric case chiral phases dominate the grand canonical
phase diagram, the asymmetry tends to stabilize the 2SF
phases.

In state of the art ultra-cold atom experiments the RRT
models should in a natural way emerge from the attempts
to study the symmetric zigzag ladder models. For example
one may realize a zigzag model by means of superlattice
techniques on triangular lattices in combination with lattice
shaking [20,28]. A slight misalignment of superlattice and
the triangular lattice might typically lead to the tunneling
asymmetry described here. Also one might adapt synthetic
dimension approaches as recently proposed in Ref. [38],
where the requirement of a state-dependent lattice also may
be naturally exploited to generalize to RRT-type models.
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