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Speed of domain walls in thin nanotubes: The transition from the linear to the magnonic regime
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Numerical simulations of domain-wall propagation in thin nanotubes when an external magnetic field is
applied along the nanotube axis have shown an unexpected behavior, described as a transition from a linear
to a magnonic regime. As the applied magnetic field increases, the initial regime of linear growth of speed with
the field is followed by a sudden change in slope accompanied by the emission of spin waves. In this work
an analytical formula for the speed of the domain wall that explains this behavior is derived by means of an
asymptotic study of the Landau-Lifshitz-Gilbert equation for thin nanotubes. We show that the dynamics can be
reduced to a one-dimensional hyperbolic reaction diffusion equation, namely, the damped double sine-Gordon
equation, which shows the transition to the magnonic regime as the domain-wall speed approaches the speed of
spin waves. This equation has been previously found to describe domain-wall propagation in weak ferromagnets
with mobility proportional to the Dzyaloshinskii-Moriya interaction constant; for Permalloy nanotubes the
mobility is proportional to the nanotube radius.

DOI: 10.1103/PhysRevB.100.144402

I. INTRODUCTION

Magnetic domain-wall propagation is a subject of much
current interest due to its possible applications in magnetic
memory devices. Understanding and controlling the motion
of domain walls is essential for applications. In the micromag-
netic approach, the magnetization is governed by the Landau-
Lifshitz-Gilbert (LLG) equation [1,2],

∂ �m
∂t

= −γ0 �m × �Heff ( �m) + α �m × ∂ �m
∂t

, (1)

where �m is the unit magnetization vector, that is, the mag-
netization �M = Ms �m, where Ms is the constant saturation
magnetization, a property of the material. The constant γ0 =
|γ |μ0, where γ is the gyromagnetic ratio of the electron and
μ0 is the magnetic permeability of vacuum. The parameter
α > 0 is the dimensionless phenomenological Gilbert damp-
ing constant. The effective magnetic field �Heff includes the
physical interactions and the external applied field �Ha. The
different physical phenomena that must be included in the
effective field and the geometry of the ferromagnetic material
together with the intrinsic nonlinearity of the problem imply
that exact analytical solutions are generally nonexistent so
that numerical and approximate analytic methods have been
developed to understand experimental results and predict new
phenomena. The exact solution of Walker [3,4] developed for
an infinite medium with an easy axis, a local approximation
for the demagnetizing field, including exchange interaction
and under the action of an external magnetic field along the
easy axis, shows that when the applied field is small, the speed
of the domain wall increases linearly with the field. When
the applied field reaches a critical value, the Walker field
Hw, the magnetization enters into a precessing motion. This
behavior, which is encountered even when additional physical
effects and different geometries are studied, puts a limit to the
maximum speed that a domain wall can achieve.

For applications it is desirable to have stable domain walls
and to reach high propagation velocities. For such purposes
different physical effects and geometries have been consid-
ered. Numerical simulations for thin Permalloy nanotubes
under the action of an external field along the nanotube
axis showed unexpected behavior [5,6]. For small fields the
speed increases linearly with the field, reaching a plateau
at relatively low applied field and very high velocity. No
instability nor Walker breakdown of the domain wall was
observed for this material in the parameter regime studied.
This unexpected behavior occurs for a specific chirality of the
domain wall, namely, right-handed domain walls (see Fig. 4
in [6]) for which the radial component of the magnetization
remains small throughout the motion [6].

The main result of this manuscript is the derivation of an
analytical expression for the speed of the domain wall which
explains the linear increase at small fields, the reaching of a
plateau, and the high values of the velocity. For Permalloy,
a material of negligible uniaxial anisotropy, we find that the
speed is given by

v = γ0RHa√
α2 + μ0R2H2

a /(2A)
, (2)

where A is the exchange constant [7] and R the thin nan-
otube radius. For small applied fields we recover the linear
regime [8],

vL = γ0

α
RHa, (3)

whereas for large applied fields the speed tends to the constant
value,

v∞ = γ0

√
2A

μ0
= 1006 ms−1 for Permalloy, (4)
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which we identify with the minimal phase speed of
spin waves. Following the notation used for weak fer-
romagnets, notice that Eq. (2) can be written as v =
μHa/

√
1 + μ2H2

a /v2∞ with mobility μ = (dv/dHa)|Ha=0 =
γ0R/α. The rise of the speed with the field is very fast; for
a Permalloy nanotube of radius R = 55 nanometers, for an
external field field B = μ0Ha = 2 mT, Eq. (2) yields v =
893 m s−1.

The suppression of the Walker breakdown together with a
slowdown of a domain wall as it approaches the phase speed
of spin waves has been encountered previously in different
problems. In antiferromagnets with Dzyaloshinskii-Moriya
interaction (DMI), the mobility was found to be proportional
to the DMI constant [9–11]. See the recent review [12] for
additional references. A similar behavior was found in rough
nanowires [13,14] and in nanowires with a strong hard axis
perpendicular to the wire when an external field is applied
along the wire [15–17]. A theoretical explanation for the effect
of spin waves on Bloch walls was given in Ref. [18], where it
was shown that the transition to the magnonic regime may
occur before or after the Walker breakdown, depending on
the parameters of the problem; see also [19,20]. In all these
works bulk matter or thin films were the subject of study. For
Permalloy nanotubes the numerical simulations of [5,6] show
that the sudden change of slope in the rate of increase of the
speed of domain walls (DWs) is accompanied by Cherenkov
spin-wave emission once the DW speed exceeds the phase
speed of the spin waves.

In the present work we study theoretically the DW propa-
gation in Permalloy nanotubes and find that curvature acts as
an additional anisotropy and plays an equivalent role to the
DMI in weak ferromagnets. The parallel between curvature
of a nanotube and DMI has been observed in Refs. [21–23],
among other works. In [23] it is shown that the analytical
expression of the dispersion relation for spin waves in a
nanotube has the same mathematical form as the dispersion
relation for spin waves in thin films with DMI. Here we find
this mathematical analogy in the mobility of the domain wall.
See [24] for a recent comprehensive review of the dynamics of
magnetic nanotubes. Although simulations have been carried
out for Permalloy, in the derivation below we will allow a
material with non-negligible uniaxial anisotropy for greater
generality.

II. STATEMENT OF THE PROBLEM

Consider a thin nanotube with an easy direction along
the nanotube axis, which we choose as the z axis. The
dynamic evolution of the magnetization is governed by the
LLG equation, Eq. (1). A right-handed orthogonal cylindrical
coordinate system (ρ, ϕ, z) is introduced as shown in Fig. 1,
in terms of which the unit magnetization vector is written as
�m = mρ (ρ, ϕ, z)ρ̂ + mϕ (ρ, ϕ, z)ϕ̂ + mz(ρ, ϕ, z)ẑ.

For sufficiently thin tubes the demagnetizing field can
be approximated by a local expression with the satura-
tion magnetization acting as an effective radial hard-axis
anisotropy [8,25,26]. In this approximation and including
exchange energy, uniaxial anisotropy energy, demagnetization
energy, and Zeeman energy, the micromagnetic energy can be

FIG. 1. Cylindrical coordinate system in the nanotube.

written as [7,8]

E =
∫

�

d3x

[
A|∇ �m|2 + Ku

(
1 − m2

z

) + μ0M2
s

2
m2

ρ − Hamz

]
,

(5)

where � is the material volume of the nanotube, A is the
exchange constant, Ku the uniaxial anisotropy, and an external
field �Ha = Haẑ has been applied along the axis. The effective
field is given by

�Heff = − 1

μ0Ms

δE

δ �m .

In a very thin nanotube, variations of the magnetization with
radius may be neglected so that the unit magnetization de-
pends only on the polar coordinate ϕ and the axial position z.
With �m = �m(ϕ, z), the effective magnetic field can be written
as [8]

�He = 2A

μ0Ms

[
1

R2

∂2 �m
∂ϕ2

+ ∂2 �m
∂z2

]
+ 2Ku

μ0Ms
mzẑ − Msmρρ̂ + Haẑ.

(6)

Introducing Ms as the unit of magnetic field and introducing
the dimensionless space and time variables ξ = z/R and τ =
γ0Mst , we rewrite Eqs. (1) and (6) in dimensionless form as

d �m
dτ

= − �m × �heff + α �m × d �m
dτ

, (7)

with

�heff = A0

[
∂2 �m
∂ϕ2

+ ∂2 �m
∂ξ 2

]
+ kumzẑ − mρρ̂ + haẑ, (8)

where ha is the dimensionless applied field. The dimension-
less numbers that have appeared are ku = 2Ku/(μ0M2

s ) and
A0, the square of the ratio between the exchange length
lex = √

2A/μ0M2
s and the radius, that is, A0 = 2A/(μ0M2

s R2).
Equations (7) and (8) describe the dynamics of the problem.

Numerical simulations [5,6] have been performed for
Permalloy for which the exchange constant A = 1.3 × 10−11

J m−1, Ms = 8 × 105 A m−1, Ku ≈ 0, and the external ap-
plied field does not exceed 10−2Ms. The nanotube used in
simulations has inner radius R and width w with w � R.

Here we neglect the variations with radius and consider the
range R = 55–100 × 10−9 m. The vacuum permeability μ0 =
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4π × 10−7 N A−2 so that μ0Ms ≈ 1 T. We take the value
γ0 = 2.21 × 105 s−1 T−1. For Permalloy the exchange length
is lex = 5.68 nm, and for a radius of 80 nm, lex/R = 0.071.
The uniaxial anisotropy vanishes, ku = 0, and the dimension-
less applied field is in the range 0 < ha < 10−2. The damping
parameter α in numerical simulations ranges from 0.01 to
0.03.

In the numerical simulations of Permalloy nanotubes [5,6]
it is observed that a right-handed vortex-type domain wall
is stable against the Walker breakdown when driven with a
magnetic field. The handedness of the domain wall in [5,6] is
defined in relation to the applied field: a propagating domain
wall is called right handed if ( �m × �Ha) · ρ̂ > 0. Left-handed
domain walls become unstable and convert into the other,
stable chirality. In this work we are interested in the speed
of the stable DW, which will be selected through scaling in
the asymptotic solution.

III. ASYMPTOTIC SOLUTION

In this section we perform an asymptotic analysis of the
LLG equation to find a reduced model for the evolution of the
domain wall as the applied field increases. The reduced model
will be valid for a restricted parameter range which is chosen
based on the numerical results described above for Permalloy.
We are interested in right-handed vortex walls for which the
radial component of the magnetization is small, mρ � 1 [5,6].
Introducing a small dimensionless parameter ε, we write this
condition as

mρ = εm̃ρ. (9)

The normalization condition �m2 = 1 becomes

m2
ϕ + m2

z = 1 − ε2m̃2
ρ. (10)

We will model a situation in which the ratio lex/R and the
Gilbert constant are of the same order in ε as the radial
component of the magnetization. We assume that the applied
field and uniaxial anisotropy are of an order smaller. Then let

A0 = ε2Ã, ku = ε2k̃u, ha = ε2h̃a, α = εα̃. (11)

It is found that a consistent asymptotic approach can be
obtained if a new timescale s = ετ is introduced. With these
scalings, the components of the effective magnetic field can
be written as

(�heff )ρ = −εm̃ρ − 2ε2Ã
∂mϕ

∂ϕ
+ ε3Ã

(∇2
s m̃ρ − m̃ρ

)
= εH0

ρ + ε2H1
ρ + ε3H2

ρ , (12a)

(�heff )ϕ = ε2Ã
(∇2

s mϕ − mϕ

) + 2ε3Ã
∂m̃ρ

∂ϕ

= ε2H1
ϕ + ε3H2

ϕ , (12b)

(�heff )z = ε2
(
h̃a + Ã∇2

s mz + k̃umz
) = ε2H1

z , (12c)

where ∇2
s = ∂ξξ + ∂ϕϕ and where we grouped terms accord-

ing to the power of ε so that H0
ρ = −m̃ρ , H1

ϕ = Ã(∇2
s mϕ −

mϕ ), and H1
z = h̃a + Ã∇2

s mz + k̃umz. In obtaining these ex-
pressions for the effective field the property ∂ρ̂/∂ϕ =
ϕ̂, ∂ϕ̂/∂ϕ = −ρ̂ is used.

Introducing the scaling for α and mρ in the LLG equation,
we obtain at leading order in ε,

˙̃mρ = −(
mϕH1

z − mzH
1
ϕ

) + α̃(mϕṁz − mzṁϕ ), (13a)

ṁϕ = −mzH
0
ρ , (13b)

ṁz = mϕH0
ρ , (13c)

where a dot represents a derivative with respect to the scaled
time variable s and the subindices represent the components
of each vector.

The normalization condition (10) implies that, at leading
order, we may write

mϕ = sin θ (ξ, ϕ, s), mz = cos θ (ξ, ϕ, s). (14)

It follows then that Eqs. (13b) and (13c) are equivalent and
imply

θ̇ = −H0
ρ = m̃ρ. (15)

Replacing the value of m̃ρ from (15) in (13a) together with
the expressions for the effective field H1

ϕ , H1
z , the evolution

equation for θ is found to be

θ̈ + α̃ θ̇ = Ã(θξξ + θϕϕ ) − sin θ [h̃a + (Ã + k̃u) cos θ ], (16)

where the subscripts in θ denote derivatives with respect to
ξ and ϕ, respectively. Notice that one may go back to the
original unscaled variables and the small parameter ε cancels
out.

In what follows we study cylindrically symmetric domain
walls for which θϕ = 0 and identify the evolution equation
with the damped double sine-Gordon (DSG) equation,

∂2θ

∂τ 2
+ α

∂θ

∂τ
= A0θξξ − sin θ [ha + (A0 + ku) cos θ ], (17)

a particular case of hyperbolic reaction diffusion equation for
which the existence and stability of traveling waves have been
studied rigorously in [27,28].

This equation has been derived in the analysis of domain-
wall propagation in weak ferromagnets [9–11,29] and in sys-
tems with a strong easy plane [16,30]. In [11] the dependence
of mobility on the Dzyaloshinskii constant is derived with
great detail. A common feature in these problems is the
sudden decrease in the rate of increase of the speed with the
applied field.

This equation has the same traveling-wave
solutions as the reaction diffusion equation αθ̇ =
A0θξξ − sin θ (ha + (A0 + ku) cos θ ) but with velocity
c = cr/

√
1 + c2

r /A0, where cr is the speed of fronts of
the reaction diffusion equation [27]. We give the explicit
expression for the head-to-head (HH) domain wall; the
tail-to-tail solution is similar. The HH solution is found to be
the usual domain-wall profile,

θ (ξ, t ) = 2 arctan

[
exp

(
ξ − cτ

�

)]
, (18)

with the speed c and domain-wall width � given by

c =
√

A0

A0 + ku

ha√
α2 + (A0 + ku)−1 h2

a

, � = αc

ha
. (19)
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The leading-order magnetization �m = mϕϕ̂ + mzẑ is given by

�m = sech

(
ξ − cτ

�

)
ϕ̂ − tanh

(
ξ − cτ

�

)
ẑ. (20)

The external field is applied along the z axis, so the mag-
netization is a right-handed (mϕ � 0) head-to-head domain
wall as defined in [6]. The small radial component of the
magnetization is calculated from (15).

For a small applied field we recover the linear regime, that
is, the speed increases linearly with the field, and the domain-
wall width tends to a constant value, that is,

lim
ha→0

c =
√

A0

A0 + ku

ha

α
, lim

ha→0
� =

√
A0

A0 + ku
. (21)

In this limit the dynamics is primarily governed
by the reaction diffusion equation αθτ = A0θξξ −
sin θ [ha + (A0 + ku) cos θ ], as already found in [8].

In terms of the physical parameters, the dimensional
domain-wall width for small field δ = �R and speed vL can
be written as

δ =
√

A
A
R2 + Ku

, vL = γ0
Ha

α
δ.

For Permalloy, Ku = 0 and δ = R, in agreement with the
results for a static domain wall in a thin nanotube [31]. The
speed vL coincides with the low-field Walker solution vW =
γ0Ha

√
A/K/α, with K an effective anisotropy A/R2. In the

limit of large radius the domain-wall width for an in-plane
magnetized thin film,

√
A/Ku , is recovered.

For large applied field the speed tends to a constant value,
and the domain-wall width decreases as the field increases,

lim
ha→∞

c = √
A0 lim

ha→∞
� = α

√
A0

ha
. (22)

This limiting value for the speed corresponds to the minimal
value of the phase velocity for spin waves, vpmin . In effect,
consider a material like Permalloy with vanishing uniaxial
anisotropy for simplicity. The dispersion relation for the DSG
equation (17), for vanishing damping and vanishing applied
field, is given by ωDSG = √

A0

√
1 + k2, so that the phase

speed is a decreasing function of k which tends asymptotically
to

√
A0 as k grows. The full dispersion relation for spin waves

in a thin nanotube, in the absence of damping and applied
field, with vanishing uniaxial anisotropy, is given by [32]

ω =
√

A0

2

√
(1 + k2) + A0(1 + k2)2 (23)

in the units used in this work. We see that for small A0 the full
dispersion relation coincides, up to a constant, with ωDSG.

The evolution equation (17) shows the transition from the
low-field regime where the speed of the domain wall increases
linearly with the field to the regime where the domain-wall
speed approaches vpmin and is slowed down by emitting spin
waves. In order to capture the large applied field regime
where the DW speed exceeds vpmin and Cherenkov emission
occurs, a different scaling is needed. The DW width shrinks
with increasing field, � ≈ α

√
A0/ha, which indicates that at

larger fields a new scaling for the longitudinal coordinate ξ is

FIG. 2. Speed of the domain wall vs applied field in millitesla
for a thin Permalloy nanotube of radius R = 55 nm. At low field the
speed increases linearly with the field, and after a sudden change
in slope the speed tends to a constant value v∞ at large fields. The
dashed lines show the limiting speeds vL and v∞.

required. The damped DSG equation captures the emission of
spin waves that occurs below but close to vpmin .

A different transition occurs at hKPP
a = 2A0 when the speed

of the reaction diffusion equation cr changes from a pushed to
a pulled or Kolmogorov-Petrovsky-Piskunov (KPP) front [33]
and cr becomes proportional to the square root of the applied
field.

In what follows consider Permalloy for which ku = 0.
Going back to dimensional quantities, the speed of the domain
wall for Permalloy is given by Eq. (2), with the limiting values
at low and high fields, Eqs. (3) and (4). In Fig. 2 a graph of
speed as a function of applied field shows a gradual change
from the linear to the magnonic regime. We have used the
values given above for Permalloy.

An approximate estimate of the field H∗
a at which this

transition occurs is obtained by the intersection vL(H∗
a ) = v∞,

which yields

H∗
a = α

R

√
2A

μ0
.

For Permalloy we obtain v∞ = 1006 m s−1, and B∗
a =

μ0H∗
a = 0.001 T. The transition to the KPP regime occurs at

a much higher field, BKPP
a = μ0HKPP

a = 0.021 T, and is not
associated to the transition from the linear to the magnonic
regime. In this simple model the order of magnitude of the
speed and the value of the field at which the transition from the
linear to the magnonic regime occurs agrees with the order of
magnitude of the numerical simulations of the LLG equation.

IV. SUMMARY

We studied the dynamics of a vortex domain wall in a thin
nanotube by means of an asymptotic study of the Landau-
Lifshitz-Gilbert equation in a parameter regime based on ex-
isting numerical simulations [5,6]. The numerical simulations
on Permalloy nanotubes in a certain range of radii showed that
when an external field is applied along the axis, domain walls
of one type of chirality, for which the radial magnetization
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remains small during the motion, are stable and can reach
high speeds. Initially the speed increases linearly with the
applied field, and at higher fields the rate of increase is slowed
by the emission of spin waves. No Walker breakdown was
observed in the parameter range considered in the numerical
studies. Domain walls of the opposite chirality are unstable,
and as the field increases they convert into DWs of stable
chirality.

The purpose of this work was to analytically understand the
behavior of the speed of domain walls of stable chirality as a
function of the applied field. Through an asymptotic analysis
the LLG was reduced to the damped double sine-Gordon
equation from which an explicit analytic formula for the speed
as a function of the applied field was obtained together with
the leading-order DW profile. This model captures the initial
regime of linear growth of the speed followed by a slowdown
in the rate of increase through the emission of spin waves
before reaching the minimal phase speed of the spin waves,
which is an upper bound on the speed of the DW in this
model. The order of magnitude of the speed and the value
of the applied field where the transition from the linear to the
magnonic regime occurs is in agreement with the numerical
results of [5,6]. In order to reach higher fields and capture the

Cherenkov spin-wave emission process a different asymptotic
regime is necessary.

For Permalloy, which has vanishing uniaxial anisotropy,
the ratio of the exchange constant with the square of the radius
of the nanotube A/R2 plays the role of an effective uniaxial
anisotropy which leads to a mobility proportional to the nan-
otube radius. In contrast, for weak ferromagnets the mobility
is proportional to de Dzyaloshinskii-Moriya constant. That the
effect of curvature acts as an equivalent effective anisotropy
was already shown in [8,22], and an analogy between the
effect of DMI and curvature was found in the dispersion
relation of spin waves in a nanotube [23]. The results in this
manuscript show a similar effect when studying the transition
from the linear to the magnonic DW regime in nanotubes.

An analytical approach to the regime of higher field, where
Cherenkov emission occurs, will be the subject of future
study.
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