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Scattering of fast electrons by lattice vibrations
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Several aspects of phonon scattering in the transmission electron microscope are investigated with focus
on the physically distinct effects of the thermal average over initial states as well as the excitation or
annihilation of phonons. Coupled-channel calculations for the model system of a single atom in a harmonic
potential are presented and interpreted in terms of inelastic scattering and thermal fluctuations. Furthermore,
common approximations for inelastic scattering calculations are compared to this model. Additionally, the
description of phonon scattering by means of an S-matrix approach is investigated. The S-matrix approach allows
differentiation between scattering events and propagation of scattered waves within the specimen. Within this
approach, it is rigorously proven that by suitable integration over calculations with static atomic coordinates
inelastic phonon scattering can be approximated for any initial object state. The limits of this approximation are
discussed.
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I. INTRODUCTION

Atomic resolution in scanning transmission electron mi-
croscopy (STEM) is currently most widely achieved by means
of high-angle annular dark field (HAADF) imaging. HAADF
detectors collect those electrons, which have been scattered
into large angles, typically above 50 mrad, with primary
electron energies in the range of a few 100 keV. These
electrons are known to exhibit a strong dependence on the
atomic number of the scatterer, while being rather insensitive
to dynamic scattering effects, as often found for smaller angles
in crystalline specimens [1]. The largest part of the scattered
signal at higher angles is connected to electron-phonon scat-
tering [2].

Two physically distinct effects must be considered, when
electron-phonon scattering within a transmission electron mi-
croscope (TEM) is discussed [3]: inelastic scattering, which is
the generation or annihilation of one or more phonons by the
fast electrons, and the mixed initial state of the object due to
thermal fluctuations. The latter causes the measurements (the
diffraction pattern, the high-resolution image, etc.) to become
incoherently averaged over several quantum mechanical ini-
tial object states during the time of the exposure. In general,
both effects act in parallel.

In principle, experiments can be devised to separate the
effects; however, these experiments are hard to be realized
in practice: For instance, state filtering can be achieved by
off-axis electron holography with reference areas far away
from the specimen [4,5], or measurements can be performed
at absolute zero temperature, where the object is initially in its
ground state, which is pure.

For extended specimens, i.e., more than a single atom, a
further effect must be considered for electron scattering: the
effect of multiple scattering (elastic as well as inelastic) within
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the specimen. Theoretically, single scattering corresponds to
the description of the interaction between the fast electron
and the specimen within the first-order Born approximation,
while the description of multiple scattering contains higher
order terms of the Born series. Multiple scattering and the fact
that the measured intensity is quadratic in the wave function
results in a nonlinear relationship between the interaction
potential itself and the eventually measured quantity.

For a fast electron multiple scattering at a specimen con-
sisting of many local scattering centers like atoms can dis-
cussed in two extremes: One extreme treats the object with
all its atoms and internal states as a single nonlocal entity and
the fast electron is scattered multiple times at this extended
target, and the other extreme treats the atoms in the object
as independent targets and the electron is scattered locally at
most a single time at the individual atoms. This fast electron
might be scattered by many different atoms on its path through
the specimen.

For the vibrational subsystem of the specimen, the above
extreme of independent scattering centers corresponds to a
model, where each atom has its own quantum mechanical
vibration state, and these vibrations are independent of the
vibrations of the other atoms, as, for instance, assumed in
the Einstein model. However, the approach of treating the
specimen as individually vibrating atoms comes to its limits,
when phonon scattering is considered. Phonons correspond to
correlated vibrations, and multiple neighboring atoms swing
collectively. Since the movement of the neighboring atoms
influences each atom, the object cannot be treated as a collec-
tion of individual scattering centers. The whole object must
be treated as an extended multiatomic scatterer and the fast
electron is scattered multiple times at this nonlocal scatterer.

Nevertheless, there are cases even for the extended spec-
imen where single scattering is a sufficient description of
the underlying physics and multiple scattering effects can be
neglected. This is, for instance, the case in very thin specimens
consisting of light elements. This is also the case for x-ray
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scattering, where the interaction itself is very weak compared
to electron scattering. For this reason, the first descriptions in
literature about the effects of phonons can be found for x-ray
scattering within the first-order Born approximation. Most of
the discussions can be extended to the electron scattering case.

The first-order Born approximation and the assumption
of independently vibrating atoms allow to simply model the
effect of the thermal average: The scattered electron exit
wave is given by the exit wave obtained for the thermally
averaged object. This is basically what is usually done by
including the Debye-Waller factor into the calculation. In a
crystalline specimen, the thermal averaged potential is also
periodic. Since a wave scattered from a periodic specimen is
only scattered into discrete angles, the calculated diffraction
patterns resulting from the use of the Debye-Waller factor
only exhibit intensity in the Bragg reflections.

However, even in the single scattering case, a diffuse
background between the Bragg reflections can be found in
diffraction patterns. Within the x-ray scattering literature this
background is referred to as thermal diffuse scattering (TDS).
Within the single scattering approximation, this diffuse back-
ground occurs due to the quadratic nature of the registered
intensity. The terms describing this background are not cor-
rectly reproduced by the use of the Debye-Waller factor.
However, for crystalline specimens, these terms are usually
small and often neglected: For a specimen consisting of N
scattering centers, only N of a total of N2 terms are described
incorrectly [6–8].

These TDS terms can also be further investigated within
the limits of the first-order Born approximation for correlated
vibrations [9]. As discussed above, for electron scattering
often the first-order Born approximation does not hold and
multiple scattering effects must be considered [10]. Inelastic
phonon scattering also contributes to the diffuse background
found between Bragg peaks [11]. Also, the intensity of the
Bragg reflections is found to be incorrectly described by the
Debye-Waller factor in the multiple scattering case [3].

Earlier publications concerned with electron-phonon scat-
tering often concentrated on the definition of absorption co-
efficients for a wave, which is elastically scattered at the
thermally averaged potential [12,13]. Alternative approaches
for the calculation of absorption coefficients using a single
inelastic scattering approximation can also be found in the
literature for individually vibrating atoms as well as for corre-
lated vibrations [14,15].

Further experimental insight into electron-phonon scat-
tering can in principle be achieved by electron energy loss
spectroscopy (EELS). Since the energy losses (gains) for
single-phonon creation (annihilation) are in the range of a
few milli electron volts, this requires spectrometers with high
energy resolution. Since such spectrometers have become
commercially available [16], a deeper understanding of the
underlying physics becomes necessary. Recent phonon spec-
troscopy experiments confirm that electrons scattered into
typical HAADF angles carry energy losses which can be
attributed to phonon excitations [17].

For the calculation of inelastic scattering cross sections
for the interpretation of EELS experiments, commonly ap-
proximations are required to reduce the calculation efforts.
The validity of these approximations are seldom investigated

or even discussed. A correct calculation of the phonon cross
sections should thermally average the inelastic cross sections
over initial states, which is an average of terms at least
quadratic in the potential. A common approximation is to
calculate the inelastic cross section of a thermally averaged
potential or include thermally averaged occupation numbers
in this cross section, which instead results in quadratic (and
higher order) terms of an averaged potential [11,18–20].

For a quantitative evaluation of HAADF images, even
minute details of the electron scattering must be considered,
and thus the need for image calculations arises. For these cal-
culations of HAADF images, usually the observables (e.g., the
diffraction pattern) obtained from conventional simulations
for a set of given static atom positions (e.g., by the multislice
method) are averaged over different atomic positions [21,22].
The atomic positions in turn are sampled from the probability
density of the phonon model. Within this respect, this ap-
proach is a Monte Carlo integration over the atom positions’
probability of the measured observable [23]. This approach
is not limited to independently vibrating atoms and can also
applied for correlated atomic motions [3,24,25].

Empirically it is found that this approach matches exper-
imental observations of high-angle diffraction patterns, thus
also HAADF images, very well [24,26]. The justification of
this approach is often done on the basis of the semiclassic
argument that the motion of the atoms is so slow compared
to the fast electron that the electron sees frozen atomic con-
figurations. This justification is called the frozen phonon (FP)
approximation (also called the frozen lattice approximation).
Previous studies can be found in the literature, where the
validity of this approach is proven for cases of single inelastic
scattering and independently vibrating atoms, i.e., where only
single scattering at independent targets is assumed [27–31].
Other studies prove equivalence of this approach with the
results obtained for a thermally averaged object state [31,32].
However, at temperatures T > 0 K, a system in thermal
equilibrium with its environment cannot be described by a
pure state anymore [33], and thus the physical meaning of
this thermally averaged object state is unclear. This must be
considered in the description of electron-phonon scattering,
as already was mentioned in Ref. [28].

The quantum excitations of phonons (QEP) model [23,34]
allows calculation of partial wave functions for electrons cor-
responding to a given final phonon state of the object for the
case in which the object was initially in a phonon eigenstate.
By inelastically averaging over final states and atom coordi-
nates, the final electron probability can be obtained. When
the thermal average over initial object states is calculated, the
same result as in the frozen phonon approximation is obtained.

In this work, various aspects of electron-phonon scattering
are investigated in detail. Numerical calculations using the
coupled channels approach of Yoshioka [14] are presented,
which show the influences of inelastic phonon scattering
in comparison to thermal averaging. In the numerical cal-
culations, a simple model system for electron-phonon scat-
tering is utilized: the scattering of the fast electron at a
single atom, which is placed in a harmonic potential. This
model resembles an atom within a crystal, which is forced
into its equilibrium position due to the interaction with its
neighboring atoms. This also corresponds to a single atom
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within an extended specimen, when it is assumed that each
atom vibrates on its own in the crystal potential created from
its neighbors. Obviously, this model will not reproduce effects
of correlated vibration or other typical diffraction effects of
extended crystals, like Kikuchi bands, nor will this model give
realistic energy loss spectra, since it exhibits a nonrealistic
dispersion relation. Nevertheless, the fundamental properties
of the electron-phonon scattering as well as the influences due
to the ensemble of initial object states can be studied by such
a model. A discussion about the differences resulting from the
use of an Einstein model in comparison to a full phonon model
can be found in the work of Forbes et al. [20].

The numerical calculations are performed without further
approximations of the interaction potential itself. This allows
to study also the validity of common approximations for the
calculation of inelastic scattering cross sections within this
model.

Furthermore, it is investigated how conventional calcu-
lations like the multislice method can be used to calculate
aspects of electron-phonon scattering. This investigation is
carried out within the general quantum mechanical scattering
matrix (S-matrix) approach [10,35]. The joint wave function
of object and fast electron is expanded in a Born series in
a plane-wave base for the electron. The comparison of the
S matrix of the full scattering description with an S-matrix
description of a conventional scattering simulation with static
atomic coordinates reveals that electron-phonon scattering can
be sufficiently accurately described by such simulations with
static atomic positions. Phonon-related cross sections can be
calculated by integrating the results of these simulations over
phonon states. We refer to this approximation by means of in-
tegrals over conventional simulations as static approximation.

For single scattering, i.e., the first-order term of Born
series, the static approximation is exact. For multiple scat-
tering, a further requirement regarding the extents of the
specimen is needed, which assures the dephasing of partial
waves belonging to different object states in between scat-
tering events can be neglected. This requirement is usually
sufficiently well fulfilled for phonon scattering at medium
energies (>100 keV).

As a corollary of this static approximation, the calculation
result obtained by averaging conventional simulations over
atomic configurations, as done in the frozen phonon method,
describes the underlying electron-phonon scattering and ther-
mal averaging correctly. The only additional requirement for
correctness for this static approximation the frozen phonon
method is the correct registration of all scattered electrons
regardless of their energy loss.

In contrast to the works of Wang [32] and van Dyck [31],
the intermediate step of an averaged potential is avoided,
and thus no assumption of individually vibrating atoms or
equivalence of elastic and average interaction terms must be
required. Also, no incoherence between intermediate inelastic
states must be externally superimposed. The S-matrix de-
scription already includes all coherency effects. The resulting
equations for key quantities within this static approximation
are formally similar to equations obtained within the QEP
model [23]. The presented proof shows that the equations for
inelastic cross sections found for the QEP model can also be
applied for arbitrary initial object states, not only eigenstates.

Furthermore, the validity of the approximation can be related
to the object size.

In Sec. II, the relevant physical quantities and the used
notation are introduced. Section III introduces the static ap-
proximation and proves the equivalence between a full quan-
tum mechanical treatment of electron-phonon scattering and
the calculation performed in frozen phonon simulations. Sec-
tion IV describes the underlying equations and methods used
in the numerical evaluation. The results of this evaluations are
presented in Sec. V.

II. THEORY

A. Basics

The whole system consists of two parts, the fast elec-
tron itself and the object, which scatters the electron. In
general, the object will consists of many particles, nuclei,
and electrons. For the investigation of phonon scattering, the
electronic excitations of the object are ignored and it is
assumed that the object’s electrons follow adiabatically the
position of the nuclei. The vector R = (R1, R2, . . . ) repre-
sents a high-dimensional vector describing the coordinates
R1, R2, . . . of all the object’s atoms. The dynamics of the
atom positions still depend on the internal electronic excita-
tions of the object; however, these details are not important
for the discussion in this paper and are hidden in an object
internal Hamiltonian Ĥobj(R). We assume the corresponding
object eigenfunctions are known,

Ĥobj |n〉 = En |n〉 ,

and form a complete and orthonormal set. The index n repre-
sents all internal quantum numbers of the object.

The Hamiltonian of the full system in coordinate represen-
tation is

Ĥ (r, R) = h̄2

2m0
�r + Ĥobj(R) + V̂ (r, R), (1)

where r is the fast electron’s position and �r is the Laplace
operator with respect to this coordinates.

The operator V̂ describes the Coulomb interaction between
the fast electron and the object’s particles. m0 is the electron’s
rest mass. The interaction V̂ is diagonal in position space:

〈r, R|V̂ |r′, R′〉 = V (r, R) 〈r|r′〉 〈R|R′〉 . (2)

Far away from the scattering center, i.e., where the inter-
action potential between object and electron V̂ is negligible,
the Hamiltonian becomes the Hamiltonian of the two free
(noninteracting) systems:

Ĥ0(r, R) = h̄2

2m0
�r + Ĥobj(R). (3)

The eigenstates of this Hamiltonian are given by the prod-
ucts of the object eigenstates |n〉 and the eigenstates of the free
electron, i.e., plane waves characterized by their wave vector
k, and form a complete set:

〈r|k, n〉 = exp(i2πk · r) |n〉 .

The total energy E of the full system of electron and object
is conserved. For a given total energy E and an object in state
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n, the corresponding wave number k is given by the relativistic
dispersion relation

E − En + m0c2 = m0c2

√
1 + h2k2

m2
0c2

, (4)

where c the vacuum light speed. For the two noninteracting
systems, the total energy is given by the sum of the object’s
energy and the electron’s energy eUacc, which is determined
by the acceleration voltage Uacc and e the elementary charge.

Through the interaction, an energy �E may be transferred
from the electron to the object or vice versa. Since the relevant
excitation energies for phonon scattering are typically small
(few meV) compared to the electron’s energy (few hundred
keV), the wave number after an electron energy loss (�E > 0)
or gain (�E < 0) can be approximated by

k(�E ) = K − σ

2πe
�E + O(�E2), (5)

with the initial electron’s wave number K

(hK )2

2m0
= eUacc

[
1 + eUacc

2m0c2

]
and

σ = 1

K

2πm0e

h2

[
1 + eUacc

m0c2

]
.

The scattering matrix (S-matrix) element

〈kf , nf |̂S|ki, ni〉
describes the complex scattering amplitude from an initial
state, which at times t → −∞ corresponds to an asymptotic
state |ki, ni〉, into a final state, which corresponds at times t →
+∞ to an asymptotic state |kf , nf〉. Appendix A describes
how the elements of the S matrix can be calculated in general.

B. Initial density matrix

Typically the fast electron and the object are initially not
in a pure state but in a mixed state. Let ρ̂

(el)
i be the density

operator for the initial state of the fast electron. The object is
initially in a thermal average, and thus its density operator is
diagonal in the spectral basis:

ρ̂
(obj)
i =

∑
n

pn |n〉 〈n| (6)

with a suitable distribution function pn, e.g., the Boltzmann
distribution

pn = exp(−βEn)∑
n gn exp(−βEn)

with β = 1/kBT and the degeneration factor gn. The probabil-
ity to find an object at a given coordinate R is

p(R) = 〈R|̂ρ (obj)
i |R〉 =

∑
n

pn 〈R|n〉 〈n|R〉 , (7)

and it must be stressed here that in general

ρ̂
(obj)
i �=

∫
dR p(R) |R〉 〈R| ;

i.e., the initial density matrix of the object is not diagonal in
objects coordinates. Here and in the following, we use the
notation dR ≡ dR3

1dR3
2 . . . .

The density matrix of the initial state is then given by the
tensor product

ρ̂i ≡ ρ̂
(el)
i ⊗ ρ̂

(obj)
i . (8)

C. Final density matrix

The S-matrix formulation can be used to formally calculate
the density matrix of the final states, from the initial density
matrix ρ̂i:

ρ̂f = Ŝρ̂iŜ
†,

where the dagger denotes the adjoint operator.
We introduce here three variants of density operators ρ̂

(el)
f ,

which can be used to calculate various measurements of the
final state of the fast electron. Furthermore, we assume a
perfect paraxial optical system, which does not exhibit any
aberrations. This means that the trajectory of the electron in
a classical sense is only dependent on the lateral position and
lateral scattering vector in a plane at a given z coordinate. The
detector itself will measure the current through the detector
plane. This current in turn is proportional to the z component
of the electron’s wave vector. For electron-phonon scattering,
the energy losses and hence the changes in wave number of the
fast electron are so minute that this factor is assumed constant
in the following.

When all final electrons independent of the energy loss
(and thus independent of the final state of the object) are
measured, the density operator of the fast electron is given
as the subtrace over all object states:

ρ̂
(el,total)
f = Trobj[̂ρf ] =

∑
n

〈n|̂ρf |n〉

=
∑
n,n′

pn′ 〈n|̂S|n′〉 ρ̂
(el)
i 〈n′ |̂S†|n〉 . (9)

In the following, quantities deferred from ρ̂
(el,total)
f are referred

to as “total” quantities (e.g., total cross section), since they
consider all final electrons regardless of the object state.

When an idealized energy filter is applied, which only lets
electrons pass which have undergone a certain energy loss
�E , the resulting density operator of the fast electron is

ρ̂
(el,filtered)
f (�E ) =

∑
n,n′ |En=En′+�E

pn′ 〈n|̂S|n′〉 ρ̂
(el)
i 〈n′ |̂S†|n〉 .

(10)
From this density matrix, we can also derive “elastic” and “in-
elastic” density matrices, with the latter referring to electrons
which underwent an energy loss and the former referring to
those which did not:

ρ̂
(el,elastic)
f = ρ̂

(el,filtered)
f (0),

ρ̂
(el,inelastic)
f = ρ̂

(el,total)
f − ρ̂

(el,elastic)
f . (11)

The elastically (using the above definition) scattered elec-
trons may still have changed the object state, e.g., by simul-
taneously creating and annihilating a phonon of same energy,
but with a different wave vector.
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In electron holography, the reference wave, as long as
it passes far from the object, is entangled with the initial
object state. Hence, there will be no interference between
partial waves belonging to different object states (even when
the electrons energy is still conserved). Such holographic
measurements can be described by the (for lack of a better
word) “coherent” density matrix:

ρ̂
(el,coherent)
f =

∑
n

pn 〈n|̂S|n〉 ρ̂
(el)
i 〈n|̂S†|n〉 ,

ρ̂
(el,incoherent)
f = ρ̂

(el,total)
f − ρ̂

(el,coherent)
f . (12)

D. Static S matrix

The result of scattering can be calculated for fixed atom
coordinates using common simulation approaches. We will
refer to this scattering at fixed atom as “static” scattering and
index the corresponding symbols with “S.”

The Hamiltonian corresponding to the static scattering
case is only acting on the fast electron and has a parametric
dependency on the object coordinates R:

ĤS(r; R) = h̄2

2m0
�r + V̂S(R), (13)

where the interaction operator V̂S(R) for the static case can
be written in terms of the interaction operator V̂ of the full
treatment as

〈r|V̂S(R)|r′〉 = 〈r, R|V̂ |r′, R〉 = V (r, R) 〈r|r′〉 . (14)

Also, S-matrix elements 〈k|̂SS(R)|k′〉 can be defined (see Ap-
pendix B), which describes the complex scattering amplitude
from an initial asymptotic state |k′〉 into a final state |k〉. As
mentioned above, for numerical evaluation of 〈k|̂SS(R)|k′〉,
the common TEM calculation methods like multislice calcu-
lations can be used.

III. STATIC S-MATRIX APPROXIMATION AND FROZEN
PHONON METHOD

The static S-matrix approximation is

〈k, R|̂S|k′, R′〉 ≈ 〈k|̂SS(R)|k′〉 〈R|R′〉 . (15)

Hence, the exact S matrix of the full problem can be approx-
imated by the static S matrix and is approximately diagonal
in object coordinates. A rigorous quantum mechanical proof
for the approximation (15) is given in Appendix C. This
approximation is valid up to N th scattering order for a given
specimen of size A as long as 2�k A � 1/(N − 1) holds for
the change of the wave vector �k due to a change in electron
energy. For single scattering, (15) is always valid.

Using the approximation (15), the scattering matrix in
spectral representation is given by

〈n|̂S|n′〉 ≈
∫

dR 〈n|R〉 ŜS(R) 〈R|n′〉 . (16)

The scattering matrix elements of (16) can be numerically
evaluated by performing TEM calculations for fixed coordi-
nates and calculating an average weighted by 〈n|R〉 〈R|n′〉,
e.g., by Monte Carlo integration.

A similar equation like (16) was derived by Forbes
et al. [23] for the scattered electron’s partial wave in the QEP
model. However, within the QEP model of Forbes et al., the
TEM calculations for fixed coordinates (the operators ŜS(R)
in the above notation) will also depend on the initial state
|n′〉, while in the static S-matrix approximation (16) these
calculations can be performed independently of the initial
state.

Inserting the spectral representation (16) into (9) results in
a total final electron density matrix of

ρ̂
(el,total)
f =

∑
n,n′

pn′ 〈n|̂S|n′〉 ρ̂
(el)
i 〈n′ |̂S†|n〉

=
∑
n,n′

pn′

[∫
dR 〈n|R〉 ŜS(R) 〈R|n′〉

]

× ρ̂
(el)
i

[∫
dR′ 〈n′|R′〉 Ŝ†

S(R′) 〈R′|n〉
]

=
∑

n′
pn′

∫
dR

∫
dR′ 〈n′|R′〉 〈R|n′〉

× ŜS(R)̂ρ (el)
i Ŝ†

S(R′)

[∑
N

〈R′|n〉 〈n|R〉
]

=
∑

n′
pn′

∫
dR 〈n′|R〉 〈R|n′〉 ŜS(R)̂ρ (el)

i Ŝ†
S(R)

=
∫

dR p(R)̂SS(R)̂ρ (el)
i Ŝ†

S(R). (17)

In the third row, the completeness relation of the object states∑
n

〈R′|n〉 〈n|R〉 = δ(R − R′) (18)

has been used. The diagonality in object coordinates (16)
is needed to assure that the subtrace over final object states
in (9) can be substituted by the subtrace over object coordinate
in (17).

The density matrix calculated in the last row of (17) is
equivalent to the quantities calculated by the FP method:
The final density matrix of the static case is averaged over
initial object positions. It must be stressed that (16) does not
correspond to the elastic or coherent scattering subchannel of
electron-phonon scattering. The coherent subchannel is given
by evaluating (16) for n ≡ n′ and the elastic subchannel by
summing (16) over final states n without energy losses, i.e.,
with En = En′ . Both result in different final density matrices
than (16), which means that quantities calculated by this
method do not correspond to the thermal average purely
coherently (or elastically) scattered electrons.

The requirement (C2) relates the validity of the static
approximation to the energy transfer due to inelastic scattering
between the fast electron and the object and the extents of the
object. It should be noted that this relationship in principle
also works for other inelastic object excitations. However, for
higher energy transfers than in the case of phonon scattering,
the static approximation will break down for much smaller
objects.
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IV. METHODS

A. Paraxial ansatz

The scattering matrix ansatz (23) gives a concise frame-
work for a discussion of more general properties of the
electron-phonon scattering process. For the numerical eval-
uation of scattering matrix elements, a paraxial ansatz is
chosen, which follows the coupled channels approach of
Yoshioka [14]. The joint wave function |�〉 of electron and
object is described by a superposition of paraxial waves:

〈r|�〉 =
∑

n

ϕn(r) exp(i2πknz) |n〉 . (19)

The ϕn(r) are the partial wave fronts corresponding to wave
numbers kn = k(En + eUacc − E ). Only states with conform-
ing total energies are considered here.

Inserting (19) into the relativistically corrected time-
independent Schrödinger equation, one eventually arrives at
a coupled set of equations [14,36][

∂2
z + i4πkn∂z + �xy

]
ϕn(r)

= 4π2
∑

n′
exp[i2π (kn − kn′ )z]Unn′ (r)ϕn′ (r). (20)

using kn − kn′ ≈ − σ
2πe (En − En′ )

Within these equations, the transition potentials are
given by

Unn′ (r) = 2m0γ

h2
〈n|V (r)|n′〉 , (21)

where γ is the relativistic correction. Applying the high-
energy approximation, i.e., neglecting the second derivative
with respect to z in (20), this becomes a set of coupled first-
order differential equations:

∂zϕn(r) = i

4πkn
�xyϕn(r)

− i
π

kn

∑
n′

exp[i2π (kn − kn′ )z]Unn′ (r)ϕn′ (r). (22)

These equations are used to numerically propagate the enve-
lope functions ϕn(r) through regions of nonvanishing poten-
tial.

For rotational symmetric systems, like the model system
used in this paper, it suffices to calculate the scattering matrix
elements for transitions n′ → n and the xy components of the
scattering vector q = k − k′:

Snn′ (qx, qy) = 〈q + k′, n|̂S|k′, n′〉 . (23)

These matrix elements can be obtained from the envelope
functions ϕn(r) in a plane zf behind the object, as described
in Appendix D.

B. Model object

To investigate the general properties of electron-phonon
scattering, we take a simple model object: a single atom at
position R in a harmonic three-dimensional potential. The
potential simulates the lattice vibrations of the object. The

dynamics of the harmonic oscillator are well known [33]:

Ĥobj(R) = h̄2

2M
�R + Mω2

2
R2. (24)

M is the mass of the atom and ω is the angular frequency of
the oscillation. The eigensolutions to the above Hamiltonian
are given by the product

〈R|n〉 ≡ 〈R|nxnynz〉 = anx (X )any (Y )anz (Z )

with R = (X,Y, Z ) and the object quantum numbers given by
the triple n ≡ nxnynz. In the following, these vibration states
are referred to as |nxnynz〉. The an(ξ ) are the known solutions
for the nth eigenstate of the one-dimensional harmonic oscil-
lator

an(ξ ) = 1√
2nn!

(
Mω

π h̄

)1/4

Hn

(√
Mω

h̄
ξ

)
exp

(
−1

2

Mω

h̄
ξ 2

)
with the Hermite polynomials Hn(ξ ). The corresponding en-
ergies are given by

Ĥobj |nxnynz〉 = h̄ω
(

3
2 + nx + ny + nz

) |nxnynz〉 .

The interaction potential between the atom and the fast
electron is given by the Coulomb interaction between them.
For the scope of this paper, it suffices to assume that this
interaction potential is given by the Fourier transformation of
the atomic form factor fel(k). In coordinate representation,

V̂ (r, R) = e
∫ +∞

−∞
d3k fel(k) exp[i2πk · (r − R)]. (25)

Using the fel(k), the transition potential (21) is readily
expressed as

Unn′ (r) = 2m0eγ

h2

∫ +∞

−∞
d3k fel(k) exp(i2πk · r)

×〈n| exp(i2πk · R̂)|n′〉 .

C. Numerical evaluation

The high-energy electron scattering equations (22) are
numerically propagated using a fourth-order Runge-Kutta
scheme. The rest position of the atom was centered in the
xy plane. The xy calculation grid consisted out of 192 × 192
points and was sampled with 1.0 pm. The Runge-Kutta prop-
agation was performed from zi = −150 pm to zf = +150 pm
with a step size of δz = 0.5 pm. The numerical implementa-
tion of the Laplace operator was implemented by multiplica-
tion with −4π2k2 in Fourier space.

Calculations were performed for an acceleration voltage of
Uacc = 200 kV. A single atom of various elements was used as
object. Unwise otherwise mentioned the reported results were
obtained for a Gold atom.

The oscillator angular frequency ω was always chosen such
that the mean square displacements in thermal average at a
temperature of 300 K correspond to a Debye-Waller factor of
B = 0.005 nm2 (see Ref. [34] for derivation):

B = 4
h̄π2

Mω
coth

(
h̄ωβ

2

)
.
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Here M corresponds to the atom’s mass. The corresponding
angular frequencies are shown in Table I.

The form factor parametrization of Ref. [37] was cho-
sen for fel (k), mainly since the parametrization as sum of
Gaussians allowed for efficient calculations of the transition
potential Unn′ (r). However, this parametrization is not fully
accurate for scattering angles |q| > 120 nm−1. It is assumed
the general findings are valid nevertheless; however, they
might be inaccurate for large angles in a comparison with
experimental results.

For the propagation of the equation set (22), always a plane
wave along the z axis was chosen as an initial condition of the
fast electron with a wave number corresponding to 200 keV
energy, i.e., ki = Kez. For initial conditions of the object,
an eigenstate |ni〉 was chosen. Accordingly, the initial partial
waves of the joint system are given by

ϕn(x, y, zi ) = δnni . (26)

As the numerical effort increases with the number of states
considered in the propagation, the calculations were restricted
to states with quantum numbers

nx + ny + nz � 5

corresponding to all object energies up to a cutoff energy of

En � h̄ω
(
5 + 3

2

)
. (27)

D. Approximations

The paraxial ansatz allows calculation of the scattering
amplitudes, i.e., the elements of the S matrix, with minimal
additional assumptions. This is possible since the investi-
gated model system is rather simple. For larger systems,
this ansatz is most likely not numerically feasible anymore,
and thus further inelastic scattering approximations must be
made.

However, having the solutions of the paraxial ansatz allows
the investigation of how good commonly applied further
approximations are.

1. Bethe approximation

The phonon dynamics usually are treated as small atomic
displacements u with respect to the atom’s rest positions
R0, i.e., R ≡ R0 + u. The transition potential (21) can be

TABLE I. Angular frequencies for used atom elements.

Energy quanta Cutoff energy
Element ω (rad/s) h̄ω (meV) (5 + 3

2 )h̄ω (meV)

C 62.9 × 1012 41.4 268.9
Si 39.0 × 1012 25.6 166.6
Cu 25.3 × 1012 16.7 108.3
Ag 19.3 × 1012 12.7 82.6
Au 14.2 × 1012 9.4 60.8

developed in a Taylor series expansion with respect to û:

Unn′ (r) = 2m0γ

h2
〈n|V (r, R0 + û)|n′〉

= 2m0γ

h2
[〈n|n′〉V (r, R0) + 〈n|̂u|n′〉 · ∇RV |R=R0

+ (〈n|̂u|n′〉 · ∇R)2V |R=R0 + · · · ]. (28)

The approximation is the truncation of this series after the
first order [11,12,27] or second order in u [29]. This approx-
imation has the numerical advantage that 〈n|̂u|n′〉 is usually
easy to calculate, while the calculation of 〈n|V (r, R0 + û)|n′〉
requires far more effort. This becomes especially important if
the lattice vibrations are investigated in a full phonon model
with correlative atom vibrations, instead of a model where the
vibrations of each atom are treated independently.

An alternative form to this approximation also found in
literature is the use of the thermally averaged potential instead
of the static potential in (28) [18,19,38].

This approximation is quite common in calculations of
electron-phonon interaction. In Ref. [39], it is named the
“Bethe approximation” and it indeed can be found in Bethe’s
work [40]. The first order of this approximation is also re-
ferred to as dipole approximation, e.g., in Ref. [30]. However,
the term “Bethe approximation” is here used in lack of a better
name and should be used with care in a broader context, since
several distinct and unrelated approximations carry this name.

2. Projection approximation

The set of first-order differential equations (22) can be cal-
culated using a coupled-channel multislice formalism. Within
a multislice formulation, Eqs. (22) are approximately propa-
gated for a thin slice of sufficiently small thickness and this
propagation step is repeated until the solution at the exit plane
of the specimen is reached.

For a single slice and an object being initially in an
eigenstate n′, the envelope functions belonging to noninitial
object states n �= n′ are given by

ϕn(x, y, z) = −i
π

kn

∫ +∞

−∞
dz exp[i2π (kn − kn′ )z]Unn′ (x, y, z)

≈ −i
π

kn

∫ +∞

−∞
dz Unn′ (x, y, z). (29)

For the relevant energy losses and typical slice thickness, the
phase factor in (29) can be neglected. Similar formulations
can be found in Refs. [19,27,34].

V. RESULTS

A. Scattering amplitudes

For a particular state transition |n′〉 → |n〉, the S-matrix
elements Snn′ (qx, qy) describe the complex scattering ampli-
tudes for elastic and inelastic transitions in diffraction space.
When the S-matrix elements are inversely Fourier transformed
with respect to the electron scattering vector, the correspond-
ing partial wave fronts F−1[Snn′ ](x, y) of the electron after the
respective state transitions are obtained in real space.

The central part of the partial wave fronts is displayed
in Fig. 1 for selected transitions. The rest position of the
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FIG. 1. Electron partial wave fronts after selected state transition. The corresponding color map is shown in the lower right corner. The
complex-valued partial wave fronts are scaled differently to accommodate for the observed modulus range. The scaling factor is denoted above
the plots.

electron is in the center of the displayed region. The color
map in the lower right corner of Fig. 1 is used to display
the complex values of the partial wave fronts. For display,
the values of the wave fronts have been scaled such that
their maximal modulus is equal to unity and the complex
values can be shown using a common color map. The scaling
factor is indicated above the individual displays. The incident
beam was normalized to exhibit a homogeneous modulus of
one.

With increasing number of phonon excitations and anni-
hilations, the transitions become less probable. Transitions,
which excite vibrations in beam direction, e.g., |000〉 →
|001〉 , also have nonvanishing probabilities but are far less
probable in comparison.

Note that the modulus squared scattering amplitudes for
transitions |000〉 → |100〉 and |100〉 → |000〉 are identical
due to

Unn′ (r) = U ∗
n′n(r) = Un′n(r).

The second equality is due to the Unn′ (r) being real valued,
since the eigenfunction of the three-dimensional (3D) har-
monic oscillator are real valued.

The partial wave fronts for the coherent subchannels
|n′〉 → |n′〉, where the object did not undergone a state
transitions are shown in Fig. 2. Since the variations of the
wave fronts are too small to be noticeable when displayed
using a color map like in Fig. 1, the amplitudes and phases
of the fronts are displayed separately. The phases strongly
resemble the projections of the 3D oscillator’s probability
density convoluted by the atomic potential, as expected since
the gold atom can also be approximated as a weak phase
object. In contrast to the phases, the amplitudes are less
blurred. Here, the contrast is caused primarily by electrons
being scattered into the incoherent subchannels. This also
explains the increased amplitude in the center of the |000〉 →

|000〉 transition: The electrons passing close to the nucleus
are exciting a larger number of phonons; these transitions,
however, are not included in the calculation because of used
the energy cutoff. With increasing cutoff energy, this effect
becomes smaller (not shown here).

Within the literature, the approximation Unn ≈ U00 (for
all n) is used in previous works, which investigate the
correctness of the frozen phonon method [31,32]. Compar-
ing the results in Fig. 2 for |000〉 → |000〉 and |100〉 →
|100〉 clearly shows that this equivalence is not necessarily
given.

Obviously, the simple model presented here only allows
calculation of inelastic scattering amplitudes for a single vi-
brating atom. For realistic scattering cross sections and EELS
spectra of extended specimens, it is additionally necessary
to consider the correlated vibrations and associated phonon
dispersion relations instead of relying on a simple Einstein
model. Calculated transition potentials for correlated phonon
vibrations can be found for instance in the works of Martin
et al. [15] and Forbes et al. [20].

B. Scattering cross sections

For a particular state transition |n′〉 → |n〉, the scatter-
ing probabilities for this transition, i.e., the scattering cross
sections, are given by the modulus square of the transition
elements Snn′ (qx, qy). Cross sections for specific energy losses
can be calculated from this. Figure 3 shows the azimuthally
averaged scattering cross sections for a single gold atom ini-
tially in the ground state, i.e., |n′〉 = |000〉. The cross section
for a specific energy loss �E is here calculated as

∑
n|En−En′=�E

1

2πq

∫ 2π

0
dϑ‖Snn′ (q cos ϑ, q sin ϑ )‖2. (30)
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0.997 1.000 0.0 0.2rad

Amplitude Phase

FIG. 2. Selected electron partial waves for coherent state tran-
sitions. The amplitudes are shown on the left-hand side with the
corresponding phases on the right-hand side.

Azimuthally averaged total, inelastic, and incoherent cross
sections can be calculated accordingly using the definitions of
Sec. II C. For a gold atom, it can be found that for scattering
angles larger than ≈94 mrad most of the scattered intensity
is scattered inelastically. With increasing energy loss �E ,
the average scattering angles become larger and the total
scattering cross section becomes smaller.

The elastic and inelastic scattering cross sections for a ther-
mal average of initial states for the gold atom are displayed in
Fig. 4. One observes that for higher temperature the smallest
scattering angle where inelastic scattering prevails decreases,
from ≈94 mrad at 0 K, over ≈73 mrad at 100 K, to ≈61 mrad
at 300 K. Also a significant dependence of the scattering cross
sections at larger angles on the temperature is found. For 200
mrad, the 300 K cross section is roughly half as intense as at
0 K, while at 50 mrad the 300-K cross section is only 10%
less than the 0-K cross section.

Another noteworthy observation is the change in the scat-
tering amplitudes with increasing temperature in the coherent

FIG. 3. Azimuthally averaged scattering cross sections for a gold
atom initially in state |000〉.

subchannels, e.g., at 100 mrad for gold [Fig. 4(b)]. This is
the effect of an mixed initial object state (Huang scatter-
ing) [41]. It shows that scattering due to a mixed initial state
(i.e., thermal diffuse scattering for crystalline objects) also
occurs in the coherent subchannel and thus is not solely an
effect of incoherent-inelastic scattering. At higher tempera-
ture, this Huang scattering becomes stronger with temperature
for higher scattering angles (for gold >200 mrad), while
at lower angles it even decreases the scattering cross sec-
tions slightly. Nevertheless, the incoherent scattering for most
higher angular ranges is stronger by one order of magnitude or
more.

Since the phonon energies and the strength of the atom’s
electrostatic potential vary strongly with the mass and atom
number, the scattering cross sections were also calculated for
various elements and are shown in Fig. 5. As expected, the
cross sections strongly depend on the atom number. The cross
over between angles where most electrons are scattered elas-
tically versus inelastically increases with atom number from
≈40 mrad for carbon, over ≈43 mrad for silicon, ≈50 mrad
for copper, ≈55 mrad for silver, and up to ≈61 mrad
for gold.

C. Static S-matrix approximation

If the static scattering matrix approximation (15) and ac-
cordingly (16) are correct, the two quantities∑

n

‖Snn′ (qx, qy)‖2 ≈
∫

dR‖ 〈R|n′〉 ‖2‖SS(R; qx, qy)‖2

should be approximately equal for any initial state |n′〉. On the
left-hand side, the cross sections are summed over final states,
and on the right-hand side, the static cross section is summed
over object coordinates. In Fig. 6, both quantities are shown
after azimuthal averaging for a gold atom and different cutoff
energies (27) using the initial state |n′〉 = |000〉.

The cross sections summed over final states approaches
the static cross section with increasing cutoff energy. This
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(a)

(b)

FIG. 4. (a) Elastic and inelastic cross sections. (b) Coherent
and incoherent cross sections. Both are for a gold atom in thermal
average.

shows that the remaining difference between the summed
cross sections and the static cross section are due to the
completeness relation (18) not being completely fulfilled,
since the cutoff energy is finite in the present calculations. In
any case, the cross sections � < 200 mrad should be correct
for En � (5 + 3

2 )h̄ω.

It should noted the findings of Sec. V B are still valid even
for higher scattering angles (200 mrad < � < 300 mrad),
since we found that a change in the cutoff energy (27) does
not change the results presented in Fig. 4 significantly (not
shown here).

The elastic cross section is also plotted in Fig. 6 as given
by (30) for �E = 0. It is obvious in comparison to the static
cross section that both cross sections are different entities and
must not be thought of as equal. Even if no state transitions
within a simulation with fixed atom positions are considered,
such a simulation does not represent the elastic or coherent
subsector of phonon scattering.

FIG. 5. Thermally and azimuthally averaged scattering cross sec-
tions for various elements at 300 K.

D. Inelastic scattering approximations

The paraxial ansatz allows to calculate the scattering am-
plitudes, i.e., the elements of the S matrix, with minimal
additional assumptions. This allows investigation of how good
further approximations are. Specifically, the following ap-
proximations are tested:

(1) The Bethe approximation (28) in first and second
orders.

(2) The first-order Bethe approximation for the thermally
averaged potential. The thermally averaged potential is imple-
mented by including the Debye-Waller factor exp(−Bk2/4)
within the integral in (25).

(3) The projection approximation (29).
(4) Integration of the static approximation according

to (16) by means of the Monte Carlo method. In total,

FIG. 6. Comparison of static scattering cross section with cross
sections summed over object states in dependence of energy cutoff.
Additionally, the cross section for elastic scattering is displayed for
comparison.
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FIG. 7. Comparison of scattering amplitudes for selected transitions (columns) using various approximations of inelastic scattering (rows).
The first row shows the result of the full calculation. See the lower right corner of Fig. 1 for color map. Note the varying scale of the complex
values above the displays.

1 million atom positions were uniformly sampled within
±9

√
h̄/ωM of the rest position, and for each atom position

also the positions mirrored along the x, y, and z axes were
sampled.

Figure 7 shows the scattering amplitudes for selected inelastic
transitions. The discussed findings can be observed on all
investigated transitions, although only some transitions are
shown here.
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While the Bethe approximation reflects the general struc-
ture of the scattering amplitudes as long as the number of
excited phonons is less equal to the approximation’s order,
their spatial extents and magnitude are severely different from
the full solution. The calculated transition probabilities in the
approximation are roughly one magnitude larger than in the
full calculation (see, e.g., first-order Bethe approximation for
transition |000〉 → |100〉 or the second-order Bethe approx-
imation for the transition |000〉 → |200〉). This has effects
on higher order scattering: For instance, within the first-
order Bethe approximation, the transition probability for the
excitation of more than one phonon is zero, which forbids a
direct |000〉 → |200〉 transition. However, since the first Born
order transition (single scattering) within this approximation
is so strong, the second Born order transition (double scat-
tering) becomes relevant (see |000〉 → |200〉 transitions for
first-order Bethe approximation in Fig. 7). Obviously, being
a multiple scattering effect, the phases of this approximated
transition become unrealistic. For the second-order Bethe ap-
proximation, the single scattering for |000〉 → |200〉 is much
stronger, masking this effect. Quite the opposite is found for
the (first-order) Bethe approximation of the thermally aver-
aged potential: This approximation strongly underestimates
the magnitudes of the amplitudes, while the extents are far
more extended than in the full calculation.

The mth-order term of a Bethe approximation can also
be interpreted as a m-phonon process [42]. However, even
for the excitation of a single phonon, also the creation and
annihilation of virtual phonons must be taken into account:
For example, the |000〉 → |100〉 transition also occurs in
the three-phonon process, where the |100〉 phonon is cre-
ated, followed by annihilation and recreation. Other virtual
phonon processes are permutations thereof or appear in higher
(odd) order phonon processes [43]. This may explain the
deviations between the full model and the first-order Bethe
approximation observed here. A further discussion of such
virtual inelastic scattering effects on the scattering potential
can be found in Ref. [44] and a discussion of its temperature
influence is in Ref. [45].

For transitions which excite vibrations transverse to the
beam direction like |000〉 → |100〉 and |000〉 → |200〉, the
projection approximation is well fulfilled. Longitudinal vibra-
tions cannot be represented with this approximation, since the
projection integral over the the corresponding matrix elements
evaluates as zero. However, the transition probability for the
longitudinal vibrations is two orders below the probability
of transverse transitions, rendering the importance of lon-
gitudinal transitions negligible in comparison. It should be
noted that the remaining differences between the projected
scattering amplitudes and those of the full calculation might
be also rooted in the assumption of a weak phase object, which
might be better fulfilled for lighter elements than a gold atom.

The integration of the static approximation gives in gen-
eral very reliable scattering amplitudes in magnitude, gen-
eral structure, as well as spatial extent. Found deviations
are caused by an insufficiently accurate evaluation of the
integral: The symmetrization of sampling positions keeps the
integrals of energy losses corresponding to even multiples of
h̄ω accurate, while accurate determination of odd multiples
requires a correct evaluation of the tails of the vibrational

wave functions. Especially toward higher energy losses the
accuracy of the numerical integration becomes critical, since
the magnitude of the amplitudes become smaller and the
absolute errors of the integration become more relevant.

VI. CONCLUSION

A rigorous quantum mechanical proof within the scattering
matrix framework is presented, showing that phonon-related
transition probabilities can be approximated by integration
over results obtained by conventional simulation methods
with static atom positions. The approximation holds for mul-
tiple scattering as well as correlated vibrations of the atoms
within the object. The requirement for this approximation
relates the inelastic energy losses of the fast electron to the
extent of the specimen. For typical phonon energy ranges and
specimen thicknesses used for HAADF imaging, averaging
TEM calculations for fixed atom positions over the position’s
probability density (as done in the frozen phonon method)
will yield the correct results. However, all electrons regardless
of the energy loss must be registered without any distortions,
e.g., caused by chromatic aberrations.

The scattering matrix elements for phonon transitions of
a simple model, a single atom in a harmonic potential, were
calculated. Combining the scattering matrix elements allows
the calculation of elastic, coherent, inelastic, incoherent, and
total cross sections and their thermal average. It is found that
the electrons scattered into high angles are predominantly
scattered due to inelastic phonon scattering and not due to
thermal averaging. For a single gold atom and electrons
with 200 keV acceleration energy, inelastic scattering prevails
>61 mrad at temperature of 300 K. For lighter elements,
slightly smaller threshold angles are found.

Several commonly used approximations for calculation
of phonon transition matrix elements were tested. For the
expansion of the object potential into a power series of dis-
placements, it is found that virtual inelastic scattering must
be taken into account for inelastic scattering cross sections, at
least for a scattering at a single atom. Correct results are found
for approximations, which project the transition elements over
the thickness of typical slices within the multislice method.

ACKNOWLEDGMENT

The author thanks Axel Lubk for valuable discussions on
the topic and Michael Lehmann for reading of the manuscript.

APPENDIX A: S MATRIX

This Appendix describes how S-matrix elements can be
calculated by use of the Green’s operator. For a full treatment
of the underlying quantum mechanical scattering theory, the
reader is referred to the literature [35,39].

The Green’s operator for the asymptotic Hamiltonian
Ĥ0 (3) is given by

Ĝ0(E ) = lim
ε→0+

1

E − Ĥ0 + iε
.

It should be noted that this operator explicitly depends on the
energy of the whole system. The operator is readily written
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down in its spectral representation

Ĝ0(E ) = lim
ε→0+

∫
d3k

∑
n

1

E − Ek,n + iε
|k, n〉 〈k, n|,

where Ek,n is the energy of |k, n〉 . Its coordinate representation
can be written using the well-known Green’s function of the
free electron:

〈r|Ĝ0(E )|r′〉

= −2πm0

h2

∑
n

exp(i2πk(En + eU − E )|r − r′|)
|r − r′| |n〉 〈n|.

(A1)

For scattering in the full system, as described by Ĥ , the
S-matrix element giving the scattering amplitude from a state
|k′, n′〉 into a state |k, n〉 on the energy shell is given by

〈k, nŜ|k′, n′〉 = 〈k, n|k′, n′〉 − 2π i 〈k, n|T̂ |k′, n′〉 . (A2)

Above, we made use of the T matrix, which can be iterated by
a Born series using Ĝ0(E ):

〈k, n|T̂ |k′, n′〉 =
∑

m

〈k, n|[V̂ Ĝ0(E )]mV̂ |k′, n′〉 . (A3)

Single scattering is described by keeping only the first-order
term of this series:

〈k, n|T̂1|k′, n′〉 = 〈k, n|V̂ |k′, n′〉 . (A4)

This results in the single scattering (first-order) S matrix

〈k, n|̂S1|k′, n′〉 = 〈k, n|k′, n′〉 − 2π i 〈k, n|V̂ |k′, n′〉 . (A5)

In the literature, often an additional δ distribution is found
in (A2), which ensures energy conservation. This factor is
omitted here for clarity. In this paper, the elements of the S
matrix will only be evaluated for initial and final states with
same total total energy, and thus the energy conservation is
always given.

APPENDIX B: S MATRIX FOR STATIC APPROXIMATION

The S matrix for the static case can be formulated similar
to the full case in Appendix A with the free electron’s Hamil-
tonian as asymptotic case. In the static approximation, the
electron’s energy is always given by its acceleration energy
eUacc. The Green’s operator for the free electron is given by

〈r|ĜS,0|r′〉 = −2πm0

h2

exp(i2πK|r − r′|)
|r − r′| . (B1)

The elements of the S- and T -matrices are

〈k′|̂SS(R)|k〉 = 〈k|k′〉 − 2π i 〈k|T̂S(R)|k′〉 , (B2)

〈k′|T̂S(R)|k〉 =
∑

m

〈k|[V̂S(R)ĜS,0]mV̂S(R)|k′〉 . (B3)

Single scattering is described by keeping only the first term of
the Born series in (B2):

〈k|T̂S,1(R)|k′〉 = 〈k|V̂S(R)|k′〉 . (B4)

APPENDIX C: EQUIVALENCE OF S MATRICES

Comparing the first elements of the Born series of the T
matrix of the full treatment (A4) and the static case (B4)
shows their equivalence for the single scattering case

〈R|T̂1|R′〉 = 〈R|V̂ |R′〉 = V̂ (R) 〈R|R′〉 = V̂S(R) 〈R|R′〉
= T̂S,1(R) 〈R|R′〉 , (C1)

due to (2) and (14). In order to show the equivalence also for
higher order terms (multiple scattering) an approximation of
the Green’s operator is needed.

The Green’s operator (A1) for the full inelastic scattering
problem will only be evaluated in a product between V (r, R)
and V (r′, R′); see (A3). But the interaction potential V (r, R)
will only be nonzero in the area of the specimen. For a given
specimen size of A, this means only terms of the Green’s
operator with |r − r′| < 2A must be considered.

The energy spread of the relevant object states |n〉 for
phonon scattering (a few meV) will be small compared to the
electron energy (a few hundred keV). Here, the energy spread
of the object states is given by the energy changes of the object
due to inelastic scattering and due to the spread of initial states
due to thermal excitation.

In the exponential of the Green’s operator (A1), only the
product of |r − r′| and the wave number appears. For an object
energy deviation from the mean object energy of �En = En +
eU − E , these wave number will change by �kn = σ

2πe�En

from K as given by (5). As example, an energy deviation of
�En = 100 meV (which would be rather large for a phonon
excitation) changes the wave number of a 100-keV electron by
�kn = 147 mm−1, which is a million times smaller than the
original wave number K = 270 nm−1. For a A = 100 nm large
specimen, this means �kn|r − r′| < 2A�kn < 0.03. However,
this is a rather extreme example; most relevant energy changes
will be smaller. Thus, for sufficient small wave vector changes
�kn and sufficient small specimen extents A

2A�kn � 1, (C2)

the spherical wave part of the Green’s operator can be approx-
imated by

exp(i2π (K + �kn)|r − r′|)
|r − r′| ≈ exp(i2πK|r − r′|)

|r − r′| .

Using this approximation for the Green’s operator (A1) gives

〈r, R|Ĝ0|r′, R′〉

= −2πm0

h2

∑
n

exp(i2π (K + �kn)|r − r′|)
|r − r′| 〈R|n〉 〈n|R′〉

≈ −2πm0

h2

exp(i2πK|r − r′|)
|r − r′|

∑
n

〈R|n〉 〈n|R′〉

= −2πm0

h2

exp(i2πK|r − r′|)
|r − r′| 〈R|R′〉

= 〈r′|ĜS,0|r〉 〈R|R′〉 , (C3)

which corresponds to the Green’s operator for the static scat-
tering case (B1). When the terms of the full T -matrix (A3) are
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evaluated in object coordinate representation,

〈R|T̂ |R′〉 =
∑

m

〈R|(V̂ Ĝ0)mV̂ |R′〉 . (C4)

The equivalence of the m = 0 term was already shown above
in (C1). For terms with m > 0,

〈R|(V̂ Ĝ0)mV̂ |R′〉

=
∫

dR′′
∫

dR′′′〈R|V̂ |R′′′〉 〈R′′′|Ĝ0|R′′〉〈R′′|(V̂ Ĝ0)m−1V̂ |R′〉

= V̂S(R)
∫

dR′′ 〈R|Ĝ0|R′′〉 〈R′′|(V̂ Ĝ0)m−1V̂ |R′〉

≈ V̂S(R)ĜS,0 〈R|(V̂ Ĝ0)m−1V̂ |R′〉, (C5)

where in the second line the definition (14) and in the third line
the approximation (C3) were used. By repeated application
of (C5) and eventually due to (C1), it follows for all m

〈R|T̂ |R′〉 = 〈R|(V̂ Ĝ0)mV̂ |R′〉 ≈ [V̂S(R)ĜS,0]mV̂S(R) 〈R|R′〉
= T̂S(R) 〈R|R′〉

and thus

〈R|̂S|R′〉 ≈ ŜS(R) 〈R|R′〉 . (C6)

It should be noted that for a N-times scattering, the Green’s
operator approximation (C3) is applied (N − 1) times. Thus,
the requirement (C2) becomes

2A�k � 1

N − 1

for N-times scattering.

APPENDIX D: SCATTERING MATRIX ELEMENTS FROM
PARAXIAL ANSATZ

The scattering matrix elements Snn′ (qx, qy) are calculated
for given transitions n′ → n and xy components of the scat-
tering vector q = k − k′. The z component of the scattering
vector is given by energy conservation and (5):

qz(qx, qy) =
√

k2(En − En′ ) − q2
x − q2

y − K

≈ − σ

2πe
(En − En′ ) − 1

2k(En − En′ )

[
q2

x + q2
y

]
.

(D1)

Since the full wave function has to be continuous, the scat-
tering matrix elements Snn′ (qx, qy) can be calculated from the
partial wave fronts ϕn(r) of the paraxial wave ansatz. With
initial conditions in a plane zi before the specimen

ϕn(zi ) = δnn′

and after propagation by means of (22) to a plane zf , the
scattering matrix are given by

Snn′ (qx, qy )

= exp

[
i

π

k(En − En′ )

(
q2

x + q2
y

)
zf

]
F[ϕn(zf )](qx,qy).

(D2)

In other words, the coefficients Snn′ (qx, qy) can be obtained
from ϕn(r) by Fresnel propagation from the plane zf to the
plane z = 0, and a Fourier transform

F[ϕn(zf )](qx,qy)

=
∫ +∞

−∞
dx

∫ +∞

−∞
dy ϕn(x, y, zf ) exp[−i2π (qxx + qyy)].
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