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Rigorous statistical thermodynamical model for lattice dynamics in alloys
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We propose another approach to overcome the difficulties of previous ab initio methods used to study lattice
dynamics in disordered systems, such as alloys. Group III nitrides and arsenides are used as prototypical systems
to validate the developed methodology. The phonon behaviors of ternary alloys, for specific concentrations, are
calculated with a methodology based on the ab initio calculations of dynamics of the respective nitrides’ and
arsenides’ bulks. The generalized phonons’ behavior of long wavelengths for ternary alloys were simulated
employing the generalized quasichemical approximation method to account for the inherent statistical disorder
of the system. The model describes the evolution of optical phonons to the � point as a function of molar fraction
for zinc blende ternary alloys for III arsenides and III nitrides for any arbitrary compositions. We have found
that the obtained results are in good agreement with experimental data taken from Raman and IR measurements
available in the literature.
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I. INTRODUCTION

From cell phones, computer chips, and solar cells, lat-
tice vibrations play an essential role in understanding the
transport of heat. In particular, phonons, quantized modes
of vibration, are intimately responsible for thermal conduc-
tivity and heat capacity in semiconductors and insulators,
being also related to the electronic transport [1,2]. Moreover,
they are fundamental for phonon-mediated superconductiv-
ity [3] and the description of phonon-polariton light-matter
interaction [4]. Thus, to understand these phenomena, the-
oretical computational models able to provide an accurate
description of materials lattice dynamics, in general, are
desirable.

On the other hand, the progress of electronics and opto-
electronics demands more and more sophisticated systems.
For example, for decades, a common feature in electronic and
optoelectronic devices has been the application of semicon-
ductors alloys [5–7]. The alloys are vital components as the
active layers in optical devices operated in high temperature
for visible/ultraviolet spectral range, and high-power elec-
tronics [8,9]. The high flexibility in the properties of alloys is
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obtained changing their chemical composition, which allows,
in principle, their properties to be tuned continuously between
the values correspondent of the pure compounds. This fantas-
tic flexibility has been used extensively in three-dimensional
devices and, more recently, has also been shown to be very
promising for two-dimensional ones [10–15]. Considering
the microscopic description of these systems, the complexity
comes from the coexistence of atoms of different sizes on
the crystalline lattice. A proper description of the oscillating
system must consider a disordered distribution of masses
and its influence on elastic interactions, leading to novel
features in the phonon spectra. As examples, there are the
resonance modes and splitting of the dispersion branches, and
also modifications of both the vibrational eigenfrequencies
and eigenvectors of the normal modes. It is also observed
that the long-wavelength optical phonon in semiconductor
alloys exhibits behaviors that are classed into two main classes
denominated one or two mode. In the one-mode class, the
frequencies vary continuously and approximately linearly
with the molar fraction x of the alloy. In the case of the
two-mode behavior, the two sets of optical modes corre-
spond nearly to that of the two end components of the alloy
[16].

From the theoretical point of view, the difficulties are
twofold, namely (i) reproduction of an infinite disordered sys-
tem and (ii) accurate description of lattice dynamics of such an
inhomogeneous system. An approach to such systems, which
has been widely used, is to consider semiempirical models
and a quasirandom distribution of atoms, e.g., the modified
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random element isodisplacement (MREI) method of Chang
and Mitra [17], a generalization of the MRE [18]. Recently,
more rigorous ab initio approaches based on density func-
tional theory (DFT) [19,20] have been explored to describe
oscillating systems by considering the linear-response [21]
or the frozen-phonon [22] approaches. For instance, Wang
et al. calculate the dynamical matrix, concerning the wave
vector space of the ideal lattice, by averaging over the force
constants of a special quasirandom structure (SQS) in the case
of Cu3Au, FePd, and NiPd alloys [23]. Also, with the itinerant
coherent potential approximation (ICPA), SQS may be used
to describe random alloys considering both mass and force-
constant disorder [24,25]. Although SQS describes the alloy
disorder, it is limited to specific concentrations. Another kind
of approach is to use virtual crystal approximation (VCA) to
simulate the alloys, as in the work of Murphy and Fahy to
obtain carrier-phonon scattering in alloys spectrum in SiGe
alloys [26]. De la Pena et al. used VCA to simulate electron-
phonon interaction and superconductivity in Tl-Pb-Bi alloys
[27]. Although with VCA any composition of the alloy can
be simulated, the description of the disorder neglects the envi-
ronmental effects, such as composition fluctuation, in the local
virtual average potential for atoms. Additionally, other meth-
ods try to include the effect of multisite random correlations
as important features of the lattice dynamics problem [28,29].
In summary, the description of the lattice dynamics has been
significantly improved, while the disorder description is still
attached to quasirandom atomic distributions, disregarding
any influence of energetics on local atomic arrangements.
The absence of rigorous calculations contemplating, in equal
footing, both aspects may be justified by the fact that the
next level of description is the cluster expansion, which has
a higher computational cost.

In this work, we propose an ab initio approach to address
the complexity of the vibrational properties of alloys beyond
previously proposed models. As a progress of the method-
ological development, we provide not only the state of art
description of the lattice dynamics currently used, but mainly
a more accurate description of the system disorder and its con-
sequences on the vibrational properties. A cluster expansion,
so-called generalized quasichemical approximation (GQCA)
[5,10,11,13,14], is combined with calculations of total energy
and phonon spectra within the DFT framework to include
disorder and composition fluctuation effects. The disordered
distribution of masses obtained from the statistical approach is
considered, while approximations on the force constants and
born effective charges are considered for intermediate molar
fractions to avoid the high computational cost associated with
the application of frozen-phonon calculation on a broad set
of nonsymmetric clusters. As a benchmark, we consider the
well established III-V nitride and arsenide alloys to validate
our model. The presented approach is, however, general and
can be applied in several different systems.

In Sec. II, we introduce the GQCA model and lattice
dynamics methods. In Sec. III, we present our results for
the vibrational density of states, zone-center optical phonon
frequencies at the whole composition range for each semi-
conductor alloy. Our results are compared with experimental
data whenever possible. Finally, in Sec. IV, a summary is
given.

II. METHODOLOGY

A. Lattice dynamics

The potential energy of a periodic system can be written
as a Taylor expansion in terms of the atomic displacements
around the minimum-energy positions. Retaining only terms
up to the quadratic order in the displacements, i.e., harmonic
approximation, and considering that the allowed values of the
wave vectors are chosen according to the Born–von Karman
periodic boundary conditions, the vibrational properties are
calculated by solving the following matrix equation:

(D − Iω2)W = 0, (1)

where W is the polarization vector, ω is the phonon frequency,
and D is the dynamical matrix [30–32]. Each element of the
dynamic matrix is given as

DKK ′
i j (�q) =

∑
l ′

�o
i j (lK, l ′K ′)ei �q·[ �R(l ′K ′ )− �R(lK )]

√
MK MK ′

, (2)

where �R(lK ) presents the position of the atom K inside cell l ,
�q is the wave vector, MK is the mass of the K atom, i and j
are Cartesian coordinates, and � is the atomic force constants
tensor. This tensor is then calculated by

�o
i j (lK, l ′K ′) = ∂Fj (l ′K ′)

∂ui(lK )
, (3)

where �u(lK ) is the atomic displacement of lK atom and �F (lK )
are the forces on atoms with a finite displacement.

For perfect covalent materials, the optical branches LO
and TO are degenerate at the � point, while there is a
breakdown of this degeneracy for the ionic ones. As the
long-range dipole-dipole interaction of the LO mode breaks
the periodic boundary condition, the harmonic approximation
is not enough to treat this phonon branch. A nonanalytical
term can be added to the dynamical matrix, to overcome this
limitation, as follows [21,32–34]:

DKK ′
i j (�q → 0) = DKK ′

i j (�q = 0)

+ 4π
[ ∑

k qkZK
ki

][ ∑
k′ q′

kZK
k′ j

]

�o

√
MK M ′

K

∑
i j qiε

∞
i j q j

, (4)

where ZK
k′ j is the Born effective charge tensor of the K atom,

�o is the volume of the unit cell, and ε∞
i j is the high frequency

dielectric constant tensor.
In this work, the force constants with respective Born

effective charges are calculated by a direct approach, which
requires the use of large supercells. This approach can be
implemented for a single periodic system. However, its ap-
plication for a disordered or quasidisordered system such as
alloys is not straightforward.

B. Statistical approach for alloys

Since alloys are complex systems whose physical prop-
erties may be influenced by disorder effects, composition
fluctuations, and phase separations, their investigation by
ab initio methods is a great challenge and requires the use
of proper approximations.
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In this work, we apply the generalized quasichemical ap-
proximation to investigate such systems performing a cluster
expansion of AxB1−xC pseudoternary zinc blende alloys. The
disordered systems are modeled as an ensemble of statistical
and energetically independent cluster classes [5,35,36].

As further described elsewhere [5,10,13], the occurrence
probability x j of each cluster class j is determined by the
minimization of the Helmholtz free energy, respecting the
following constraints of normalization of total probability and
average composition

J∑
j=0

n jx j = nx, (5)

where n j is the number of A atoms per cluster class j.
The probability x j of a random cluster belonging to class j

is given by the expression

x j = g jλ
n j e−ε j/kBT

∑J
j=0 g jλ

n j e−ε j/kBT
, (6)

where g j is the cluster symmetry degeneracy, ε j is total energy
per cluster j, and λ is a positive constant determined by the
application of the average composition constraint expressed
in Eq. (5).

An arbitrary physical property can be estimated as a statis-
tical average p(x, T ) of quantities p j calculated for each clus-
ter class j, weighted by the occurrence probability distribution
x j (x, T ), i.e.,

p(x, T ) =
J∑

j=0

x j (x, T )p j . (7)

In the present work, we focus our attention on frequencies ωLO

and ωT O, respectively associated with LO or TO modes of �

phonons.
Composition fluctuation effects can be estimated by con-

sidering mean-squared deviations around the average value

�p(x, T ) =

√√√√√
J∑

j=0

x j p2
j −

⎛
⎝

J∑
j=0

x j p j

⎞
⎠

2

. (8)

Total energies ε j and physical properties p j of each
nonequivalent cluster class are calculated within the density
functional theory (DFT) framework, as implemented in the
VASP code [37]. Further computational details are provided in
Sec. II D.

Finally, we emphasize that the implementation of the
GQCA method to describe the disordered quasidisordered
distribution of atoms in alloyed systems requires the simu-
lation of each possible atomic arrangement of a previously
defined cluster. The number of atoms of each cluster must
be determined between the limits of a (i) small size leading
to a small number of configurations (low computational cost)
but poor disorder description and (ii) a very large size with
large number of configurations (high computational cost) and
a very rich description of alloy disorder. In this work, we
consider supercells with 16 atoms for the cluster expansion
of the alloyed systems.

FIG. 1. Workflow of proposed statistical model for lattice dy-
namics in alloys. The alloy preprocess covers the calculation of
composition dependent mean force constants and born effective
charges, while the alloy process covers the cluster expansion of the
system in clusters and the calculation of average frequencies.

C. Statistical approach for lattice dynamic in alloys

In order to simulate the lattice dynamics of an alloy, we
have to deal with two conflicting demands: a large super-
cell for the calculation of lattice dynamics and the related
increasing number of cluster configurations. This challenge
is accomplished by considering reasonable approximations.
Due to the large supercell size that would be required to sim-
ulate the vibrational properties of the ternary alloys for each
16-atom cluster of each class, the adopted methodology was
to use the binaries’ alloy ab initio results to define the specific
set of parameters values that characterized each related ternary
alloy molar concentration. In this way, assuming a linear
behavior for both force constant tensor and ionic parameters,
we have determined the short- and long-range interaction for
each ternary alloy concentration, making possible, for each
ternary alloy, the calculation of phonon frequencies (ωLO,TO

j )
for each average concentration x and configuration j.

Since it is not possible to evaluate the LO and TO phonon
frequencies at the concentration extrema with a 16-atoms
cluster, we considered a 128-atom supercell to identify the
vibrational LO and TO modes of a substitutional “impurity”
atom for very low compositions.

In order to provide an overview of the proposed
ab initio statistical approach for lattice dynamics, we provide
the workflow illustrated in Fig. 1. Mean force constants and
born effective charges are determined in the so-called “alloy
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preprocess.” The average phonon frequencies ω(x, T ) of op-
tical modes in � are calculated from distribution of the oc-
currence probabilities x j (x, T ) and application of mean force
constants and effective charge on each nonequivalent cluster
class obtained in the cluster expansion of an alloyed system,
which we named “alloy process.”

Then, we evaluated the Born effective charges and the
dielectric tensor, which is a necessary parameter to obtain the
full phonon behavior for binary crystals.

To provide a good description of short and long-range
interactions, we have used a supercell with 128 atoms to
ab initio calculations of vibrational behavior for binary
crystals.

Finally, the presented statistical framework for the descrip-
tion of lattice dynamic in alloys makes use of the disordered
distribution of masses determined by GQCA avoiding the
substantial computational costs associated with the calcula-
tion of force constant tensors for each cluster class consid-
ered by the GQCA formalism by considering weighted force
constants and Born effective charges between the alloy end
components.

D. Computational details

In order to feed the presented statistical model, total en-
ergies ε j and physical properties p j of each nonequivalent
cluster class are calculated within the density functional the-
ory (DFT) framework as implemented in Vienna Ab Initio
Simulation Package (VASP) [37]. We have employed local den-
sity approximation (LDA) to the exchange-correlation energy
functional as proposed by Ceperly and Alder parametrized by
Perdew and Zunger in total energy calculations [38,39]. Kohn-
Sham equations were solved in the projector augmented wave
method (PAW) [40]. We have used an energy cutoff parameter
of Ecut = 600 eV and a 40 × 40 × 40, 10 × 10 × 10, and
1 × 1 × 1 �-centered k-point mesh in the Monkhorst-Pack
scheme for cells with, respectively, 2, 16, and 128 atoms.
The total energy convergence for all electronic steps was set
at 10−8 eV. All atomic coordinates were relaxed until the
Hellmann-Feynman forces were small in proportion to the
convergence in energy, using the criterion that the energy
difference between two successive changes of atomic posi-
tions was lower than 10−7 eV. For each binary compound,
the force constant tensor and Born effective charges are deter-
mined considering harmonic approximation as implemented
in PHONOPY [32].

We considered 16-atom clusters, whose n = 8 cation sites
are occupied by all possible combinations of A and B. The
28 = 256 possible atomic arrangements are organized into
J = 16 nonequivalent cluster classes with different degenera-
cies g j by considering the Td space group symmetry opera-
tions.

III. RESULTS AND DISCUSSIONS

Figure 2 depicts the results for the phonon density of states
(DOS) of 16 nonequivalent clusters describing the zinc blende
AlGaAs (a), AlInAs (b), and InGaAs (c), represented by the
continuous lines. From Figs. 2(a) and 2(b), one observes that
the phonon two-mode behavior is evident by the separation

FIG. 2. Evaluated phonon density of states dependence with the
alloy concentration for cubic (a) AlGaAs, (b) AlInAs, and (c) InGaAs
alloys. When there is more than one cluster class for a given molar
fraction, the DOS curves are distinguished by black, red, blue, and
green colors. The black circles represent the frequencies of the zone
centered phonons for each cluster, while open circles are derived
from vibrational optical modes for substitutional impurities.
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of the optical branches as the Al concentration increases.
At low concentrations, there is the appearance of vibrational
modes assigned to AlAs modes in the region above the
GaAs(InAs) optical branches. For high Al concentrations,
vibrational modes assigned to GaAs (InAs) appear in the AlAs
frequency gap between the acoustical and optical branches.
For the evaluated InGaAs DOS, we have detected a separation
of the optical branches for low concentrations, indicating a
two-mode phonon behavior. However, as the Ga concentra-
tion increases, this separation did not become evident as in
previous cases.

The black circles in Fig. 2 are drawn for a guide to the
eyes for the correct LO ant TO phonon assignment in the
long wavelength region, which was obtained by an analysis
of the vibrational modes of each cluster configuration j.
The two-mode behavior observed in our evaluated DOS for
AlGaAs alloys are in agreement with other ab initio results
[41]. However, for InGaAs, they contradict the calculated
DOS by using molecular dynamics [42], which does not show
the optical branches separation. The substitutional “impurity”
LO and TO vibrational modes at composition extrema with
128-atom supercells are assigned by the open circles drawn in
Fig. 2.

Once the phonon modes and their frequencies are deter-
mined for each cluster, the GQCA method evaluates the fre-
quencies of zone-center phonons versus composition for each
branch. We display our obtained zone center modes compared
with the experimental data [42–46] in Fig. 3. The agreement
is very good. Our calculations of the phonon energies clearly
indicate a two-mode behavior for all arsenide alloys studied.
The results show a relationship between the inclination of the
TO phonons and the intensity of the parameters related to the
short-range interactions. A quantitative similarity, within 1%,
between the constant force tensors of AlAs and GaAs binaries
is verified. InAs exhibits the same qualitative behavior, but
reduced force constants about 15%, when compared with the
previous compounds. The difference between the calculated
parameters that characterize the extremes of the AlInAs and
InGaAs alloys causes the TO phonons to have a rising slope
with In concentration when compared to the TO phonons
behavior of the AlGaAs.

For In concentration higher than 80% in InGaAs alloys, no
significant difference of frequency is observed between LO1
and TO1 optical modes, which is consistent with reported
experimental findings [47].

The same procedure was employed to simulate the vibra-
tional DOS that was applied to cubic III nitrides. The obtained
results for the vibrational DOS of AlGaN, AlInN, and InGaN
are displayed in Fig. 4. As in the previous cases, the black
circles represent the frequencies of the zone centered phonons
for each cluster, while open circles are derived from vibra-
tional optical modes for substitutional impurities. Different
from AlGaAs and AlInAs, where the continuous two-phonon
mode behavior is evident from Fig. 2, it is possible to observe
that for low concentrations there is an unfolding associated
to the vibrational mode of the AlN in the region immediately
above the optical branches of both GaN and InN, indicating
an apparent two-mode behavior in AlGaN and AlInN, as

FIG. 3. Evaluated zone-center phonon frequencies dependence
with mole fraction x and respective mean-square deviations for
(a) AlGaAs, (b) AlInAs, and (c) InGaAs, represented in red and
black solid lines, respectively. Available experimental data [42–46]
is depicted by open circles for comparison.
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FIG. 4. Evaluated phonon density of states dependence with the
alloy concentration for cubic (a) AlGaN, (b) AlInN, and (c) InGaN
alloys. When there is more than one cluster class for a given molar
fraction, the DOS curves are distinguished by black, red, blue, and
green colors. The black circles represent the frequencies of the zone
centered phonons for each cluster, while open circles are derived
from vibrational optical modes for substitutional impurities.

depicted in Fig. 4. However, there is no perceptible unfolding
in this same region for the other concentrations.

Unlike from the AlN case, where the contribution of the Al
and N atoms is observed in optical and acoustic branches, the
mass difference between Ga and N in GaN causes Ga to have
a strong vibrational contribution in the region of the acoustic
branches, while the N in the region of the optical branches.
The same vibrational behavior occurs in InN. Therefore, the
one-mode behavior in InGaN can be explained by the simi-
larity and the high contribution of N to the optical vibrational
modes in both GaN and InN.

As observed in arsenides, the force constant tensor of AlN
and GaN exhibits variations about 5%, while InN exhibits
reduced force constants about 20% smaller than the previous
compounds. Additionally, previous works reported a weak
dependence of the averaged bond lengths with respect to
composition [5], indicating weak influence of the environment
on the force constants. We do not expect differences between
the actual force constants and the ones considered in our
model significantly larger than 5% for any of the considered
compounds.

We compare the obtained zone-center phonon frequency
results with the available experimental data [48–51] in Fig. 5.
The overall agreement by the proposed statistical approach
is excellent. Our results show that while InGaN phonons
behave as one mode, AlGaN and AlInN show a phonon
one mode type to the LO branch and a two mode for TO
branch.

The structural similarity for atom neighborhood and a
strong dependence of the vibrational dynamics with the short-
range interactions indicate that the zinc blende and wurtzite
structures must present similar behaviors for the phonon
modes.

The direct application of the MREI shows the one mode
behavior for all cubic nitride alloys [30,48], but the exper-
imental results for wurtzite AlGaN and some cubic AlGaN
indicate the presence of the two-mode behavior [50,52,53],
while experimental results for cubic and wurtzite InGaN con-
duct to the same one mode behavior [51,54,55]. Simulations
performed by Grille et al. [16], using generalized MREI to
describe the phonons for long wavelength, show close results
to the considered nitrides.

Up to our knowledge, there is no experimental data for
AlInN in the cubic structure. Thus we compare our results
with experimental results for the wurtzite phase [56,57]. The
agreement with experiment is satisfactory.

Finally, we provide adjusted fitting parameters for each
zone-center phonon optical mode considering the expression
ω(x) = b(1 − x)x + ω1x + ω0(1 − x) shown in Figs. 3 and 5.
The bowing parameter is given by b, while ω0 and ω1 provide
the phonon frequencies for mole fractions x = 0 and x = 1,
respectively. The results are listed in Table I. Considering the
magnitude of zone-center frequencies for the end compounds
and fitted bowing parameters obtained within GQCA that
many optical branches can be satisfactorily described by a
linear behavior, while others, e.g., LO(InAs) mode in InGaAs,
present very significant bowing parameters. The obtained
results are in agreement with experimental data available in
literature [48].
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FIG. 5. Evaluated zone-center phonon frequencies dependence
with mole fraction x and respective mean-square deviations for
(a) AlGaN, (b) AlInN, and (c) InGaN, represented in blue and
black solid lines, respectively. Available experimental data [48–51]
is depicted by open circles for comparison.

TABLE I. Fitted parameters ω(x) = b(1 − x)x + ω1x + ω0(1 −
x) for the zone-center frequencies for each phonon optical mode.

b (cm−1) ω1 (cm−1) ω0 (cm−1)

TO(GaAs) −11.2 272.3 252.3
LO(GaAs) −15.3 288.6 252.3

AlGaAs
TO(AlAs) −2.5 353.3 361.2
LO(AlAs) 19.3 353.3 396.1

TO(InAs) 1.9 216.5 226.2
LO(InAs) −6.0 235.9 226.2

AlInAs
TO(AlAs) −12.5 326.0 361.2
LO(AlAs) 10.7 326.0 396.1

TO(InAs) −3.1 239.3 216.5
LO(InAs) −28.9 239.3 235.9

InGaAs
TO(GaAs) −15.0 272.3 242.5
LO(GaAs) 7.4 288.6 242.5

TO(GaN) 11.8 571.8 639.2
AlGaN TO(AlN) −34.8 661.5 672.1

LO 26.0 752.7 904.5

TO(InN) 16.8 486.0 635.6
AlInN TO(AlN) −0.8 568.0 672.1

LO −19.0 588.9 904.4

TO 1.0 571.8 486.0
InGaN

LO −33.6 752.7 589.0

IV. SUMMARY AND CONCLUSIONS

In summary, we present an accurate and efficient method-
ology based on the ab initio parameters for short- and long-
range interaction of group III of cubic binary nitrides and
arsenides to calculate the vibrational properties of the respec-
tive cubic ternary alloys.

To treat the dispersion of long-wavelength phonon frequen-
cies for each respective concentration, a statistical analysis
within the GQCA method was used. Phonon frequencies,
vibrational modes, and density of states were calculated from
a 16 atom supercell by using a linear variation of the ab initio
force constants with composition, followed by diagonalization
of the dynamical matrix. This assumption is not essential to
the GQCA application on vibrational properties of alloyed
systems, but a simplifying hypothesis to perform the sys-
tematic cluster expansion of the system avoiding prohibitive
computational costs. The theoretical model can be easily
adapted to consider the nonlinear variations of force constants
with composition.

The results for vibrational DOS for AlGaAs and AlInAs
show a two-mode behavior. An analysis of the vibrational
modes for the � point shows that the InGaAs also exhibits
two-mode behavior, but with a narrowing of the TO and LO
modes, associated with the InN, that occurs with the increas-
ing Ga concentration. The same analysis shows a one-mode
behavior for InGaN, while the AlGaN and InGaN present a
two-mode behavior only for TO, where it is observed that the
TO(AlN) phonon is located in a region of high concentration
for the state density.
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The results are in agreement with the experimental data,
showing that the framework here presented is adequate
and can assist theorists in further phonon studies on novel
materials.
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