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Three-dimensional universality class of the Ising model with power-law correlated critical disorder
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We use large-scale Monte Carlo simulations to test the Weinrib-Halperin criterion that predicts new univer-
sality classes in the presence of sufficiently slowly decaying power-law correlated quenched disorder. While
new universality classes are reasonably well established, the predicted exponents are controversial. We propose
a method of growing such correlated disorder using the three-dimensional Ising model as a benchmark system
for both generating disorder and studying the resulting phase transition. Critical equilibrium configurations of a
disorder-free system are used to define the two-value distributed random bonds with a small power-law exponent
given by the pure Ising exponent. Finite-size scaling analysis shows a new universality class with a single phase
transition, but the critical exponents νd = 1.13(5), ηd = 0.48(3) differ significantly from theoretical predictions.
We find that depending on the details of the disorder generation, disorder-averaged quantities can develop peaks
at two temperatures for finite sizes. Finally, a layer model with the two values of bonds spatially separated in
halves of the system genuinely has multiple phase transitions, and thermodynamic properties can be flexibly
tuned by adjusting the model parameters.
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I. INTRODUCTION

Disordered systems have fascinating properties that can
differ significantly from those of pure systems and can pro-
duce novel experimentally relevant effects. For example, dis-
order frequently generates new universality classes and can
even completely alter the nature of phase transitions. Most
studies of disordered systems concern independent random
disorder, but if disorder correlations are present, the issue
arises of when and how these are relevant. This paper focuses
on spatial power-law correlated quenched disorder that can
arise, e.g., from linear or planar dislocations in a crystal or
for fluids in porous media. Such disorder is characterized by
an exponent a; that is, the correlation function of the defects
decays as g(r) ∼ 1/ra.

A few guiding theories are available. The Harris criterion
[1] states that weak uncorrelated disorder is irrelevant if the
heat capacity exponent of the corresponding pure, disorder-
free system is negative, αpure < 0, or the correlation length ex-
ponent νpure > 2/d assuming the hyperscaling relation dν =
2 − α. For power-law correlated disorder, this is generalized
to the Weinrib-Halperin (WH) criterion [2], which predicts
that weak disorder is irrelevant if the pure system satisfies
νpure > max(2/a, 2/d ). Moreover, when disorder is relevant,
a new disordered universality class is obtained if a < d with
exponents given by νd = 2/a and ηd = 0. A number of papers
have tested this criterion by numerical simulations. While
it seems reasonably well established that a new universality
class is indeed obtained for the three-dimensional Ising model
with oriented line disorder corresponding to a = 2 [3–5], it is
quite controversial whether νd = 2/a holds. For example, it
has been argued that the result is merely a first-order estima-
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tion, ignoring higher-order corrections [6–8]. See Ref. [5] and
the references therein for a more detailed discussion.

In this work we study power-law correlated quenched
disorder generated from equilibrium spin configurations of a
pure, i.e., disorder-free, zero-field Ising model at the phase
transition. This correlated disorder distribution avoids possi-
ble ambiguities due to, e.g., linear correlated defects crossing
and is much more straightforward to generate in simulations.
In addition, the decay exponent is a ≈ 1 (see below), which
is much smaller than that of line defects. Therefore, the
predicted exponent νd ≈ 2 is extraordinarily large, which is
ideal for testing the WH criterion. A similar idea of using an
auxiliary model to grow power-law correlated disorder was
used in previous studies of correlated random models. A three-
dimensional (3D) Ising model with correlated random dilution
was studied in Ref. [9]. Potts models in two dimensions were
studied in Refs. [10,11]. Here, we study the different case of
a random bond Ising model in three dimensions.

To define the disorder distribution, equilibrium spin con-
figurations of a pure Ising model at the critical point are
mapped onto quenched random couplings of a disordered
Ising system that, by construction, become power-law cor-
related. We discuss the generating method in detail in the
following sections. The random couplings are defined to take
two values corresponding to the two spin orientations in the
underlying Ising configuration. While this disorder model
does not fulfill the WH assumption of a Gaussian disorder
distribution, the WH results are still useful guides, and it is
of interest to compare results. For simplicity we restrict our
study to ferromagnetic couplings in this paper; that is, there is
no frustration, and the ground state is the same ferromagnetic
state as for the pure system. The power-law decay of the
random couplings to leading order follows from the pure
spin correlation function exponent a = d − 2 + ηpure. For the
pure Ising model in three dimensions a = 1.036298(2), and
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a < d is satisfied. The WH criterion therefore predicts for
the disordered system a single phase transition with a new
exponent, νd ≈ 1.9299. The critical cluster distribution leads
to formation of power-law correlated domains of strong and
weak bonds in the random Ising model. Here, this model is
studied theoretically to demonstrate what effects are, in prin-
ciple, possible, without considering how it may be realized in
practice.

The main purpose of this paper is to investigate the univer-
sality class of the phase transition in the three-dimensional
Ising model with correlated bond disorder generated from
pure Ising configurations and in particular to identify the
role of disorder correlations by comparing several different
but related models. We use Monte Carlo simulations and
finite-size scaling to study critical properties at the transition.
For correlated disorder a new universality class of the Ising
phase transition emerges, as expected from the WH theory,
but the values of the exponents do not follow the WH results.
Notably, the finite-scaling approach to the thermodynamic
limit is unusual in the following sense. Quantities such as
the susceptibility and heat capacity usually have a single
rounded and finite peak close to the transition temperature
for finite system sizes. Here, instead, such disorder-averaged
quantities can obtain peaks at two different temperatures for
finite systems. The two peak temperatures are system size
dependent and merge in the thermodynamic limit, so the
infinite system has a single phase transition, as expected from
the WH theory. In addition to the correlated disorder model,
we also study a layer model with the two values of bonds
spatially separated to layers. The layer model is not disordered
and trivially has two thermodynamic transitions and double
peaks in the susceptibility that are not finite-size effects. By
selecting the values of the couplings and the number of layers,
great flexibility to engineer the thermodynamic properties of
the system is demonstrated. In particular several susceptibility
peaks can be produced, which is potentially relevant for
magnetic applications.

An additional purpose is to investigate the performance of
two different Monte Carlo algorithms, the parallel tempering
(PT) method [12–14] and the recently introduced population
annealing (PA) method [15–19]. These methods have been
used extensively to simulate spin-glass problems and similar
problems with frustration and complex ground states where it
has been found that PA and PT have similar efficiency [18,20].
Here, we consider the case of correlated disorder with no
frustration that preserves the ferromagnetic ground state and
compare the performance of both methods.

This paper is organized as follows. We first discuss the
models, observables, and simulation methods in Sec. II, fol-
lowed by numerical results in Sec. III. Concluding remarks
are stated in Sec. IV.

II. MODELS, OBSERVABLES, AND METHODS

A. Models

The Ising Hamiltonian is

H = −
∑
〈i j〉

Ji jSiS j, (1)

where Si = ±1 are Ising spins and the summation is over
nearest neighbors on a three-dimensional cubic lattice with
side length L and N = L3 sites. For the pure system with
Ji j = 1 the critical temperature and critical exponents are
known to high precision. We take βc,pure = 0.22165455(3)
obtained from Monte Carlo simulations [21] to generate crit-
ical configurations of the pure system. It is noted that this
critical inverse temperature slightly deviates from the most
recent estimates [22,23], but it is sufficiently accurate for
our purpose. The conformal bootstrap method provides high-
precision estimates of critical exponents for the Ising model
given by νpure = 0.629971(4) and ηpure = 0.036298(2) [24].
We refer to these quantities for the disordered system as βc,
νd , and ηd , respectively.

The correlated quenched random couplings Ji j are defined
as follows:

(1) Simulate the pure 3D Ising model and generate equilib-
rium configurations at the phase transition.

(2) Define a set of random coupling constants from an
equilibrium spin configuration of the pure model. For bonds
within spin-up clusters set Ji j = 2, and otherwise, Ji j = 1,
i.e., within spin-down clusters and at cluster boundaries. More
precisely, Ji j = 1 + (Si + 1)(S j + 1)/4.

The resulting values J1 = 1, J2 = 2 are fixed unless other-
wise specified. We refer to J1 as weak bonds and J2 as strong
bonds. This method to define random couplings from underly-
ing pure Ising configurations is not unique. The method leads
to an asymmetry in the fraction of J1 and J2 bonds due to
the treatment of the interfaces. It is possible to eliminate this
asymmetry. One simple way is to let a single spin determine
the bonds in the forward directions of each axis. For example,
set a forward bond to J2 if a spin takes the value 1 and J1

if it is −1. We call the asymmetric version pair disorder and
the forward version forward disorder. We simulated these and
some other disorder models with variations of the short-range
details and found they have similar properties. Note in particu-
lar that the forward disorder inherits directly the bond correla-
tion function Gik = 〈sisk〉 − 〈si〉〈sk〉 ∼ |ri − rk|2−d−ηpure from
spins of the pure model to bonds of the disordered model.
For the pair disordered model the bond correlation function
is 〈Ji jJkl〉 − 〈Ji j〉〈Jkl〉 = (Gik + Gil + Gjk + Gjl + GE

i j;kl )/16,
where GE

i j;kl = 〈(sis j − 〈sis j〉)(sksl − 〈sksl〉)〉 is proportional
to the correlation function for the energy density of the
pure Ising model, which scales as r−2(d−1/νpure ) ≈ r−2.83. The
contribution from GE will thus quickly decay compared to the
leading power-law behavior r−a. The data shown here are for
pair disorder unless otherwise specified.

We considered a few variations in the definition of the
bond disorder distribution corresponding to different spin
ensembles of the underlying pure Ising model. Here, we
illustrate this using the forward disorder. If the disorder-
generating Ising configurations have no restriction in the net
magnetization, the different disorder realizations will obtain
varying numbers of strong and weak bonds, which we call
the unrestricted or M �= 0 disorder. If the generating spins
are restricted to zero magnetization, each disorder realization
has equal numbers of strong and weak bonds. We call this
restricted or M = 0 disorder.

144204-2



THREE-DIMENSIONAL UNIVERSALITY CLASS OF THE … PHYSICAL REVIEW B 100, 144204 (2019)

For comparison with the random distribution of the cou-
plings, we also considered a layer model which is not
disordered by distributing couplings in a nonrandom way.
Here, all couplings are assigned to J1 in the upper half
of the system and J2 in the lower half. This is essentially
two pure Ising models connected by flat interfaces between
regions with weak and strong bonds. The layer model can
be generalized in different ways, e.g., by changing sizes of
layers, adding more layers, and using more values of the
couplings. If the number of spins in each layer is proportional
to the total volume L3, the ratio of the number of interface
to bulk couplings disappears as 1/L, and each layer trivially
obtains its own thermodynamic bulk Ising transition at a
critical temperature related to the coupling constant in the
layer. Thus, the n-layer model can have a sequence of n
transitions where the net magnetization changes in a staircase
manner as temperature is varied.

B. Observables and methods

The main observables are the absolute value of the magne-
tization density m, Binder ratio g, magnetic susceptibility χ ,
and heat capacity c. These quantities are defined as

m = 1

N

∣∣∣∣∣
∑

i

Si

∣∣∣∣∣, (2)

g =
[ 〈m4〉
〈m2〉2

]
, (3)

χ = βN[〈m2〉 − 〈|m|〉2], (4)

c = β2

N
[〈H2〉 − 〈H〉2]. (5)

Averages are performed over thermal fluctuations denoted
〈· · · 〉 and over quenched disorder denoted [· · · ].

The finite-size scaling relations for computing critical ex-
ponents are summarized as follows:

g(t ) = g(tL1/ν ), (6)

χ (t ) = L2−ηχ (tL1/ν ), (7)

gT (t = 0) = ∂g

∂T

∣∣∣∣
t=0

∼ L1/ν, (8)

χ (t = 0) ∼ L2−η, (9)

where t = (T − Tc)/Tc is the reduced temperature and Tc is
the phase transition temperature. We measure gT using its
direct estimator ∂〈O〉/∂T = β2[〈OH〉 − 〈O〉〈H〉], where O is
any temperature-independent quantity, here m2 or m4.

Our simulations are carried out using two different Monte
Carlo (MC) methods, population annealing [15–19] and par-
allel tempering [12–14] with hybrid Metropolis and Wolff
updates. The two methods give consistent results, and both
are in agreement with the known results of the pure system
for the transition temperature and the critical exponents. Since
PT is widely used and well known, here, we discuss only the
relatively new PA method.

The PA method works as follows. We initialize R ran-
dom configurations or replicas at β = 0. The population of

replicas is cooled gradually following an annealing schedule.
When the temperature is decreased from β to β ′, a replica
is copied with the expectation number ni = exp[−(β ′ −
β )Ei]/Q, where Ei is the energy of replica i and Q =
(1/R)

∑
i exp[−(β ′ − β )Ei] is a normalization factor to keep

the population size approximately the same throughout the
annealing. In our simulation, the number of copies is either
the floor or the ceiling of ni to minimize fluctuations with the
proper probabilities to give the correct mean value. After this
resampling step, NS sweeps using the Metropolis algorithm
are applied to each replica. In the temperature range where
the Wolff update [25] is efficient, we also apply NS Wolff
updates to each replica. The two hybrid updates alternate with
one Metropolis sweep and one Wolff update. The annealing
process continues with resampling and Monte Carlo sweeps
until reaching the lowest temperature.

Our equilibration criterion for PA is based on the family
entropy, which quantifies the diversity of the population.
In the initial population, each replica is assigned a family
name 1, 2, 3, . . . , R. The family name is copied along with
the replica in the annealing process. At each stage of the
simulation, we can collect the fraction of each family name
in the population { fi}, and the family entropy S f is then
the regular Gibbs entropy S f = −∑

i fi ln( fi ) [18,26]. The
larger S f is, the better the equilibration is. We require each
annealing to satisfy S f � ln(100). To prevent correlations
when generating the disordered instances, we have recorded
only 500 configurations from the much larger population for
each simulation of the pure system, and more configurations
are collected using independent runs. For PT we used at
least 105 sweeps for thermalization before data collection. We
record one equilibrium configuration for every 104 sweeps at
each temperature and also save 500 configurations for each
independent run. The simulation parameters are summarized
in Table I. Note that PA is massively parallel as different
replicas can be updated independently. The PA is imple-
mented with distributed-memory MPI parallel computing [27],
and PT is implemented with shared-memory OPENMP parallel
computing [28].

III. NUMERICAL RESULTS

In this section, we first demonstrate that there is a single
phase transition in three dimensions. Next, we study the
critical behavior of the transition and compare it with the WH
criterion. Finally, we discuss the layer model and compare the
efficiency of the PA and PT methods.

A. Correlated disorder

We first show some typical and disorder-averaged MC
results for the magnetization, heat capacity, and susceptibility
for the correlated disorder model for system size L = 14
in Fig. 1. The disorder averages are marked with red dots
and form thick red curves. The thin curves are data for five
individual disorder samples. The most noticeable feature of
the disorder-averaged curves is the two-peak structure present
for both the heat capacity and susceptibility, indicating two
characteristic temperatures. However, each individual sam-
ple has only one peak or transition. The emergence of this

144204-3



WANG, MEIER, LIDMAR, AND WALLIN PHYSICAL REVIEW B 100, 144204 (2019)

TABLE I. Simulation parameters of the three-dimensional Ising model using population annealing (PA) and parallel tempering (PT) for the
pure and disordered systems with pair disorder. L is the linear system size, R is the number of replicas, NT is the number of temperatures, and
NS is the number of sweeps. The temperature range is β ∈ [βmin, βmax], and the Wolff updates are applied in the interval β ∈ [β1, β2]. Finally,
M is the number of independent runs or disorder realizations studied.

System Algorithm L R NT NS βmin βmax β1 β2 M

Pure PA {4, 6, 8} 8 × 105 101 10 0 0.4 0.2 0.3 20
Pure PA {10, 12, 14, 16, 18} 1.6 × 106 201 10 0 0.4 0.2 0.3 20
Pure PA {20, 24} 1.6 × 106 301 10 0 0.4 0.2 0.3 20
Pure PA {28, 32} 1.6 × 106 301 10 0 0.25 0.2 0.25 20
Pure PT {36, 40, 44, 50} 16 6 × 106 0.2 0.24 0.2 0.24 20
Disorder PA {4, 6, 8} 8 × 105 101 10 0 0.4 0.1 0.3 5000
Disorder PA {10} 1.2 × 106 201 10 0 0.4 0.1 0.3 3000
Disorder PA {12, 14, 16} 1.2 × 106 201 10 0 0.3 0.1 0.2 3000
Disorder PA {18, 20} 1.2 × 106 201 10 0 0.22 0.1 0.2 2000
Disorder PT {24, 28, 32} 32 1.1 × 106 0.13 0.15 0.13 0.15 2000
Disorder PT {36, 40, 44, 50} 32 2.2 × 106 0.13 0.15 0.13 0.15 2000

double-peak structure is one main result of this paper and will
now be analyzed in more detail.

Interestingly, the two peak structures after careful in-
spections are finite-size effects, and there is a single phase
transition in the thermodynamic limit L → ∞. This is first
indicated by the fact that each individual disorder realization
has only one peak. The peak temperature reflects the average
strength of the bonds of the disorder realization. Moreover, the
two peak temperatures of the disorder averages move closer
together as the system size increases; see Fig. 2 for more
details. The peak at low (high) β is associated with disorder
realizations with a majority of strong (weak) bonds.
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FIG. 1. Typical and disorder-averaged results for (a) the absolute
value of the magnetization, (b) heat capacity, and (c) susceptibility
of the correlated disorder model for system size L = 14. The red
dots are the disorder-averaged data, and the thin curves are for five
individual disorder realizations. The average magnetization has a
finite-size rounded two-step temperature dependence. The disorder
averages in (b) and (c) have peaks at the two magnetization steps,
while individual disorder realizations have one peak.

To further demonstrate the two peaks are finite-size effects,
we also studied a restricted disorder model which always
has equally many strong and weak bonds from the disorder-
generating pure-spin model. In Ref. [29] such constraints were
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FIG. 2. Disorder-averaged susceptibility for comparing cluster
disorder (M �= 0) and restricted cluster disorder (M = 0). Here, we
examine two strong bond strengths and use the forward disorder. The
two ensembles of disorder have the same thermodynamic limit, and
there is therefore only one phase transition.
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FIG. 3. Disorder-averaged gT vs β has a two-peak structure for
small system sizes. The left peak dominates for the large system size
and is used to estimate the size-dependent transition temperature. A
similar estimate is done for χ . Inset: The extracted pseudotransition
temperature (symbols) of the left peak vs 1/L along with a cubic fit
(curves), giving βc = 0.1393(3) and 0.1398(4) from the fits of gT

and χ , respectively. The L = 4 data are omitted from the fit as there
is no clear left peak for this size.

found not to affect the universality class of the transition in the
similar problem of a diluted 3D Ising model with long-range
disorder. Results for the disorder-averaged susceptibility of
the restricted disorder model are shown in Fig. 2 for the for-
ward models with both J2 = 2 and J2 = 10. Clearly, only one
peak is obtained for any system size, and the same is true for
the individual disorders. It is remarkable that this is the case
even for the extraordinarily large strong bonds J2 = 10. From
Fig. 2 it is also plausible that the transition temperatures of
the two different disorder-generating ensembles converge to
the same values for L → ∞. Here, the unrestricted ensemble
has the two peaks originating from the two-peak distribution
of the magnetization of the underlying pure model, and in
the restricted ensemble this is eliminated. This concludes the
demonstration that the two peaks found above are finite-size
effects caused by the disorder-averaging procedure and the
disorder-generation method, and in the thermodynamic limit
there is a single transition.

B. Critical exponents

The next step is to study the finite-size scaling of the phase
transition. The main objective is to estimate the critical expo-
nents at the transition by finite-size scaling of the susceptibil-
ity and Binder parameter derivative. We consider finite-size
scaling at the thermodynamic critical temperature. According
to Eqs. (8) and (9), the scaling at the critical temperature is
χ ∼ L2−η, and gT ∼ L1/ν . We have used the unrestricted pair
disorder for this major large-scale simulation.

The first step is to estimate the thermodynamic transition
temperature. We use the major high-temperature peaks of gT

and χ to estimate βc. Data for gT vs β = 1/T for a series of
sizes are shown in the main panel of Fig. 3. Similar behavior
is found for χ (data not shown). It is seen that two peaks
obtained for small sizes successively merge upon increasing

the system size, and the left peak at low β dominates for large
system sizes. Hence, the temperature of the left peak should
extrapolate to the thermodynamic transition temperature for
L → ∞. Using cubic spline interpolation, a pseudotransi-
tion inverse temperature βc(L) is computed by locating the
maximum for each quantity and system size. Error bars are
estimated using the bootstrap method. Ideally, one would like
to estimate the thermodynamic transition temperature using
the scaling relation βc(L) = βc + a/L1/νd , but this requires
simultaneous fits of βc and νd , which leads to large statistical
errors for this disordered model. We instead adopt a cubic
polynomial fit in 1/L and extrapolate to 1/L = 0 (see the
inset in Fig. 3). The validity of this method was verified using
the scaling fits assuming νd = 1.13 estimated below, with
consistent results within error bars. We also verified that this
method reproduces known results reliably for both the critical
temperature and critical exponents of the corresponding pure
model. The results for the correlated disordered model are
βc = 0.1393(3) and 0.1398(4) from the fits of gT and χ ,
respectively. The results agree within error bars, and we com-
bine the two and estimate βc = 0.1396(3), which is close to
the simple estimate (2/3)βc,pure = 0.1478 given by the mean
bond value.

Our main results for critical exponents are summarized
in Fig. 4. Notice that to a good approximation a power law
is obtained for gT , while substantial deviations from a pure
power law are found in the data curve for χ for small system
sizes, indicating the presence of scaling corrections. Including
data points for the seven largest system sizes where a power-
law fit is reasonably justified gives

νd = 1.13(5), ηd = 0.48(3). (10)

Error bars are bootstrap estimates of the statistical errors.
Note that the exponents differ significantly from both the
pure universality class and the WH results. In particular, the
exponent νd sits in between these two values. This behavior is
similar to recent results for models with line defects [4,5].

For uncorrelated disorder recent simulation estimates [30]
of the exponents for the 3D Ising model with bond disorder
are ν = 0.685(7) and γ /ν = 1.964(9), which gives η = 2 −
γ /ν = 0.036(9). These values are significantly different from
the values obtained here for correlated disorder, showing
that the long-range correlations are relevant and change the
universality class as expected.

Next, we consider data collapses to verify that the esti-
mated exponents hold. It is useful to plot gT and χ vs g in
order to eliminate explicit temperature scaling. The results are
shown in Fig. 4. A scaling collapse onto a common function
for each quantity is found around the phase transition. This
confirms that the data fulfill the finite-size scaling assumption.

Summarizing, the correlated disorder model produces a
new universality class that differs from the pure model. This
agrees with the expectation from WH theory, but the critical
exponents differ significantly from the WH prediction.

C. Bilayer model

In the previous section, the 3D Ising model with critical
correlated disorder has two peaks in the disorder-averaged
susceptibility for finite system size that merge into one
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FIG. 4. (a) Scaling of gT and χ with system size L at the
thermodynamic transition temperature. The linear solid fits are done
using the seven largest sizes, and the dashed lines are guiding lines
with the predicted WH slopes. (b) and (c) Finite-size scaling data
collapse of scaled quantities vs Binder ratio g. The sizes included are
L = 16, 20, 24, 28, 32, 36, 40, 44, 50.

transition in the thermodynamic limit, while individual disor-
der realizations have a single peak. This motivates the problem
of constructing a simpler disorder-free model with similar
double-peak properties. This calculation also demonstrates
that double-peak structure can occur also without bond imbal-
ance. Here, the coupling constants are given different values
in the equally large upper and lower half-spaces. In the top
layer the bonds of each spin in the forward direction are
fixed to Jup = 1, and in the bottom layer the bonds similarly
are all set to, e.g., Jdn = 2. In contrast to the random model
studied in the previous section there is no disorder. Periodic
boundary conditions are used in all directions, so there are
two boundaries between strongly and weakly coupled spins.

We studied a series of system sizes for Jdn = 2, and MC
data for the heat capacity and susceptibility are shown in Fig. 5
for four representative sizes. There are clearly two peaks
emerging, one at βc,pure and the other at βc,pure/2. The layers
are coupled only at the interfaces so that each layer trivially
has an independent phase transition in the thermodynamic
limit. Thus, the two-peak structure in the correlated disorder
model can be reproduced in the simple layer model, but in
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FIG. 5. Monte Carlo data for the bilayer Ising model with Jup =
1 and Jdn = 2. (a) Heat capacity. (b) Susceptibility. In contrast to the
cluster disorder model the two peaks of the layer model indicate two
phase transitions. Error bars are small and omitted for clarity.

contrast to the disordered case, the peaks of the layer model
do not merge in the thermodynamic limit.

A useful feature of the layer model is that with two phase
transitions the shape of the magnetization curve can be de-
signed by selecting the coupling strengths. This is illustrated
in Fig. 6, where the magnetization curve is shifted by tuning
Jdn = 1, 2, 3, 4 while keeping Jup = 1 fixed. Since the system
has two independent phase transitions, the magnetization in
the thermodynamic limit is given by

m(β ) = 1/2[m0(β ) + m0(βJdn/Jup)], (11)

where m0 is the magnetization of the pure system.
It is straightforward to generalize to multiple layers, differ-

ent layer volumes, etc. This permits engineering the magne-
tization curve to a desired shape. For p layers of strength Ji

and weights ωi, which is the fraction of the number of spins
of layer i, the magnetization in the thermodynamic limit is
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FIG. 6. (a) Magnetization curve for different sizes for Jup = 1
and Jdn = 2. (b) Dependence of the magnetization curve on Jdn for
fixed Jup = 1 and system size L = 20. Error bars are small and
omitted for clarity.
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generalized to

m(β ) =
p∑

i=1

ωim0(Jiβ ). (12)

D. Efficiency of PA and PT

Our work has also changed our view regarding the effi-
ciency of the PA and PT algorithms. The PA algorithm has
been used successfully in a number of studies of spin glasses,
a system that is both disordered and frustrated. It has been
found that the two algorithms are quite similar in efficiency in
both equilibrium samplings [18] and optimizations [20]. Here
and in our recent work on two-dimensional monodisperse
particles [31], where frustration is either fully absent or much
weaker, we find that PT has an advantage over PA for studying
phase transitions.

The key difference is the much shorter equilibration and
autocorrelation times for less disordered and frustrated sys-
tems, where one can quickly equilibrate and start data collec-
tion using PT near the phase transitions. On the other hand,
PA has to do the “temperature journey” and a large portion
of work is “wasted” in this process. For example, to simulate
a pure model only at the critical temperature it is clearly less
efficient to use PA. On the other hand, for collecting data over
a wide range of temperatures the two algorithms are again
similar in efficiency. Therefore, PT can have an advantage
over PA for studying phase transitions of pure or weakly
disordered and frustrated systems, but the efficiency is similar
for studying a wide range of temperatures or complex energy
landscapes. In addition, PA has certain interesting features not
shared by PT such as being massively parallel.

IV. CONCLUSIONS

In common model magnets the order parameter signals a
transition from a magnetically ordered to disordered state as
temperature is increased, and thermodynamic quantities such
as the magnetization curve have little structure except for
the singularity at the transition. For finite-size samples, for
example, nanosize magnetic particles relevant in applications,
divergent quantities become rounded with a single peak at the
transition. Introduction of uncorrelated quenched random dis-
order may alter the universality class of the phase transition,
but the qualitative features remain similar to the pure case.
In this paper we pointed out that the presence of spatially
correlated quenched disorder can alter this picture.

We considered power-law correlated critical cluster disor-
der generated from the equilibrium states at a second-order
phase transition. We applied correlated critical cluster dis-
order as random bond couplings of a 3D Ising model. We
found unusual double-peaked disorder-averaged susceptibility
and other fluctuation quantities for finite system sizes but one
phase transition in the thermodynamic limit. The appearance
of the double peaks depends on the method of generating
disorder but not on the disorder correlations. In particular, if

the disorder-generating configurations are restricted to zero
magnetization, then disorder averages become single peaked.

From finite-size scaling of MC data we obtained νd =
1.13(5), ηd = 0.48(3). For power-law correlated disorder
with sufficiently slow decay as in our correlated disorder
model, WH theory predicts a new long-range fixed point.
This prediction agrees with our simulation results, but the
predicted exponents disagree with our exponents, suggesting
that the WH results need higher-order corrections to apply to
our bimodal disorder distribution.

We also studied a bilayer model which has two susceptibil-
ity peaks, similar to the correlated disorder results. However,
contrary to the critical disorder model the double-peak struc-
ture appears at a single sample level and persists in the ther-
modynamic limit, and there are therefore two separate phase
transitions. Notably, the shape of the magnetization vs tem-
perature curve can be modified by changing the parameters
of the system. By straightforward generalization to multiple
layers, we proposed a way to engineer the magnetization curve
almost at will by tuning the coupling strength and weights
of different layers. In addition, our two models showed that
double peaks can be created from two different mechanisms:
bond imbalance and bond correlation. Further investigations
suggested that the two mechanisms are independent: (1) dis-
ordered models with no correlation but bond imbalance also
show double peaks, and (2) correlated disorders, e.g., the layer
model without bond imbalance, again show double peaks.

For two-dimensional Potts models with a disorder con-
struction similar to that used here, Chatelain [10,11] obtained
interesting hyperscaling violations related to the lack of self-
averaging, and Griffiths phases. While we consider a different
model, it is notable that we did not observe these effects in our
3D results. Using the scaling relation m(t = 0) ∼ L−βd /νd , we
estimate βd/νd = 0.73(4), again using the seven largest sizes.
The pertinent magnetic hyperscaling (γd/νd = d − 2βd/νd ) is
well satisfied after applying γd/νd = 2 − ηd .

The critical cluster disorder model can be readily applied
in other dimensions and to other O(N ) models, e.g., by
adding the Ising correlated disorder to the XY and Heisenberg
models. It is also interesting to study spin glasses with such
correlated disorder. Research along these lines is currently in
progress and will be reported in future publications.
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