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We study the nonequilibrium dynamics of the extended toric-code model (both ordered and disordered) to
probe the existence of dynamical quantum phase transitions (DQPTs). We show that in the case of the ordered
toric-code model, the zeros of Loschmidt overlap (generalized partition function) occur at critical times when
DQPTs occur, which is confirmed by the nonanalyticities in the dynamical counterpart of the free-energy density.
Moreover, we show that DQPTs occur for any nonzero field strength if the initial state is the excited state of the
toric-code model. In the disordered case, we show that it is imperative to study the behavior of the first time
derivative of the dynamical free-energy density averaged over all the possible configurations to characterize
the occurrence of DQPTs in the disordered toric-code model since the disorder parameter itself acts as a new
artificial dimension. We also show that for the case where anyonic excitations are present in the initial state, the
conditions for DQPTs to occur are the same as what happens in the absence of any excitation.
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I. INTRODUCTION

Unlike studying phase transitions in equilibrium many-
body systems, which are facilitated by combinations of mean-
field theory [1,2], the renormalization group [3], and the
notion of universality [4], understanding phase transitions in
nonequilibrium many-body systems is still hard to tackle. This
is why the field of nonequilibrium dynamics of isolated quan-
tum many-body systems holds fundamental importance and
is therefore currently of immense interest to the condensed-
matter theory [5–20] and experimental [21–28] communities
alike (for a review see [29–34]). Such nonequilibrium dynam-
ics can also be used to derive information on the equilibrium
state of interacting and noninteracting many-body quantum
systems.

The underlying protocol to initiate such nonequilibrium
dynamics of isolated many-body quantum systems is called
quantum quench, which involves tuning some parameter in
the initial Hamiltonian instantaneously or gradually with time.
One of the exciting consequences of such quantum quenches
is dynamical quantum phase transitions (DQPTs) [35]. This
concept has been well studied for various systems [36–50]
(for a review see [51–58]), notably in the context of the one-
dimensional transverse field Ising model (TFIM) [59–61]. In
the one-dimensional Ising model, the dynamical counterpart
of free-energy density was observed to exhibit nonanalytici-
ties (cusp singularities) at critical times during the consequent
real-time unitary evolution (dictated by the final Hamiltonian
following the quench) of the ground state of the prequenched
Hamiltonian.

Let us illustrate the sudden quench case [35]: Initially, the
system is prepared in the ground state |ψ0〉 of the Hamiltonian
Hi. At t = 0, one of the parameters of the initial Hamiltonian
Hi is abruptly changed, resulting in a unitary evolution of the
system under the new time-independent quenched Hamilto-
nian Hf . Here, we define the overlap amplitude for a system
which is suddenly quenched to a new Hamiltonian Hf as the

Loschmidt overlap amplitude (LOA), which is given as L(t ) =
〈ψo|e−iHf t |ψo〉. The roots of LOA, also known as Fisher zeros
(in analogy with the classical phase transitions [62–64]), de-
fine the real critical times, which are the instants of time when
the evolved state |ψ (t )〉 = exp (−iHf t ) |ψ0〉 is orthogonal to
the initial ground state |ψ0〉. We here also introduce the notion
of dynamical free-energy density [35], f (t ) = − ln L(t )/Nd

[65–67], where N is the linear dimension of the d-dimensional
system, which will exhibit cusp singularities flagging the
occurrences of DQPTs.

Moreover, in contrast to sudden quenches discussed earlier,
DQPTs have also been observed in some systems following a
slow ramping of the parameter of the Hamiltonian [68–75].
Further, the existence of DQPTs in two-dimensional models
has also been confirmed [76,77] through the nonanalyticities
present in the first derivative of the dynamical free-energy
density. Furthermore, experiments have confirmed the oc-
currence of DQPTs (for a review see [78,79]) in trapped
ions and ultracold atoms, where more general time-dependent
protocols have been realized.

It is now worthwhile to state that what separates the notion
of DQPTs from equilibrium quantum phase transitions is that,
unlike the latter, where the local order parameters differenti-
ate between phases, DQPTs cannot be characterized by any
such local order parameter. In fact, for a two-level integrable
model, the DQPTs are described by a dynamical topological
order parameter (DTOP) [80], which is extracted from the
Pancharatnam phase obtained from the LOA. The DTOPs
for both one-dimensional (1D) and two-dimensional (2D)
systems have been confirmed and have also been measured
in experiments using ultracold atoms. The global DTOP takes
integer values as a function of time and shows jumps of unit
magnitude at the critical times [80], signaling the occurrence
of DQPTs [55–58].

In this work, we show the possibility of DQPTs in the most
straightforward example of topologically ordered systems,
namely, the toric-code model (TCM) under the influence of
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magnetic fields present in the x and z directions, i.e., the
extended TCM. The extra terms in the Hamiltonian of the ex-
tended TCM act in such a way that the model is still integrable
via the Jordan-Wigner transformations. The toric code is a
topological quantum error-correcting (stabilizer) code [81]
defined on a 2D spin lattice and is a simple example of a Z2

lattice gauge theory in some limits [82]. In this paper, we show
DQPTs in two types of TCM systems after quenching: (a) the
spins in both the initial and final Hamiltonians are subjected to
two different global transverse fields that are the same for all
the spins, and (b) all the spins in only the initial Hamiltonian
are subjected to the corresponding transverse field, whereas
each spin in the final Hamiltonian is subjected to a different
local transverse field selected from a box distribution with a
given width; this introduces disorder in the problem. We will
subsequently denote the Hamiltonians in the first case as an
ordered toric-code model (OTCM) and that of the second case
as a disordered toric-code model (DTCM).

The specific mapping of the N × N grid of the extended
TCM to 2N independent transverse field Ising chains (see
Ref. [83]) to study the effect of sudden quench on these
2N Ising chains according to the two cases above has been
used throughout this work. In the ordered TCM case, we
analytically calculate the critical times and then corroborate
them from the plots of dynamical free-energy density; we
also provide the range of the quenched parameter for DQPTs
to occur in the ordered case. For the disordered TCM, on
the other hand, we demonstrate the possible upper and lower
ranges of the given interval of the field strength of the box
distribution parameter for DQPTs to occur in the system by
observing the behavior of the first time derivative of the free-
energy density averaged over all disorder configurations.

The organization of the content in this paper is as follows.
In Sec. II, we introduce the TCM. In Sec. III, we introduce an
extended version of the toric-code model in the presence of
the magnetic field in the z and x directions. We demonstrate
the mapping of this perturbed toric-code Hamiltonian to 2N
independent transverse field Ising chains. In Sec. IV, we
numerically study DQPTs and the associated critical times
in the OTCM for the two different cases of quenched field
strength. In Sec. V, using standard numerical schemes, we
study DQPTs in the DTCM for three separate cases of sudden
quenches. Finally, in Sec. VI, we conclude with a discussion
of our results.

II. TORIC-CODE MODEL

As introduced by Kitaev [82], the toric-code model is
a two-dimensional grid of a spin- 1

2 lattice under periodic
boundary conditions. The Hamiltonian of the toric code is
given by

H = −
∑

v

Av −
∑

p

Bp, (1)

where v is summed over all the vertices (stars) and p runs over
the plaquettes (see Fig. 1). The two terms in the Hamiltonian
are given as

Av =
∏

i∈star(v)

σ x
i , Bp =

∏
i∈boun(p)

σ z
i . (2)

p

v

FIG. 1. A schematic representation of the toric-code model. The
dots represent spins which lie on the links. The vertex is represented
as v, and plaquette is shown as p.

The terms Av and Bp are also known as star and plaquette
operators. Here star(v) is the set of all links connecting to a
vertex v, whereas boun(p) is the set of all the links surround-
ing a plaquette. The toric-code rectangular spin-lattice grid
is mapped on a torus with periodic boundary conditions and
satisfies ∏

v

Av =
∏

p

Bp = I, (3)

where the product is on the complete lattice and I is the
identity. These periodic boundary conditions are such that
the leftmost edge is the same as the rightmost one, and
the topmost edge is identified with the bottommost one.
The star and plaquette operators commute with each other,
because of which the ground space of the Hamiltonian is
constructed out of the simultaneous eigenstates of Av and Bp

with eigenvalue +1 (to minimize the ground-state energy).
This Hamiltonian is exactly solvable, and because of periodic
boundary conditions in Eq. (3), the ground-state manifold is
fourfold degenerate. The noncontractible loop operators are
defined as (W x

1 ,W z
1 ) and (W x

2 ,W z
2 ), where W α

a = ∏
j∈γ α

a
σα

a

(α = x, z; a = 1, 2) for each γ α
a , which is a noncontractible

loop winding around the torus. By setting the reference
state |ψ0〉 = 1/

√
2N2−1

∏
v (1 + Av ) |↑〉, where |↑〉 is the state

where all the spins are up in the σz basis, a generalized state
in the ground-state manifold can be written as

|�〉 =
1∑

i, j=0

αi j
(
W x

1

)i(
W x

2

) j |ψ0〉 ,

1∑
i, j=0

α2
i j = 1. (4)

III. EXTENDED TORIC-CODE MODEL

In the extended toric-code model, the TCM is subjected
to the magnetic fields in the z direction as well as in the x
direction. The Hamiltonian of the extended toric-code model
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FIG. 2. The mapping of the extended TCM to the effective spin
picture: The physical spins reside on the links (σ picture), while the
effective spins reside on the sites (τ picture). The notation si

j locates
the effective spins on the lattice, where i belongs to the row (odd for
lattice and even for dual lattice) and j belongs to the column of the
lattice.

is therefore given as

H (λ, J ) = −J

(∑
v

Av +
∑

p

Bp

)
−

∑
i∈l

λx
i σ

x
i −

∑
i∈h

λz
i σ

z
i ,

(5)

where l denotes the even rows (lattice points) where magnetic
field in the x direction is applied, whereas h denotes the
odd rows (dual-lattice points) where the z component of the
magnetic field is applied. The strength of the magnetic field
on the ith spin is given by λi, and the coupling strength both
at vertex and at the plaquette is J .

This Hamiltonian can now be divided into two commuting
sub-Hamiltonians, H = H1 + H2, where H1 = −J

∑
v Av −∑

i∈odd rows λz
i σ

z
i and H2 = −J

∑
p Bp − ∑

i∈even rows λx
i σ

x
i . We

consider a mapping to the effective spins residing on the
lattice (dual lattice), which means Av �→ τ z

v and Bp �→ τ x
p (see

Fig. 2). In the effective spin picture, the external fields σ z
i

and σ x
j flip their two nearest-neighbor spins. Therefore, we

can map σ z
i �→ τ x

v τ x
v′ and σ x

j �→ τ x
pτ

x
p′ , where i labels the link

between two neighboring sites (v, v′) on the lattice and label j
belongs to the link between (p, p′) on the dual lattice [83]. The
corresponding extended TCM Hamiltonian after the mapping
in the effective spin picture τ is the sum of 2N independent
Ising chains in the transverse field with periodic boundary
conditions. The sub-Hamiltonian Ĥ1 consists of all the Ising
chains residing on odd rows,

H̃1 = −
N∑

k=1

K̂2k−1 ≡ −
N∑

k=1

(
J

N∑
l=1

τ z
s2k−1

l
+ λz

2k−1τ
x
s2k−1

l
τ x

s2k−1
l+1

)
,

(6)

and Ĥ2 consists of all the Ising chains residing on even rows,

H̃2 = −
N∑

k=1

K̂2k ≡ −
N∑

k=1

(
J

N∑
l=1

τ z
s2k

l
+ λx

2kτ
x
s2k

l
τ x

s2k
l+1

)
. (7)

Adding H̃1 and H̃2, we obtain a Hamiltonian represented by
the effective spins:

H̃ = −
2N∑
i

K̂i ≡ −
2N∑
i

⎛
⎝J

N∑
j=1

τ z
si

j
+ λ(i)τ x

si
j
τ x

si
j+1

⎞
⎠,

λ(i) = λz
i , i is odd,

λ(i) = λx
i , i is even. (8)

It is easy to show that [K̂m, K̂n] = 0, and therefore, the Ising
chains for different λi are not coupled. Hence, the energy spec-
trum of each Ising chain can exactly be evaluated indepen-
dently by means of the Jordan-Wigner transformation, then
Fourier transformed into quasimomentum space, followed by
a Bogoliubov transformation [59,60]. The eigenstate of the
mapped Hamiltonian has the tensor form and is given as

|�〉 = ⊗2N
i=1|�i〉, (9)

where |�i〉 is the eigenstate of the ith Ising chain. Because of
the mapping, this puts an additional constraint on each of the
Ising chains, which is given as

N∏
j=1

σ z
( j−1, j)2k−1 = I,

N∏
j=1

σ x
( j−1, j)2k = I, k = 1, 2, . . . , N.

(10)
Because of Eq. (10), we have 2N conserved quantities, due to
which the dimensionality of the Hilbert space reduces from
22N2

to 22N2−2N . The periodic boundary conditions in the σ

picture now recast into the τ picture have the following form:

N∏
j=1

τ z
s2k−1

j
= I,

N∏
j=1

τ z
s2k

j
= I, k = 1, 2, . . . , N. (11)

IV. DQPT IN THE ORDERED TORIC-CODE MODEL

In the first case mentioned in Sec. I, where λx
i = λz

i ≡
λ0 ∀ i, initially, there is a global λ0 for every ith site (of
the dual lattice). Now, the Hamiltonian is suddenly quenched
from λ0 to λ f at time t = 0, where the λ f field strength is also
global for the system, in turn preserving the order in TCM
after the sudden quench. It is required to know the ground
state before and after the sudden quench to calculate the LOA,
which is defined as 〈�0|e−iHf t |�0〉. For the kth mode (in
momentum space), the ground state of the nth Ising chain is
given as [59,60]

|�n(k)〉 = cos θ0
k |0〉 + i sin θ0

k |k,−k〉, (12)

where θ0
k is

tan 2θ0
k = λ0 sin k

J − λ0 cos k
. (13)
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FIG. 3. The absence and presence of DQPTs following a quench
of the ordered TCM. (a) For λ0(= 0.4) < 1, λ f (= 0.3) < 1, there are
no Fisher zeros present (no crossing of imaginary axis); hence, one
can expect no nonanalyticity in the free-energy density. (b) For λ0(=
0.4) < 1, λ f (= 1.3) > 1, there exist critical times (Fisher zeros)
when we can expect DQPT in the ordered toric-code model.

After generalizing time to the complex plane (it → z), the
expression of the LOA for the nth Ising chain is as follows:

Ln(z) =
∏
k>0

[
cos2 φkeε

f
k z + sin2 φke−ε

f
k z

]
, (14)

where φk = θ1
k − θ0

k and ε
f
k =

√
J2 + λ2

f − 2Jλ f cos k . Since
the order in the system is preserved while quenching, we can
write the LOA for all 2N Ising chains in the ordered toric-code
model as

L(z) =
[∏

k>0

(
cos2 φkeε

f
k z + sin2 φke−ε

f
k z

)]2N

, (15)

and the dynamical free energy for the same model is given as

f (z) = −
∫ π

0

dk

2π
ln

(
cos2 φkeε

f
k z + sin2 φke−ε

f
k z

)
. (16)

The zeros of the LOA plotted in Fig. 3 are

zn(k) = 1

2ε
f
k

[ln(tan2 φk )+iπ (2n+1)], n = 0,±1,±2, . . . .

(17)

The real roots of the LOA can exist only when zn(k)
crosses the imaginary axis in the complex plane at critical
momenta k (kc; see Fig. 3). This puts a constraint on the
quenching parameter λ f . The critical k (kc) is determined from
the expression

cos kc = 1 + λ0λ f

λ0 + λ f
. (18)

(a)

(b)

FIG. 4. Dynamical free-energy density plot following a quench
of the ordered TCM: (a) λ0(= 0.4) < 1, λ f (= 0.3) < 1 and
(b) λ0(=0.4) < 1, λ f (=1.3) > 1.

When λ0 = 0, then the ground state of the extended TCM
will be the superposition of both closed and open strings
(excitations). However, when λ0 = 0, then the ground state of
the extended TCM is the same as the TCM. Assuming both
λ0 � 0, λ f > 0, we are left with three cases, which follow
from the above constraint in Eq. (18): (i) 0 � λ0 < 1, λ f < 1;
(ii) 0 � λ0 < 1, λ f > 1; and (iii) λ0 > 1, λ f < 1. Case (ii)
and case (iii) are analogous because λ0 and λ f are symmetric
in Eq. (18), therefore leaving only two relevant cases: (i)
and (ii).

From the results shown in Fig. 3, we see that the absence
of Fisher zeros in case (i) leads the dynamical free-energy
density f (t ) to be analytic and the presence of zeros in case
(ii) renders f (t ) nonanalytic (see Fig. 4).

In conclusion, dynamical quantum phase transitions occur
in ordered toric-code Hamiltonian only for case (ii), where
λi < 1, λ f > 1. These DQPTs occur at critical times de-
scribed by

tc = π (2n + 1)

2ε
f
kc

, n = 0,±1,±2, . . . . (19)

We will now look at another scenario where we instead
consider that the initial state before quenching is the excited
state of the TCM (in the absence of any field). We observe
that now the conditions for a DQPT changes. Since the initial
ground state for λ0 = 0 can be seen in the τ picture as being
a state where all spins are up or in the fermionic picture as a
vacuum state, the excited state of the TCM in the Ising picture
is obtained by applying a

∏
( j, j′ ) σz (open string operator) of a

fixed length on the spins residing on any ith Ising chain. Since
it can be shown that the excitation energy is independent of the
length of the string chosen, we subsequently chose the length
of the string to be one link long. Therefore, the first excited
state in the Ising picture is given as

σ z
( j−1, j)i |0〉 = τ x

j τ
x
j+1 |0〉 . (20)
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We can solve τ x
j τ

x
j+1 |0〉 further through the Jordan-Wigner

and a Fourier transform to quasimomentum space. This finally
yields the expression of the first excited state |e〉 in the Ising
picture for the kth mode of the ith Ising chain as

|e〉 = e−ik |k,−k〉 + |0〉 . (21)

Hence, the LOA after sudden quench from λ0 = 0 to some
finite λ f for the ith Ising chain becomes

Li(z) =
∏
k>0

[
2 cosh

(
ε

f
k z

) − 2 sin k sin 2θ
f

k sinh
(
ε

f
k z

)]
, (22)

where θ
f

k is taken from Eq. (13). Note that Li(k) is the LOA
for the ith Ising chain where the excitation is created initially.
However, the LOA Ln(z) of the rest of the chains after quench
for all the other 2N − 1 Ising chains is still the same as
Eq. (14). Hence, the complete LOA for all n Ising chains is

L(z) =
[∏

k>0

(
cos2 φkeε

f
k z + sin2 φke−ε

f
k z

)]2N−1

×
∏
k>0

[
2 cosh

(
ε

f
k z

) − 2 sin k sin 2θ
f

k sinh
(
ε

f
k z

)]
. (23)

Similarly, the dynamical free-energy is given as

f(z) = −
∫ π

0

dk

2π

{
ln

(
cos2 φkeε

f
k z + sin2 φke−ε

f
k z

)
+ ln

[
2 cosh

(
ε

f
k z

) − 2 sin k sin 2θ
f

k sinh
(
ε

f
k z

)]}
. (24)

The expression for the Fisher zeros of the LOA [Eq. (23)]
assumes the following form:

zn(k) = 1

2ε
f
k

[
ln

(
ε

f
k + λ f sin2 k

ε
f
k − λ f sin2 k

)
+ iπ (2n + 1)

]
(25)

for n = 0,±1,±2, . . . . The real roots of the LOA will exist
only when Re[zn(k)] = 0, which renders the condition for
critical momentum kc = mπ for m = 0,±1,±2, . . . . Note
that, unlike the case in Eq. (18), the constraint on λ f is lifted
since kc is independent of the quenching parameter λ f . In
conclusion, in the case when the initial state of the extended
TCM is in the first excited state of the TCM (field is zero),
DQPTs will occur for every nonzero value of λ f (see Fig. 5).

V. DQPT IN THE DISORDERED TORIC-CODE MODEL

In this section, we shall probe the existence of DQPTs fol-
lowing a nonequilibrium process, in which the TCM Hamilto-
nian is suddenly quenched to a disordered TCM Hamiltonian;
the initial field strength λ0 is suddenly quenched to λi ∈
[λa, λb], which are randomly picked from a box distribution in
the aforementioned interval. After mapping the Hamiltonian
to TFIM, the disordered toric-code Hamiltonian in the τ

picture is given as

H̃ = −
2N∑
i

K̂i ≡ −
2N∑
i

⎛
⎝ N∑

j=1

τ z
si

j
+ λiτ

x
si

j
τ x

si
j+1

⎞
⎠, (26)

where for ith Ising chain, the quenched field strength is λi.
Since there are 2N mutually commuting Ising chains, we can

(a)

(b)

FIG. 5. Dynamical free-energy density plot following a quench
of the ordered TCM when the initial state is the first excited state of
TCM (λ0 = 0): (a) λ f (= 0.3) < 1 and (b) λ f (= 1.3) > 1.

write the LOA for all 2N Ising chains for a given disorder
configuration as

L(z) =
2N∏
i=1

[∏
k>0

(
cos2 φi

keε
f
k (λi )z + sin2 φi

ke−ε
f
k (λi )z

)]
, (27)

where φi
k = θ i

k (λi) − θ0
k (λ0). We note that the only difference

in the above expression from Eq. (15) is the product over
i; this is because the LOA is different for every ith chain.
In the disordered case, every Ising chain will have its own
set of Fisher zeros when the condition λo < 1, λi > 1 is
satisfied. Furthermore, the dynamical free-energy density for
a particular configuration is given as

f (z) = − lim
N→∞

1

2N2

[
2N∑
i=1

∑
k>0

ln
(

cos2 φi
keε

f
k (λi )z

+ sin2 φi
ke−ε

f
k (λi )z

)]
. (28)

Therefore, the free-energy density averaged over all pos-
sible configurations with a uniform probability distribution is
given as

〈 f (t )〉c = −Re

{∫ λa

λb

∫ π

0

dλdk

4πλ
ln[cos2 φk (λ)eεk (λ)z

+ sin2 φk (λ)e−εk (λ)z]

}
, (29)

where λ = λb − λa is the disorder strength. Assuming λa <

λb and both of the parameters are positive, there are three pos-
sibilities: (a) λa < 1, λb < 1; (b) λa < 1, λb > 1; and (c) λa >

1, λb > 1. In all three cases we note something interesting.
The disorder-averaged free-energy density f (t ) is analytic, as
can be seen from Figs. 6(a)– 6(c), no matter what the value of
λa or λb is. However, this does not mean that a DQPT does
not occur in any of the three cases. To observe the existence
of a DQPT, we look at the behavior of the first derivative of
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(a)

(b)

(c)

(i)

(ii)

(iii)

(f)

(e)

(d) (i)

(ii)

(iii)

FIG. 6. (a)–(c) The evolution of the dynamical free-energy density Re( f ) along with time t and (d)–(f) the evolution of the first derivative
of dynamical free-energy density ḟ (t ) with respect to time t for the disordered toric-code model (λ0 = 0.4). (i) λa = 0.2, λb = 0.9, (ii)
λa = 0.2, λb = 1.9, and (iii) λa = 1.2, λb = 1.9.

the free-energy density, or f ′(t ), with time t :

f ′(t ) =
∫ λa

λb

∫ π

0

dλdk

4πλ
sin [2ε(λ)t]ε(λ) sin2 k

× (λ − λ0)2

[ε(λ)ε(λ0)]2 − {sin[ε(λ)t] sin k(λ − λ0)}2
. (30)

We see in Fig. 6(d) that when λ0 < 1 and both λa, λb < 1,
f ′(t ) remains an analytic function of time, which is because
none of the individual Ising chains in any disorder config-
uration exhibit a DQPT for any value of λ. Therefore, the
averaged free-energy density of the system (or any of its
derivatives) is analytic. On the other hand, when λ0 < 1 and
both λa, λb > 1, all the individual Ising chains in all disorder
configurations exhibit DQPTs. Hence, in such a scenario,
the first derivative of the averaged free-energy density of the
system is nonanalytic [see Fig. 6(f)] and shows DQPTs at
certain critical times. However, the most interesting behavior
is observed when λ0 < 1 but λa < 1 and λb > 1. Although

only some of the Ising chains for every given disordered
configuration of λ exhibit a DQPT, the first derivative of the
free-energy density of the system averaged over all disorder
configurations turns out to be completely nonanalytic, thereby
once again undergoing a DQPT. This is evident from Fig. 6(e).
Generally, in 1D systems, the presence or absence of a DQPT
is ascertained by observing the behavior of only the free-
energy density of the system, whereas in 2D systems, the first
derivative of f (t ) plays the same role [76,77]. However, here,
we see that although our 2D system can be decoupled into
effective 1D Ising chains, it is insufficient to conclude whether
a DQPT occurs in the presence of disorder only by looking at
f (t ). The disordered variable λ acts as an added (artificial)
dimension, and thus, like the DQPT scenarios in real 2D
systems, one must also probe the behavior of the disorder-
averaged f ′(t ). The analyticity of the disorder-averaged f (t )
in all three cases above is due to the existence of this artificial
dimension due to disorder.

Here again, we consider the case where the initial state is
the first excited state of the TCM. Then the form of the LOA
for the disordered case is given by

L(z) =
2N∏
i = j

∏
k>0

(
cos2 φi

keε
f
k (λi )z + sin2 φi

ke−ε
f
k (λi )z

) ∏
k>0

{
2 cosh

[
ε

f
k (λ j )z

] − 2 sin k sin
[
2θ

f
k (λ j )

]
sinh

[
ε

f
k (λ j )z

]}
. (31)

Similarly, the free-energy density f(z) for this case, when averaged over all possible λ f in the interval of [λa, λb], is given as

〈f(z)〉c = −
∫ λb

λa

∫ π

0

dk

λ2π
(ln[cos2 φk (λ)eεk (λ)z+ sin2 φk (λ)e−εk (λ)z]+ ln{2 cosh[εk (λ)z] − 2 sin k sin 2θk (λ) sinh[εk (λ)z]}),

(32)
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(d)

(e)

(f)

(a)

(b)

(c)

(i)

(ii)

(iii)

(i)

(ii)

(iii)

FIG. 7. (a)–(c) The time-evolution of the dynamical free-energy density in the presence of anyonic excitations Re[ f (t )] and (d)–(f) the
evolution of the first derivative of the dynamical free-energy density ḟ (t ) with respect to time t for the disordered toric-code model. (i)
λa = 0.2, λb = 0.9, (ii) λa = 0.2, λb = 1.9, and (iii) λa = 1.2, λb = 1.9.

where λ is the disorder strength. The effect of quenching
from the excited state for various ranges of λa and λb are
shown in Fig. 7. The free-energy density in all three cases
is analytic. However, because the disordered variable λ adds
to the dimensionality of the system, f ′(t ) will characterize
the DQPTs in this system. In the first case, i.e., case (i),
λa < 1, λb < 1, f ′(t ) is analytic (the same as in the case when
the initial state was the ground state of the TCM). However, in
case (ii), λa < 1, λb > 1, f(z), and case (iii), λa > 1, λb > 1,
there are nonanalyticities present in the first derivative of the
free-energy density [see Fig. 7(c)], the same as in Figs. 6(e)
and 6(f), where it is nonanalytic.

VI. CONCLUSIONS

In this paper, we have studied the effect of quantum quench
on nonequilibrium dynamics of ordered and disordered ex-
tended TCMs. Focusing on the ordered case, we have shown
that for a ground state of the extended TCM, the Fisher zeros
of the LOA are the critical times when the initial ground state
becomes orthogonal to the time-evolved ground state, after the
quantum quench. The nonanalyticities in the dynamical free-
energy density corroborate the critical times for respective
critical kc. It has also been shown that the condition for
quantum quenches to observe DQPTs in the ordered TCM is
when λ f > 1 (assuming 0 < λ0 < 1). On the contrary, when
the initial state of the system is an excited state of the TCM at
zero field strength, we observe that DQPTs will occur for any
value of λ f .

Interestingly, when the system is quenched to a disordered
Hamiltonian, we show that even though the system effectively
behaves as a collection of 1D quantum Ising chains in a disor-
dered transverse field configuration, DQPTs in the complete
system cannot be observed just by studying the dynamical

free-energy density averaged over all configurations. The
averaged dynamical free-energy density remains analytic in
all situations no matter the initial or final value of the quench
or the extent of the disordered field. Hence, in such a scenario,
the presence of DQPTs is instead captured in the nonanalytic
behavior of the first time derivative of the disorder averaged
free-energy densities. The nonanalytic behavior is, however,
observed only when, for some disorder configurations, in-
dividual chains are nonanalytic. This essentially means that
DQPTs are observed only when either λa or λb is greater than
the equilibrium critical field value of 1, when the initial field
strength λ0 belongs to the other equilibrium critical phase,
i.e., λ0 < 1. This behavior of DQPTs also holds even when
the initial state of the system hosts anyonic excitations. This
essentially tells us that the presence of anyonic excitations in
the initial state may be detected by looking at the behavior of
DQPTs by looking at the two cases marked by the presence
and absence of disorder. In the absence of any disorder, an
initial anyonic state shows a DQPT, through the nonanalyticity
of f (t ) itself, no matter the value of the final quenched field
strength λ f . However, the presence of disorder generates a
different outcome, as the initial state with anyonic excita-
tions shows a DQPT through the nonanalyticity of disorder-
averaged f ′(t ) only when λa or λb is greater than 1. This must
again be compared against the ordered case when DQPTs oc-
cur for any value of λ f even when it is less than 1. Therefore,
for this case of an initial state with anyonic excitations, a slight
disorder λa = λ f − δλ < 1, λb = λ f + δλ < 1 washes away
the DQPTs when δλ is infinitesimally small. The occurrence
of DQPTs in such initial states is, however, restored when
λa = λ f − δλ or/and λb = λ f + δλ is greater than 1.

The DQPTs have been observed in several experiments
performed on quantum simulators, which are synthesized
from trapped ions, ultracold atoms in optical lattices, and
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multiqubit systems [78,79,84–86]. DQPTs can be realized in
trapped ion experiments via a sudden quench from the ferro-
magnetic to paramagnetic phase [78,79]. In this experiment,
the rate of the LOA is measured rather than the LOA, and the
nonanalyticities in the rate of the LOA confirm the existence
of DQPTs. The most recent observation of the many-body
dynamical quantum phase transition was performed with the
53-qubit quantum simulator, prepared through trapped ions
[86]. The ultracold atomic system consists of noninteracting
fermionic degrees of freedom on a hexagonal lattice (Kitaev’s
honeycomb model) [84,85]. The creation or annihilation of
vortex-antivortex pairs is the marker of DQPTs. The change
in the number of dynamical vortices flags the existence of a
DQPT in the system. The DQPTs in the TCM are essential
because the TCM itself is a quantum simulator. The advantage

of the TCM over all other prospects, as mentioned earlier,
is its stabilizer formalism, which provides a powerful set
of techniques to define and study quantum error-correcting
codes in terms of Pauli operators. Therefore, an experimental
approach to this would be a step forward to fault tolerance in
quantum computation.
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