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Moiré localization in two-dimensional quasiperiodic systems
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We discuss a two-dimensional system under the perturbation of a moiré potential, which takes the same
geometry and lattice constant as the underlying lattices but mismatches up to relative rotation. Such a self-dual
model belongs to the orthogonal class of a quasiperiodic system whose features have been evasive in previous
studies. We find that such systems enjoy the same scaling exponent as the one-dimensional Aubry-André model
ν ≈ 1, which saturates the Harris bound ν > 2/d = 1 in two dimensions. Meanwhile, there exists a continuous
and rapid change for the inverse participation ratio in the eigenstate-disorder plane, different from the typical
one-dimensional situation where only a few or no steplike contours show up. An experimental scheme based on
optical lattices is discussed. It allows for using lasers of arbitrary wavelengths and therefore is more applicable
than the one-dimensional situations requiring laser wavelengths close to certain incommensurate ratios.
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I. INTRODUCTION

Overlaying lattices with mismatches leads to the so-called
moiré pattern, which has long been an intriguing subject in
two-dimensional heterostructures [1–3]. Usually, a commen-
surate twist angle between two layers are considered, such
that the bilayer system still possesses an enlarged periodicity.
The interlayer hopping and interactions would then induce
a reconstruction of the original Bloch waves in each layer
into multiple bands. That provides a new knob to tune the
property of systems with various twisting angles, leading to
novel examples including the flat-band induced superconduc-
tivity for bilayer graphene twisted at magic angle [4,5]. More
recently, the experimental advancement has made it possible
to stabilize the bilayer graphene system at incommensurate
large twist angle [6]. In such situations, the combined bilayer
system breaks any translation symmetry and the Bloch waves
in each layer are destroyed completely. Then, it is of interest
to ask what may be the general phenomena expected in these
circumstances.

The incommensurately twisted bilayer system resembles
quasicrystals, in the sense that only rotation but not translation
symmetry is preserved therein. In the case of quasicrystals,
localization of particles has been a focus of study for decades
[7–10]. One could relate the two systems using the following
schematic reasoning. Consider a bilayer, two-dimensional
system with interlayer interactions,

Hbi =
∑
〈i, j〉

(a†
i a j + b†

i b j ) +
∑
i, j

Vi jn
A
i nB

j , (1)

where a†
i , b†

i create particles in two layers, respectively, and
nA

i = a†
i ai, nB

i = b†
i bi. Now, suppose one could take as a

starting point the decomposition μA
i = ∑

j Vi j〈nB
j 〉, and μB

j =
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∑
i Vi j〈nA

i 〉, then the above model reduces to

Heff =
∑
〈i, j〉

a†
i a j +

∑
i

μA
i nA

i + (A ↔ B), (2)

which describes a decoupled bilayer under onsite chemical
potentials μA,B

i , respectively. With reasonable interactions,
i.e., not infinite-range interaction with identical strength, one
would expect an incommensurate twist angle to result in an
incommensurate, quasiperiodic pattern for μA,B

i . That gives
an analogous scenario as in quasicrystals, with the difference
that here, it is the chemical potentials rather than lattice site
locations that break translation symmetry.

The inter-sample interaction induced slow-relaxation
(“quasi-many-body localization”) has previously been
demonstrated for a one-dimensional translation invariant
ladder by Yao et al. [11]. Specifically, given a highly
nonuniform initial density distribution and strong interactions,
the particles in one chain would serve as random chemical
potential for the other, similar to the case mentioned above.
But in contrast, due to the incommensurate twist angles
breaking translation symmetry here, it is expected a genuine
localization without initial state dependence would occur
for incommensurate moiré bilayers. In particular, even if the
particles are uniformly distributed in one layer, they could
still function as disorder potentials for the other through
quasiperiodic Vi j .

Thus, we are motivated to investigate the “moiré local-
ization” possibly held in a two-dimensional quasiperiodic
system. As a first step, we focus on an effective scenario
in Eq. (2), namely, a regular single-layer lattice under the
perturbation of quasiperiodic potentials. This would serve as a
good starting point for further taking into account fluctuations
in Eq. (1). Also, although the localization of quasiperiodic
systems in one-dimension have been thoroughly studied for
decades [12–17], since the renowned work by Aubry and
André [18] in 1980, its generalization to higher dimensions
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has just started quite recently [19–21]. The theoretical studies
on this regard have remained chiefly in the single-particle
level, with many crucial aspects still open to discussions.
In particular, the scaling exponents for orthogonal class of
models in two-dimensions have been left out in Refs. [20,21]
due to various difficulties. But this class of models are
most relevant for experiments on genuine two-dimensional
quasiperiodic system with real hopping, and also for the
theoretical analysis based on Eqs. (1) and (2). Therefore, it
is useful to clarify the relevant single-particle physics before
considering the full many-body interactions.

Apart from preparing for analysis of interaction-induced
localization, generalizing the paradigmatic Aubry-André
model to higher dimensions itself may yield interesting re-
sults. As shown by Devakul and Huse in Ref. [20], for
orthogonal class of models in three dimensions, the scaling
exponents for (single-particle) localization transitions are the
same for both quasiperiodic and purely random potentials.
This is in contrast to the situation in one-dimension, where
the quasiperiodic Aubry-André model gives rise to the scaling
exponent strongly violating the Harris bound [22] formulated
for purely random models. Such a violation in one-dimension
is indicated in Ref. [14] to persist into the many-body
localization scenario. Experimentally, a higher-dimensional
quasiperiodic potential is actually more suitable for cold atom
experiment. This is because the property of the system is
most sensitive to the relative rotation angle between the moiré
perturbing potential and the main lattice potential, rather than
the relative lattice constants. That means one could use lasers
of any frequency available in the laboratory to engineer the
desirable system. Finally, having a good understanding of the
single particle physics for quasiperiodic systems would pave
the way for possible perturbative treatment [23] of many-body
localization therein in the future.

In this work, we study a two-dimensional square lattice
under the perturbation of moiré type of potential, which
takes exactly the same lattice geometry and constants as
the underlying lattice. A commensuration condition for the
relative rotation angles between the two lattice potentials is
provided. Such a condition also helps identifying “better”
rotation angles that are further from a commensurate one,
resembling the “better” ratio of lattice constants in a one-
dimensional quasiperiodic system, that is usually taken to be
the golden ratio. Two important features of such a system
is revealed. First, for the inverse-participation-ratios in the
eigenstate-disorder plane, in contrast to the one-dimensional
situation where only a few steplike jumps exist, our two-
dimensional model exhibits a rapid and continuous change.
Such a character indicates the unusual mobility edges in two
dimensions. Second, the critical exponent for localization
length is extracted from the multifractal analysis, with the
value ν ≈ 1 saturating the Harris bound ν > 2/d = 1 for two
dimensions. Finally, we provide an experimental scheme to
realize such a moiré type of model, where lasers of arbitrary
wavelengths could be applied.

II. MODELS AND THE COMMENSURATION CONDITIONS

Consider a square lattice under perturbations of moiré type
of potentials with the same geometry as the underlying major

one. There are three types of controlling parameters for such a
perturbing potential. (a) Stretching: it could possess different
lattice constants. (b) Rotation: it may be rotated by an angle
θ with respect to the underlying lattice. (c) Translation: there
may be a global relative translation between these two lattices.
Types (a) and (b) could generate an incommensurate potential,
but as in the experiment Ref. [19], without interactions, type
(a) alone would result in a separable V (x, y) = V (x) + V (y)
such that the model is reduced to two orthogonal lower-
dimensional ones. Meanwhile, type (c) does not change the
universal properties of the system in thermodynamic limits,
but only affects microscopic details for a finite-size system,
i.e., the wave functions in the boundary. Thus, the global
rotation angle of perturbing potential is the most important
factor characterizing a genuine two-dimensional quasiperi-
odic system. It was also found in previous works that the
system’s properties are most sensitive to rotation angles of the
perturbing potentials [20,21].

Thus, we focus on the following model with two overlap-
ping square lattices, where the stronger one gives rise to the
tight-binding approximation, and the weaker one generates
the moiré type of onsite chemical potentials,

H = −
∑
〈i, j〉

(c†
i c j + c†

j ci ) + Vd

∑
i

μic
†
i ci,

μi = sin2[πui − ϕ1] + sin2[πvi − ϕ2],
(3)

ui = xi cos θ − yi sin θ, vi = xi sin θ + yi cos θ,

ϕ1 = π (a cos θ − b sin θ ), ϕ2 = π (a sin θ + b cos θ ).

Here i = (xi, yi ) denotes the square lattice sites, with xi, yi ∈
Z. The moiré superlattice potential μi, compared with the
main lattice, is rotated by an angle θ at the origin (x, y) =
(0, 0) and then translated by (x, y) = (a, b). The stretching
(a) would be neglected in most parts below, because it does
not lead to extra features and only complicates the analysis.
For instance, either stretching the lattice constant by a factor√

2, or a rotation of π/4 would produce an incommensurate
potential, while combining these two only gives a usual
commensurate, staggered lattice. We would chiefly investigate
the influence of different rotation angles θ , and average over
various translations (a, b) (or equivalently, ϕ1, ϕ2) when ex-
tracting universal properties from finite-size numerical results.
The first question to ask is under what condition would the
rotation angle θ result in a commensurate perturbing potential
μi. Similar to the analysis in honeycomb lattices [6,24,25],
the commensuration condition is prescribed by solving a Dio-
phantine equation specified by lattice geometries. For square
lattices, the solution is readily provided by the Pontryagin’s
triples [26] (see Appendix A for derivations),

θc = mπ

2
± arccos

q2 − p2

q2 + p2
, m ∈ Z, (4)

where q, p are positive, coprime integers. This is the com-
mensurate condition for moiré rotation angles of rectangular
lattices with rational aspect ratios γ . Specific to the square
lattice γ = 1, due to fourfold rotation symmetry and mir-
ror symmetry along x̂ ± ŷ directions, one only needs to
consider θc = arccos q2−p2

q2+p2 ∈ (0, π/4) and θ ′
c = π/2 − θc =
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(a) Commensurate (b) Incommensurate

FIG. 1. The moiré potential pattern μi for (a) the commensurate
angle θ = arccos(60/61) (q = 11, p = 1), and (b) the incommensu-
rate angle θ = π/5. Each pixel denotes one lattice site, and the color
indicates the strength of the disorder potential therein.

arccos 2qp
q2+p2 ∈ (0, π/4), with coprime q > p. The resulting

moiré pattern has periodic structures, with the new moiré-
Bravais lattice vectors T 1, T 2 given below. When p or q is
an even number (they cannot both be even due to the coprime
requirement),

T 1 = qx̂ − pŷ, T 2 = px̂ + qŷ, (5)

and when (q, p) are both odd numbers,

T 1 = q + p

2
x̂ + q − p

2
ŷ, T 2 = q − p

2
x̂ − q + p

2
ŷ. (6)

In both cases, the two vectors have identical length |T 1| =
|T 2| =

√
q2 + p2 (when q or p is even) or

√
(q2 + p2)/2

(when q, p are both odd), and are orthogonal to each other
T 1 · T 2 = 0. An example of commensurate moiré pattern is
drawn in Fig. 1(a), where q = 11, p = 1, and the Bravais
vectors are T 1 = 6x̂ + 5ŷ, T 2 = 5x̂ − 6ŷ. In contrast, an in-
commensurate example is shown in Fig. 1(b) where only the
four-fold rotation, but not any translation symmetry, exists.

Here, we are interested in localization induced by incom-
mensurate potentials, so it is worthwhile to choose among dif-
ferent incommensurate angles for further numerical analysis.
Strictly speaking, any angle other than those given by Eq. (4),
i.e., any θ = arccos(A) with A (or A module π/2) being
irrational numbers, would render incommensurate systems
belonging to the same universal class. But when one is trying
to extract information from numerical results in a finite-size
system, there is a subtle question of “how incommensurate”
the potentials are. Mathematically, it means if one takes a
series of commensurate angles {θn, n = 1, 2, 3 . . . }, whose
n → ∞ gives an incommensurate angle θ∞, then a “more
incommensurate” angle would require each cos θn being given
by larger (q, p) in Eq. (4). Equivalently put, since the length
of moiré-Bravais vectors ∼

√
q2 + p2, that means given a

system size (and therefore an upper limit of (q, p), since for
larger (q, p), the system cannot cover even one moiré period),
“more incommensurate” θ∞’s are farther away from commen-
surate angles. This is in the same spirit as in one-dimension,
where the “golden-ratio” (

√
5 − 1)/2—the “most irrational

number” farthest away from rational ones—is usually adopted
in numerics as the relative ratios of lattice constants between
main and perturbing lattices.

/8

3 /8

/5

3 /10 /4

FIG. 2. The density of commensurate angles (blue polar lines),
for 0 � p � q � 20. Due to mirror symmetry along x = y, the angles
are symmetric along θ = π/4.

To illustrate this point more clearly, we plot the commen-
surate angles for maximal (q, p) � 20 in Fig. 2. We readily
note that for all small angles θ → 0 or certain large angles
(i.e., θ = π/5 or θ = π/8), there appears less commensurate
angles nearby. For small angles, there is a practical difference
between bilayer heterostructure and optical lattice systems.
For bilayer ones, there is a competition between interlayer
attractive van der Waals force and elastic force. The former
one tends to align the two layers by distorting lattices so as to
minimize interlayer distance, while the latter one would favor
keeping lattice shapes and therefore the interlayer twisting.
For small twist angles θ → 0, the van der Waals force over-
whelms and the system could always be taken as a commen-
surate one [27], with the enlarged periodicity approximately
given by 1/θ . Although such an issue does not exist in optical
lattices where lattice shapes are fixed, for generality of the
results in practice, we consider the large twist angle π/5 for
most parts in the following.

It is worth emphasizing that even if one chooses an irra-
tional lattice constant β, there still exists the need to pick out
twist angles further away from “almost-commensurate” one
so as to minimize finite-size effects. The process there would
consists of first finding a sequence of rational lattice constants
close to β, and then for each member in this sequence, find
the density of commensurate angles. We would not digress to
such a situation in this work.

III. MOIRÉ LOCALIZATION

For the one-dimensional Aubry-André model [18], its self-
duality gives rise to the unique localization transition (lack
of mobility edge) and the uniform localization length. But
if the incommensurate potential is given by relative twists
rather than stretch, the two-dimensional eigenstates cannot
be decomposed into orthogonal one-dimensional components.
Then we would see that such a higher-dimensional general-
ization breaks the unique localization length and transition, in
accordance with the three-dimensional results in Ref. [20]. It
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can be traced back to that the Thouless formula adopted to
prove these two points [18], which we review in Appendix D,
no longer holds for a higher-dimensional system. We would
also illustrate the mobility edge clearly in numerics later on.

A. What does self duality imply in the moiré model?

For later convenience, we rewrite Eq. (3) as

H = −
∑
x,y

(c†
x+1,y + c†

x−1,y + c†
x,y+1 + c†

x,y−1)cx,y

− Vd

2

∑
x,y

μx,yc†
x,ycx,y, (7)

μx,y = cos[2πux,y + ϕ1] + cos[2πvx,y + ϕ2],

ux,y =x cos θ − y sin θ, vx,y = x sin θ + y cos θ,

ϕ1 =2π (a cos θ − b sin θ ), ϕ2 = 2π (a sin θ + b cos θ ),

which is equivalent to Eq. (3) up to a constant. That also
makes the model particle-hole symmetric after averaging over
the phases ϕ1, ϕ2. The single-particle eigenfunction φx,y =
〈x, y|φ〉 = 〈0|cx,y|φ〉 satisfies

−(φx+1,y + φx−1,y + φx,y+1 + φx,y−1) − Vd

2
μx,yφx,y = Eφx,y,

(8)

where H |φ〉 = E |φ〉 and |0〉 is vacuum. Consider the Fourier
transformation

φx,y = e2π i(xϕ2+yϕ1 )
∞∑

m,n=−∞
ψm,ne2π i[n(ux,y+ϕ1 )+m(vx,y+ϕ2 )], (9)

where m, n ∈ Z. Then, for incommensurate rotations where
(m, n) sin θ or (m, n) cos θ are never integers and therefore
different Fourier modes do not couple, the wave functions
ψm,n satisfy the dual equation

− 2μm,nψm,n − Vd

4
(ψm+1,n + ψm−1,n + ψm,n+1 + ψm,n−1)

= Eψm,n. (10)

Compare Eqs. (8) and (10), we see that the self-duality maps
Vd
2 ↔ 8

Vd
and E ↔ 4E

Vd
. Then the invariant disorder strength

under duality mapping can be extracted as

V (D)
d = 4. (11)

The dual Fourier transformation Eq. (9) has the property
that if |ψm,n|2 is a localized wave function, in the sense that∑

m,n |ψm,n|2 and |ψm,n||m or n→∞ is finite [|ψm,n| is exponen-
tially localized around certain (m0, n0)], we would have a
delocalized φx,y as

∑
x,y |φx,y|2 → ∞ [28]. The boundary con-

dition (or the normalization condition) for the wave function is
that the maximal value of |ψm0,n0 | at the localized site (m0, n0)
is taken to be a constant. As such, the duality mapping implies
a one-to-one correspondence between a localized eigenfunc-
tion at disorder Vd and energy E , and a delocalized one at
16/Vd and energy 4E/Vd . It does not specify which one is the
localized solution.

So far, the analysis is completely in parallel with that
for the one-dimensional Aubry-André model. However, to

prove all eigenstates are localized for Vd > V (D)
d = 4 (and

delocalized when Vd < V (D)
d ), that is, a unique localization

transition for all eigenstates, Ref. [18] invoked the Thouless
formula [29]. Such a formula relates the localization length
ξE at energy E with the density of states D(ε) as 1/ξE =∫ ∞
−∞(ln |E − ε|)D(ε)dε. Together with the duality mapping

for density of states, one could show that all eigenstates
are localized at the Vd > V (D)

d side with uniform localization
length 1/ξ = ln(Vd/4) (see Appendix D). However, the Thou-
less formula, which requires the nearest-neighbor hopping
in one-dimension [i.e., Eq. (D4) and (D5)], no longer holds
in higher dimensions. Then it is expected the mobility edge
would generally exist for a higher-dimensional model.

In the following subsections, we perform exact diagonal-
ization to further reveal the nature of the localization transi-
tions in our moiré model.

B. Level statistics

We first compute the energy-level statistics for the ratio
of neighboring gaps [30,31]. Arranging the energy levels
{Em} in the order Em < Em+1, and defining the gap between
neighboring levels in a finite-size system as δm = Em+1 −
Em, the ratio reads rm = min(δm, δm+1)/ max(δm, δm+1). The
distribution function of rm’s, P(r), would approach a Poisson
limit P(r) = 2/(1 + r)2 with 〈r〉 = ∫ 1

0 dr(rP(r)) ≈ 0.386 for
a fully localized system with complete sets of integrals of
motion. In contrast, for delocalized systems, the neighboring
energy-level repulsions would lead to the Gaussian orthogo-
nal ensemble (GOE) with 〈r〉 ≈ 0.5307. Ref. [20] computed
such a quantity for a fixed system size in three-dimensions,
and found an “intermediate” regime near the dual-invariant
disorder strength V (D)

d with 〈r〉 approaching the Gaussian
ensembles. It is of interest to see whether such an intermediate
phase, which would indicate the existence of mobility edge,
persist to our two-dimensional situation. Also, we check the
change of 〈r〉 as the system size increases so as to indicate the
behavior in the thermodynamic limit.

The qualitative behavior of 〈r〉 as a function of Vd can
be expected as follows. At Vd = 0, the translationally invari-
ant limit, momentums are conserved and Ek = −2(cos kx +
cos ky). Thus, it can be regarded as a localized system in
momentum space. Deviating away from Vd = 0, the mo-
mentum conservation is immediately broken by the moiré
perturbing potential, while real-space localization has not
been established. Then, due to the lack of complete local
integrals of motion, the level repulsion would lead to the
GOE distribution for 〈r〉. As Vd increases, more and more
eigenstates are localized, and when the full localization for all
eigenstates occur, 〈r〉 would once again approach the Poisson
limit with real-space positions as good quantum numbers to
denote localized states.

The results for θ = π/5 shown in Fig. 3 match the intuitive
reasoning given above. Here, we avoid the subtle regime
with small Vd � 1. This is because at Vd = 0, the system
possesses many symmetries, such as translation, reflection,
and four-fold rotation symmetries. That renders the Hamilto-
nian block-diagonalized into different symmetry sectors and a
meaningful level statistics requires the decomposition of
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GOE

Poisson

L=60
L=80
L=100
L=120
L=140

2 4 6 8 10
Vd

0.386

0.5307

r

FIG. 3. The average value for neighboring level gap ratios. Here
θ = π/5. The numbers of phases ϕ1,2 averaged over are 4000/2000
(L = 60), 1000/500 (L = 80), 200/100 (L = 100), 100/50 (L =
120), 60/20 (L = 140) for Vd within/out-of the range [3, 5].

Hilbert space into these sectors [32–35]. Close to Vd = 0,
those symmetries are only weakly broken and a severe finite-
size effect is expected. We readily see from Fig. 3 that at small
Vd , 〈r〉 decreases with irregular behaviors. However, the tran-
sition near V (D)

d = 4 is well-behaved. At Vd = V (D)
d = 4, 〈r〉

keeps approaching the GOE limit as system sizes L increase.
Passing Vd = 4, 〈r〉 starts to drop. We note that for relatively
smaller system size (i.e., L = 60, 80, 100), the curves cross at
around Vd ≈ 4.4 with the increase of L. However, for larger
L’s such a “crossing” appears to be replaced by a convergence
of curves for different L’s. We have also verified several other
twisting angles and similar results emerge. Thus, the level
statistics indicates the existence of mobility edge; only when
Vd � 6.5 would almost all eigenstates be localized as 〈r〉
approaches the Poisson limit.

The average value 〈r〉 gives an averaged behavior for all
eigenstates. We next look at the eigenstate-resolved inverse
participation ratio for more details regarding the mobility
edge.

C. Inverse participation ratio and mobility edge

The inverse participation ratio (IPR) is defined as

IPRm =
L∑

x,y=1

∣∣φ(m)
x,y

∣∣4
, (12)

for a normalized eigenstate m:
∑

x,y |φ(m)
x,y |2 = 1. The IPR

crosses from 0 in the strongly delocalized (i.e., take |φr| =
1/L) regime to 1 in the localized situation (i.e., take |φr| =
δr,r′). See results in Fig. 4. As mentioned previously, we
average over various ϕ1, ϕ2’s in Eq. (7) so as to reduce finite-
size effects concerning microscopic details.

From the results, there does seem to be mobility edges as
we see that the transition of IPR for different eigenstates ap-
pears at different critical V (c)

d ’s. Since the localization lengths
do not need to be uniform, it is worthwhile to check whether
some eigenstates have much longer localization lengths than
others such that they appear like an extended one for a
finite-size sample. For this purpose, we compute systems of
different sizes for the same parameter in Fig. 4. Should such a
scenario occur, those localized states with larger localization
lengths would take larger IPR values as one increases the

FIG. 4. IPR for different eigenstates (arranged by Em < Em+1),
averaged over phases ϕ1,2 for each eigenstate. To check possible
finite-size effects, we compute two system sizes L = 40 in (a) and
L = 80 in (b), for the same parameter θ = π/5. The green dashed
line is the dual point V (D)

d = 4.

system size (brighter colors should occupy larger areas). But
there appears no notable finite-size effects as Figs. 4(a) and
4(b) for sizes L = 40, 80 look almost identical. Thus, the IPR
results indeed suggest the existence of mobility edges for the
two-dimensional generalization of Aubry-André model.

Further, we note that the IPR feature here is quite different
from what is typically seen in its one-dimensional counter-
parts. Here, the transition of IPR for different eigenstates
changes continuously, constrained only by the particle-hole
symmetry (after ϕ1,2 averages, or in L → ∞ limits) around
Em0 = 0 for the middle state m0 = L2/2. That is, there ap-
pear to be no “plateaus” of constant V (c)

d for certain energy
windows. This is to be compared with the one-dimensional
scenario where only a few V (c)

d exits, related by a “step”-like
transition at certain Em’s (see, e.g., Ref. [36]).

We trace such a difference back to the lack of gaps in
the density of states for our two-dimensional models. In
the one-dimensional system with mobility edge, large gaps
(comparable with band width) typically exist in the density
of states. Usually, an abrupt change of V (c)

d occurs when
the eigenstates go from one gapped band to another, while
V (c)

d remains almost constant within one band [36]. In our
two-dimensional case, we note that for small size systems,
such as the θ = π/5 example above for L � 20, gaps in
the density of states do appear, together with “plateaus” of
V (c)

d for Em within one band. However, as the system size
L increases, those gaps in the density of states shrink, and
eventually vanish together with the “plateaus” of V (c)

d . Then,
a smooth change of IPR affected by density of states at Em

takes over, with typical features shown in Fig. 4. After this
point, the IPR configurations no longer change notably with
the increase of L. Such a scenario shows up for all cases we
have tried, including various rotation angles θ and stretched
lattice constants for perturbing potentials. Thus, we expect
that for a generic two-dimensional, quasiperiodic system in
the thermodynamic limit, no gapped structure with “plateaus”
of V (c)

d should appear. The lack of gaps in the density of states
is also shown for three-dimensional quasiperiodic models in
Ref. [20]. It is interesting to note that such a “mini-band” type
of finite-size effects also exists in certain strongly interacting
systems [37]. As such, for all results discussed in this work,
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FIG. 5. The scaling of α̃0 at energy E = 0. The inset is the
data collapse of α̃0 as a function of L/ξ ∝ |Vd − V (c)

d |νL for various
system sizes L. The number of ϕ1, ϕ2 averaged over are 4 × 104 for
L = 120, 140, 160, 180 and 2 × 104 for L = 200, 220, respectively.
The stable fit is given by expansion of Eq. (15) to the fifth order.
There are totally ND = 144 data points, Np = 8 fitting parameters,
and the goodness of fit is evaluated by χ 2 = 134, with p value 0.52.
(See Appendix E 1 for more fitting details.)

we have made sure that the system size is well above the limit
for band gaps to appear.

D. Critical exponent

Near the critical point V (c)
d , the localization length is ex-

pected to diverge,

ξ ∼ ∣∣Vd − V (c)
d

∣∣−ν
, (13)

with the scaling exponent ν. For the two-dimensional
quasiperiodic model in the orthogonal class, such an exponent
has been evasive in the previous studies [20,21]. Here, by
sampling a large number of systems with different ϕ1,2’s based
on the “multifractal” analysis, we obtain such an exponent as
shown in Fig. 5. One advancement of our work is that the sizes
L considered are systematically larger than those in previous
works. For instance, the system sizes in Ref. [20] ranges over
L = 40 ∼ 120, while Ref. [21] uses L = 10 ∼ 90 in the exact
diagonalizations for two-dimensional systems. We noticed
that in our example of θ = π/5, for size L ∼ 20, 40, 60, there
are severe finite-size effects as α̃0 defined below in Eq. (14)
shows irregular crossovers for different system sizes. As we
tested, such finite-size effects are much more severe than the
one-dimensional Aubry-André model or a factorizable two-
dimensional one (θ = 0 but with incommensurate stretching)
where systems with similar sizes L already provide good scal-
ing behaviors. In the following, let us describe the procedure
of extracting ν in more detail.

The method of multifractal finite-size scaling (MFSS) was
introduced in Refs. [38–40]. The steps can be summarized as
follows. (1) Partition the system of size L × L into boxes of
size l × l , each containing (L/l )2 lattice sites. In our case,
L/l = 10, so there are totally 100 boxes. (2) Obtain the real-
space eigenstate φx,y with energy close to certain value, i.e.,
E = 0 in our case. (3) Compute the box-averaged value α̃0,
where we have avoided boxes on the boundary so as to reduce

TABLE I. The critical behavior for self-dual, orthogonal class of
models in a quasiperiodic potential.

Dimension Mobility edge? Exponent ν Harris bound satisfied?

1 [18] No 1 No
2 Yes ≈1 Yes (saturate)
3 [20] Yes ≈1.6 Yes (well above)

finite-size effects,

α̃0 = 1

((L/l ) − 2)2

∑(L/l )−1
a,b=2 ln Aa,b

ln(l/L)
,

Aa,b =
al∑

x=(a−1)l+1

bl∑
y=(b−1)l+1

|φx,y|2. (14)

Here, Aa,b is the wave function amplitudes within the box
indexed by (a, b). For each system size L, we need to diag-
onalize a large number of Hamiltonians with different ϕ1, ϕ2.
Each of such a diagonalization (using Lanczos method) would
render one eigenstate φx,y closest to E = 0 and its correspond-
ing α̃0. Those α̃0’s for the same system sizes and Vd ’s are
to be averaged over to provide one data point in Fig. 5. As
emphasized in Ref. [40], only one sample state φx,y should be
used in each diagonalization.

The qualitative behavior of α̃0 can be expected as fol-
lows. When the system is completely delocalized, i.e., wave
function amplitudes are homogeneously distributed among
all sites/boxes, |φx,y|2 ∼ 1/Ld , Aa,b ∼ (l/L)d , so α̃0 → d = 2
where d is the spatial dimension. In contrast, when approach-
ing strongly localized regime with most of the boxes empty
Aa,b → 0, α̃0 → ∞. Thus, near the critical regime when the
system crosses from metallic to insulating behavior at certain
energy E , α̃0 is a monotonically increasing function of Vd .

The single-parameter scaling form can be written as

α̃0 = f (L/ξ ) = g
((

Vd − V (c)
d

)
L1/ν

)
, (15)

which suggests the data collapse of α̃0 in terms of L/ξ ∝
|Vd − V (c)

d |νL. Near the critical point, we expand α̃0 ≈∑N
n=1 anw

n, where w = (Vd − V (c)
d )L1/ν , and fit the data for

different Vd and L with the polynomial. The quality of fit
is evaluated by the χ2 statistics and the p-value, and the
uncertainty range is generated by a Monte Carlo type of
procedure using synthetic data sets having the same mean
and standard deviation as the original data. Detailed fitting
procedures are described in Appendix E 1.

The results are shown in Fig. 5, where we see that the
scaling exponent ν ≈ 1 appears to saturate the Harris bound
ν > 2/d = 1 in two dimensions. To verify the generality of
the scaling exponents, we computed another twist angle θ =
4π/9 in Appendix E 2, where ν ≈ 1 is similarly obtained. It
is also of interest to see that despite the existence of mobility
edge in the two-dimensional model, its critical exponent ν

is similar to the one-dimensional Aubry-André one with an-
alytically obtainable ν = 1, where mobility edge is absent. As
such, we can summarize the critical behavior for the self-dual
models in various dimensions in Table I.
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IV. EXPERIMENTAL SIGNATURES

In principle, one could surely produce exactly the model
in Eq. (3) by superposing a standard square optical lattice
together with the moiré perturbing potential given by a digital
mirror device, like in the experiment Ref. [17]. Even with-
out using the digital mirror device, a standard superlattice
technique could realize a generalized version of the previous
model. For the generality and broadness of our results, we
would focus on such a generalized model in the following.

In the superlattice scheme, we need two identical and
mutually independent lattice potentials (without interference)
overlapping with each other. Note that two square lattices in-
volve four pairs of laser beams of the same wavelengths. Since
there are only three perpendicular directions for polarizations,
at least two pairs of the beams would end up interfering with
each other and therefore the two sets of square lattice will
not be mutually independent. To circumvent this difficulty,
we consider a generalization to two identical rectangular
lattices, where laser beams of very different frequencies will
not interfere with each other when their effects are averaged
over time. That means the moiré potential becomes

μ̃x,y = sin2[π ũx,y − ϕ1] + sin2[(π/γ )ṽx,y − ϕ2],

ũx,y = x cos θ − yγ sin θ, ṽx,y = x sin θ + yγ cos θ,

(16)

with x, y ∈ Z still denoting site indices. The self-duality
mapping can be similarly performed by replacing ux,y, vx,y →
ũx,y, ṽx,y/γ in Eq. (9), and therefore the self-dual point is
still V (D)

d = 4. In the following, we choose the aspect ratio of
γ = 2 for a plaquette of the rectangular lattices. This is to em-
phasize that there is no incommensurability arising from the
lattice constants of two overlapping lattices, and also, such an
aspect ratio can be achieved by using lasers with wavelengths
λ1 = 1064 nm and λ2 = 532 nm as in many experiments. A
schematic plot for the lasers and their polarization directions
are shown in Fig. 6. Note that the commensurate condition
Eq. (4) still holds for rectangular lattices with rational aspect
ratios, as discussed in Appendix A.

=1064nm

=532nm

FIG. 6. The experimental scheme for the moiré lattice. Black
arrows and crosses denote the polarization directions such that the
four pairs of laser beams do not interfere with each other. Here θ =
π/3. The random phases are ϕ1 = 3, ϕ2 = 2 chosen as an example.

0 2 4 6 8 10 12 14
t/J
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1.0
Nodd/N
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Vd=3
Vd=5
Vd=6
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Vd=10

FIG. 7. The portion of particles remaining in odd x = 1, 3, 5 . . . .
Here θ = π/3, and L = 80.

Consider a spin-polarized fermion system. The initial state
can be chosen similar to the previous experiments as a charge-
density-wave type [16], where even sites x = 0, 2, 4, . . .

along a direction are empty, while odd sites x = 1, 3, 5, . . .

are occupied. Figure 7 shows the numerical simulation for the
time evolution, where Nodd are particles at sites x = 1, 3, 5 . . .

for arbitrary y, and N is the total particle number. We readily
see that close to self-duality point V (D)

d = 4, i.e., Vd = 3,
there already appear a significant portion of localized states
such that Nodd/N remain slightly above 0.5, which signals the
mobility edge in such a system.

V. CONCLUSION

We have provided, as the first step, a study on effective
models of moiré localization in two-dimensional quasiperi-
odic systems. The commensuration conditions discussed in
Sec. II can be used as a guide to engineer bilayer or multilayer
systems made of simple rectangular/square lattices, which is
of primary interest to cold atom experiments.

Such a model also fills up the gap for the understanding of
two-dimensional quasiperiodic system in the orthogonal class
(time-reversal invariant). We find that the mobility edge here,
shown by the IPR, appears quite differently from that in a one-
dimensional quasiperiodic system studied before. In our case,
there exists a rapid and continuous change without “plateaus”
for IPR in the eigenstate-disorder plane. We trace such a
difference to the lack of band gaps for the two-dimensional
spectrum. Note that such a feature is most notably revealed in
the IPR calculation rather than the level statistics, as the latter
one would inevitably involve an average over many nearby
eigenstates. However, level statistics reveals a cross-point for
relatively small system sizes but appear to converge for larger
L’s, with the region well above duality point Vd = 4 still far
away from the Poisson limit. Such a fact also confirms the
existence of mobility edge.

We have also found the scaling exponent for such a model,
which has been absent in previous studies [20]. It also resolves
the earlier concern in Ref. [21] that a single-parameter scaling
may be insufficient for this class of model, as we found that
choosing sufficiently large system sizes would yield satisfac-
tory scaling behaviors. The exponent for our two-dimensional
model, ν ≈ 1, turns out to be the same as its one-dimensional
cousin, while the difference is that in two-dimensions such an
exponent saturates the Harris bound ν > 2/d = 1 formulated
for a purely random scenario. Also, the exponent in our
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orthogonal class is smaller than the two-dimensional systems
in symplectic classes ν ≈ 1.38 [20].

Finally, we have provided a scheme for cold atom ex-
periments relying solely on standard superlattice techniques,
without using the digital mirror device. Since the system is
only sensitive to the relative rotation angles rather than lattice
constants between main and perturbing potentials, our results
indicate that the two-dimensional system is actually more
viable for cold atom experiments as there are no requirements
for particular laser wavelengths.
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APPENDIX A: COMMENSURATE ROTATIONS FOR
RECTANGULAR LATTICES

Take an arbitrary lattice site as the center of rotation, then
the commensurate rotations should satisfy

m1x̂ + γ m2ŷ = n1x̂′ + γ n2ŷ′, (A1)

where x̂′ = x̂ cos θ + ŷ sin θ , ŷ′ = −x̂ sin θ + ŷ cos θ , and γ is
the aspect ratio for the rectangular lattices. The following
derivations are valid for a rational γ , i.e., γ = 2 for the
experiment part in the main text. Written explicitly,(

m1

γ m2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
n1

γ n2

)
. (A2)

To have integer solutions (m1, m2), (n1, n2), it is necessary to
have

cos θ = k1/k3, sin θ = k2/k3, k1, k2, k3 ∈ Z. (A3)

The integers k1, k2, k3 satisfy

k2
1 + k2

2 = k2
3 . (A4)

The above diophantine equation corresponds to finding Pon-
tryagin triples whose solutions are well-known [24,26,41].
One can enumerate them by the following procedure. Note
that Eqs. (A3) and (A4) mean finding the rational points on the
unit circle cos2 θ + sin2 θ = 1. One such point can be pinned
down as (0, 1), and the remaining ones can be found by inter-
secting the circle with the line passing through rational points
(0, 1) and (q/p, 0), where q, p ∈ Z. Combining Eq. (A4) and
k1/k3 = 1 − (q/p)k2/k3, we can set

k1 = q2 − p2, k2 = 2pq, k3 = q2 + p2, p, q ∈ Z.

(A5)

Then we have Eq. (4) in the main text. Note here k1, k2 are
interchangeable, which correspond to angles θ and π/2 − θ .

Note that the commensuration condition is the same for
arbitrary aspect ratios γ . But the Bravais lattice vectors are
different, as we discuss below.

APPENDIX B: MOIRÉ-BRAVAIS LATTICE VECTORS AT
COMMENSURATE ROTATION ANGLES

Define the matrices

S = 1√
q2 + p2

(
q p

−p q

)
= q√

q2 + p2
I + p√

q2 + p2
iσy,

S−1 = ST , (B1)

A = 1

q2 + p2

(
q2 − p2 −2qp

2qp q2 − p2

)

= q2 − p2

q2 + p2
I − 2qp

q2 + p2
iσy, (B2)

where T is transpose, and A is the rotation matrix in Eq. (A2)
parametrized by Eqs. (A3) and (A5). They satisfy the relation
SAS = I. Then the vectors m, n can be written as(

n1

γ n2

)
= α

(
q

−p

)
+ β

(
p
q

)
, (B3)

(
m1

γ m2

)
= α

(
q
p

)
+ β

(−p
q

)
, (B4)

where α, β are some rational numbers. Thus, the moiré-
Bravais vectors for a square lattice γ = 1 can be chosen as

T 1 =
(

q
−p

)
, T 2 =

(
p
q

)
. (B5)

We aim to find the shortest vectors T 1,2 as it is possible that
some linear combinations could yield

αiT 1 + βiT 2 = NiT ′
i, (B6)

where Ni ∈ Z and T ′
i is also a moiré-Bravais vector. Note

here (αi, βi ) are coprime numbers, for otherwise the common
factors can be canceled by Ni. It turns out that the only
exception is when (q, p) are both odd numbers, in which case

T ′
1 = 1

2

(
q + p
q − p

)
, T ′

2 = 1

2

(
q − p

−q − p

)
. (B7)

For a rectangular lattice with rational aspect ratio γ ,
one should apply the general conditions Eq. (B3) to find
the linear independent vectors T = (n1, n2) such that αq +
βp and (−αp + βq)/γ are integers, and q, p are coprime.
For our purpose, we give the lattice vectors for γ = 2:
when q, p are both odd, T 1 = [q + p, (q − p)/2]T , T 2 =
[−(q − p), (q + p)/2]T ; when q is odd and p is even, T 1 =
(q,−p/2)T , T 2 = (2p, q)T ; finally, when q is even and p is
odd, T 1 = (2q,−p)T , T 2 = (p, q/2).

APPENDIX C: NUMERICAL ALGORITHM FOR
FREE FERMION DYNAMICS

Consider

H = �†H�, � = (c1, . . . , cN )T , (C1)

with ci the fermion operator at site i and H an N × N matrix.
For an observable that can also be expressed in the bilinear
form (such as the density)

A = �†A�, A(t ) = eiHt Ae−iHt , (C2)
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note [AB,C] = A{B,C} − {A,C}B,

eiHt�μe−iHt =
∞∑

n=0

(it )n

n!
[(�†

αHαβ�β )(n), �μ]

= (e−iHt )μβ�β, (C3)

and therefore

A(t ) = �†(eiHtAe−iHt )�. (C4)

Now, if the Hamiltonian matrix can be diagonalized by the
matrix T ,

T †HT = diag{ε1, . . . , εN }, (C5)

then we have

A(t ) =
N∑

α,β=1

�†
αT †

α AαβTβ�βei(εα−εβ )t , � = T †�. (C6)

For our purposes, consider the initial state where half of the
system is filled, |ψini〉 = c†

1 . . . c†
N/2|0〉. Then

〈ψini|A(t )|ψini〉 =
N∑

i=1

n(0)
i Tiαeiεαt (T †AT )αβe−iεβT †

βi,

(C7)

where α, β are summed over all eigenstates, and n(0)
i is the

initial particle number at site i. The above formula applies to
both free bosons and fermions when the initial state is a Fock
one, with the restrictions that for fermions, n(0)

i � 1.

APPENDIX D: REVIEW OF AUBRY-ANDRÉ
MODEL IN ONE DIMENSION

To be self-contained and to help trace the origin for
mobility edge in two-dimensional models, we review some
features of the one-dimensional Aubry-André model. There
are two necessary conditions for having uniform localization
lengths: (1) A one-dimensional model with nearest-neighbor
hopping; (2) The duality between localization/delocalization
in real/momentum spaces. Generalizing to higher-dimensions
clearly violate condition (1) and therefore do not exhibit
unique localization length. The following derivation is based
on the discussions in Refs. [18,29,42,43].

The Aubry-André model is

H = − t
N∑

m=1

(a†
m+1am + a†

mam+1) +
N∑

m=1

μma†
mam, (D1)

μm = Vd

2
cos(2πqm + ϕ), V (D)

d = 4. (D2)

Performing a similar analysis as in Sec. III A, we could
similarly obtain the duality mapping with critical disorder
strength V (D)

d . However, due to the one-dimensional nearest
neighbor feature, one could related the localization length
with density of states through the Thouless formula as shown
below.

Consider the real space matrix for Green’s function

Gmn(E ) =
(

1

E − H

)
mn

≡ 〈0|am(E − H )−1a†
n|0〉, (D3)

where m, n = 1, . . . , N denote lattice sites, |0〉 is the vacuum.
For an open boundary system, the matrix

E − H =

⎛
⎜⎝

E − μ1 −t 0 0 . . . 0
−t E − μ2 −t 0 . . . 0
0 −t E − μ3 −t . . . 0
. . . . . . . . . . . . . . .

⎞
⎟⎠.

(D4)

Due to the one-dimensional nearest-neighbor feature, the
corner element for the inverse matrix can be easily acquired
as the cofactor

G1N = 1

det(E − H )
(−t )N−1(−1)N−1 = tN−1∏N

α=1(E − Eα )
,

(D5)

where Eα are eigenvalues of H . However, according to
the definition, one can first expand the Green’s function
in the energy eigenbasis G(E ) = (E − H )−1 = ∑N

α=1(E −
Eα )−1|α〉〈α|, and then the real space matrix element is

G1N (E ) =
N∑

α=1

ψα (1)ψ∗
α (N )(E − Eα )−1, (D6)

where ψα (m) = 〈0|am|Eα〉 is the real-space eigenfunctions.
Simultaneously, using the above two equations to compute the
residual of G1N (E ) at a certain Eβ ,

lim
E→Eβ

(E − Eβ )G1N (E ) = ψβ (1)ψ∗
β (N ) = tN−1∏

α,α �=β (Eβ − Eα )
.

(D7)

Suppose the eigenstate |Eβ〉 is localized centering at some site
m0, with the ansats

ψβ (1) = A1e−λ(Eβ )(m0−1), ψβ (N ) = AN e−λ(Eβ )(N−m0 ),

(D8)

where λ is the exponent of interest, and Am is the multipli-
cation of some constant and nondecaying oscillating factors
at site m. Combing the above two equations and taking
logarithm, we have

λ(Eβ ) = 1

N − 1

⎛
⎝ln(A1AN ) +

∑
α,α �=β

ln |Eβ − Eα|
⎞
⎠ − ln t .

(D9)

Taking the N → ∞ limit, the ln(A1AN ) term vanishes. The
second term can be converted into an integration. Then

λ(Eβ ) = − ln(t ) +
∫ ∞

−∞
(ln |Eβ − ε|)dN (ε), (D10)

where dN (ε) = D(ε)dε and D(ε) is the density of state at
ε. This is the Thouless formula for the localization length
ξ = 1/λ. Usually, the hopping constant t = 1, so the first
term drops out. This formula can be easily generalized to
inhomogeneous nearest neighbor hopping situations [29]. But
note that once the hopping goes beyond nearest neighbor,
i.e., for second-neighbor hopping or in higher dimensions,
Eq. (D4) no longer takes the same form, and Eq. (D5) cannot
be obtained. Then the Thouless formula would not hold
generally.
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FIG. 8. The (normalized) histogram for α̃0 at Vd = 4.0 (left),
Vd = 4.1 (middle), and Vd = 4.2 (right), computed using different
ϕ1,2. For larger systems L, the distribution inclines towards smaller
(Vd in the metal limit) or larger (Vd in the insulator limit) values,
while in the critical Vd they overlap.

Due to the duality mapping, one can obtain the relation

Nt,Vd (ε) = N
t, 8t2

Vd

(
4tε

Vd

)
(D11)

for an incommensurate system. Then, applying Thouless for-
mula,

λt,Vd (Eβ ) = λ
t, 8t2

Vd

(
4tEβ

Vd

)
+ ln

Vd

4t
. (D12)

Since λ � 0 by definition, for Vd > 4t , λt,Vd (Eβ ) �
ln(Vd/4t ) > 0. That means all eigenstates |Eβ〉 are
exponentially localized. From the transformation
between eigenfunctions in two dual representations, all
eigenfunctions in the dual space are then delocalized
(localization/delocalization are opposite in the two
spaces related by Fourier transformation), meaning
λt,8t2/Vd

(4tEβ/Vd ) = 0. Then, we have the same critical
exponent (inverse of localization length ξ )

λt,Vd = 1

ξ
= ln

Vd

4t
(D13)

for all eigenstates when Vd/4t > 1.

APPENDIX E: ADDITIONAL DETAILS FOR
SCALING EXPONENTS

1. Fitting procedure

The procedure for fitting the scaling of α̃0(V, L) consists of
three steps.

First, the average 〈α̃0〉(V, L) and standard deviation
σ (V, L) of α̃0 at each point (V, L) is determined. There are
data of the order 105 at each (V, L) calculated by using dif-
ferent ϕ1, ϕ2. Note that although the average value is straight-
forward to understand, the “standard deviation” must be taken
with care. In all regimes, the α̃0 takes values according to a
broad distribution function (see, i.e., Ref. [40] Fig. 3). We
reproduced such a character for our model in Fig. 8. It is in
fact the maximal point of the distribution function that gives
the scaling behavior. Only when averaged over large numbers
of ϕ1,2, the mean value of α̃0 would approach the maximal
probability point. Thus, at each (V, L), we divide all data into
10 bins, obtain the respective averaged α̃0, and compute the
standard deviation using the 10 bin-averaged α̃0’s.

Second, we fit 〈α̃0〉(V, L) into the scaling function g(L/ξ )
mentioned in the main text by minimizing χ2, χ2 =∑

V,L (〈α̃0〉(V, L) − g(V, L))2/σ 2(V, L). For a reasonable fit,
the χ2 value should be similar or less than the number of
degrees of freedom, k = ND − Np, where ND is the number of

FIG. 9. The histogram for fitted V (c)
d and ν at the angle θ = π/5,

using 1000 synthetic data sets with the same standard deviations as
in Fig. 5 at each point. The 95% confidence range is determined by
discarding the 2.5% of maximal/minimal data for V (c)

d , ν on the two
sides.

〈α̃0〉(V, L) to be fit for different (V, L), and Np is the number of
fitting parameters. Whether or not a fit is acceptable is decided
by the p value,

p = �(k/2, χ2/2)

�(k/2)
, (E1)

where �(a, z) = ∫ ∞
a t z−1e−t dt is the generalized Euler-

Gamma function, with �(z) = �(0, z). A larger p value sig-
nals a better fit, and we take p � 0.1 as the acceptable
criterion. In addition to the p value, we also make sure the
fitting stability by checking that increasing the expansion
order would result in V (c)

d , ν within the uncertainty range (to
be discussed below). Under such criterions, the expansion
order is kept as low as possible.

Finally, once a best fit g(V, L) is obtained for 〈α̃0〉(V, L)
and σ (V, L), we generate 1000 synthetic data α

(syn)
i (V, L), i =

1, . . . , 1000, at each point (V, L). They distribute according to
the same mean and standard deviations discussed previously.
Then, we fit each set of {α(syn)

i (V, L)|∀V, L} with the same
expansion as in the best fit g(V, L), and obtain a histogram of
V (c)

d , ν corresponding to i = 1, . . . , 1000. After discarding the

Vd(c) 4.0868+(−0.0130)
(+0.0026)

0.954+(−0.076)
(+0.094)

Vd − Vd
(c) L

L=100
L=120
L=140
L=160
L=180
L=200
L=220
L=240

L=260
L=280
L=300

4.1 4.2
Vd

2.2

2.4

2.6

2.8

3.0
0

FIG. 10. The scaling of α̃0 for θ = 4π/9 at E = 0. The inset
shows the scaling of α̃0 in terms of L/ξ ∝ |Vd − V (c)

d |νL after sub-
tracting the scaling-irrelevant term [the second term in Eq. (E2)]. The
numbers of ϕ1,2 being averaged over are 106 for L � 200 and 4 × 105

for L � 220. The fitting data/parameters has ND = 262, Np = 16
(with N1 = N2 = 6), and the quality of fit is evaluated by χ 2 =
204, p = 0.98. The uncertainty range is determined by synthetic data
set as described previously.
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ending (maximal and minimal) 2.5% of data, the uncertainty
range is obtained. The histogram of V (c)

d , ν for θ = π/5 is
shown in Fig. 9.

2. Scaling at another angle

We perform the same analysis for the angles θ = 4π/9 at
E = 0. But here we used a wider range of system lengths L,
and it is clear from Fig. 10 that there is a shift in the “crossing”
point with the increase of L. Such a “shift” diminishes as L
becomes larger, which means there is an additional scaling-
irrelevant term entering α̃0 [40]. Therefore, we include such a

term in the scaling function,

α̃0 = g0
((

Vd − V (c)
d

)
L1/ν

) + L−|y|g1
((

Vd − V (c)
d

)
L1/ν

)
. (E2)

Compared with Eq. (15), the L−|y| term describes the first
order expansion of scaling-irrelevant term. With the fitting
parameter −|y| < 0, this term vanishes in the thermody-
namic limit. Then we expand g0,1 similarly as before, g0 =∑N0

m=0 amwm, g1 = ∑N1
m=0 bmwm, where w = (Vd − V (c)

d )L1/ν .
The fitting parameters are am, bm, y, ν,V (c)

d , with the total
number Np = N0 + N1 + 5.
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[37] Z. Papić, E. M. Stoudenmire, and D. A. Abanin, Ann. Phys.

362, 714 (2015).
[38] A. Rodriguez, L. J. Vasquez, and R. A. Römer, Phys. Rev. Lett.

102, 106406 (2009).
[39] A. Rodriguez, L. J. Vasquez, K. Slevin, and R. A. Römer, Phys.

Rev. Lett. 105, 046403 (2010).

[40] A. Rodriguez, L. J. Vasquez, K. Slevin, and R. A. Römer, Phys.
Rev. B 84, 134209 (2011).

[41] L. E. Dickson, History of the Theory of Numbers, Volume II:
Diophantine Analysis (Dover Books on Mathematics, Mineola,
NY, 2005), pp. 165–170 .

[42] D. Herbert and R. Jones, J. Phys. C: Solid State Phys. 4, 1145
(1971).

[43] I. Y. Goldsheid and B. A. Khoruzhenko, Isr. J. Math. 148, 331
(2005).

144202-12

https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevB.96.085119
https://doi.org/10.1103/PhysRevB.96.085119
https://doi.org/10.1103/PhysRevB.96.085119
https://doi.org/10.1103/PhysRevB.96.085119
https://doi.org/10.1016/j.aop.2015.08.024
https://doi.org/10.1016/j.aop.2015.08.024
https://doi.org/10.1016/j.aop.2015.08.024
https://doi.org/10.1016/j.aop.2015.08.024
https://doi.org/10.1103/PhysRevLett.102.106406
https://doi.org/10.1103/PhysRevLett.102.106406
https://doi.org/10.1103/PhysRevLett.102.106406
https://doi.org/10.1103/PhysRevLett.102.106406
https://doi.org/10.1103/PhysRevLett.105.046403
https://doi.org/10.1103/PhysRevLett.105.046403
https://doi.org/10.1103/PhysRevLett.105.046403
https://doi.org/10.1103/PhysRevLett.105.046403
https://doi.org/10.1103/PhysRevB.84.134209
https://doi.org/10.1103/PhysRevB.84.134209
https://doi.org/10.1103/PhysRevB.84.134209
https://doi.org/10.1103/PhysRevB.84.134209
https://doi.org/10.1088/0022-3719/4/10/023
https://doi.org/10.1088/0022-3719/4/10/023
https://doi.org/10.1088/0022-3719/4/10/023
https://doi.org/10.1088/0022-3719/4/10/023
https://doi.org/10.1007/BF02775442
https://doi.org/10.1007/BF02775442
https://doi.org/10.1007/BF02775442
https://doi.org/10.1007/BF02775442

