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Topological classification of defects in non-Hermitian systems
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We classify topological defects in non-Hermitian systems with point, real, and imaginary gaps for all the
Bernard-LeClair classes or generalized Bernard-LeClair classes in all dimensions. The defect Hamiltonian
H (k, r) is described by a non-Hermitian Hamiltonian with a spatially modulated adiabatical parameter r
surrounding the defect. While the non-Hermitian system with a point gap belongs to any of 38 symmetry classes
(Bernard-LeClair classes), for non-Hermitian systems with a linelike gap, we get 54 nonequivalent generalized
Bernard-LeClair classes as a natural generalization of point gap classes. Although the classification of defects in
Hermitian systems has been explored in the context of the standard tenfold Altland-Zirnbauer symmetry classes,
a complete understanding of the role of the general non-Hermitian symmetries on the topological defects and
their associated classification is still lacking. By continuous transformation and homeomorphic mapping, these
non-Hermitian defect systems can be mapped to topologically equivalent Hermitian systems with associated
symmetries, and we get the topological classification by classifying the corresponding Hermitian Hamiltonians.
We discuss some nontrivial classes with a point gap according to our classification table and give explicitly
the topological invariants for these classes. We also study some lattice or continuous models and discuss the
correspondence between the topological number and zero modes at the topological defect.
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I. INTRODUCTION

Topological band theory has achieved great success in the
past decades [1–10] and topological classification according
to standard tenfold Altland-Zirnbauer (AZ) symmetry classes,
defined by time-reversal symmetry, particle-hole symmetry,
and their combination, has been well established [11–19]. In
the scheme of the AZ classification, a topological phase can
be characterized by either Z or Z2 number. Two well-known
examples, Haldane and Kane-Mele models, characterized by
the Chern [4,5] and Z2 [6,7] numbers, respectively. In gen-
eral, the bulk topological number has a correspondence with
it’s stable edge gapless modes. This correspondence leads
to quantized Hall conductance and spin current [1,2]. The
stable gapless modes also occur at the nontrivial topological
defects, which have been studied in field theory [20,21] and
condensed matter systems [22–27]. Systematic classifications
of topological defects in insulators and superconductors have
been carried out for AZ symmetry classes [28].

Recent experimental studies of non-Hermitian properties in
optic systems, electrical systems and open quantum systems
[29–36] have stimulated the development of non-Hermitian
physics [37–40]. Motivated by these progresses, the scope of
topological phase of matter has also been extended to non-
Hermitian systems [33,34,41–65]. It has been unveiled that
non-Hermitian systems exhibit many different properties from
the Hermitian systems, e.g., biorthonormal eigenvectors [56],
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the existence of exception points [66–69], unusual bulk-edge
correspondence [53–56] and emergence of non-Hermitian
skin effect in nonreciprocal systems [55,56,70–75]. Effects of
non-Hermiticity on defect states are also studied with some
specific non-Hermitian topological models [76–79]. Except
the fundamental interest of understanding these differences,
novel topological properties of non-Hermitian systems may
bring potential application in topological lasers and high-
sensitive sensors. Besides extensive studies on various topo-
logical non-Hermitian models [48,49,57–62], the classifica-
tion of non-Hermitian topological phases has been carried out
by different groups [52,80–82]. In a recent work, Gong et al.
made an important step for the classification of non-Hermitian
phases with non-spatial symmetries [52] by considering only
time-reversal, pseudo particle-hole and sublattice symmetries.
After that, the topological classification of non-Hermitian sys-
tems in the AZ classes with an additional reflection symmetry
was given by us [82]. In general, non-Hermitian systems
have more types of fundamental nonspatial symmetries than
their Hermitian counterparts, i.e., there are totally 38 different
classes according to Bernard-LeClair (BL) symmetry classes
[83], which can be viewed as a natural non-Hermitian gener-
alization of the ten AZ random matrix classes [83,84]. Very
recently, the full classifications for non-Hermitian topological
band systems are obtained by Sato et al. [81] and Zhou
et al. [80].

So far, the topological classification of non-Hermitian sys-
tems focused on the band systems, classification of topologi-
cal defects in these systems is still lacking. Aiming to fill this
gap, in this work, we make a full classification of topolog-
ical defects for non-Hermitian systems. Due to the complex
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nature of spectra, non-Hermitian systems have the pointlike
and linelike gaps, which corresponds to different complex-
spectral-flattening procedure [81]. For non-Hermitian systems
with pointlike gaps, the classification of topological defect
can be carried out in the scheme of BL symmetry classes,
which yield 38 different classes with the help of the equivalent
transformation H → iH [80,83]. However, for non-Hermitian
systems with linelike gaps, we notice that the transformation
H → iH can not be treated as an equivalent transformation
as a real (imaginary) gap is changed to an imaginary (real)
gap by such a transformation. Consequently, we construct 54
generalized Bernard-LeClair (GBL) classes for these systems.
For both types of complex-energy gaps, we can transform the
classification problem of non-Hermitian Hamiltonian to the
classification problem of Hermitian Hamiltonian by contin-
uous transformation and homeomorphic mapping. Then we
classify the Hermitian Hamiltonian by using the K theory
and Clifford algebra [12,18,19], and we also construct the
topological number of topological defects for some BL classes
with a point gap. Then we study some continuous models and
lattice models and find that there is a correspondence between
defect’s topological number and gapless modes at the defect
in some of these models.

The paper is organized as follows. In Sec. II, we first give
an introductory description of symmetry of non-Hermitian
system in the AZ, BL, and GBL classes, and also a brief
introduction of different gap types. In Sec. III, we complete
topological classification of defects in non-Hermitian systems
with point gap, real gap and imaginary gap, respectively, for
all BL classes or GBL classes. In Sec. IV, we construct topo-
logical numbers of topological defects for some BL classes.
In Sec. V, we study several example systems. A summary is
given in the last section.

II. BRIEF REVIEW OF NON-HERMITIAN
SYMMETRIES AND GAP TYPES

Before presenting our approach of topological classifica-
tion of defects in non-Hermitian systems, we first review
briefly symmetries of non-Hermitian systems in the AZ and
BL classes and the definitions of point gap, real and imaginary
gaps, and then introduce the GBL classes. An introduction
to these notations and definitions is necessary for our further
classification of defects.

A. Altland-Zirnbauer class

For Hermitian topological systems, the topological clas-
sification according time-reversal, particle-hole, and chiral
symmetries is called the AZ symmetry class, which leads to
the standard tenfold symmetry classification. It is known that
AZ classes are not able to fully describe the internal symme-
tries of non-Hermitian systems, which belong to more general
BL classes [80,81,83]. For a non-Hermitian Hamiltonian in
momentum space, the time-reversal symmetry is defined by

T = UTK, T H (−k) = H (k)T, (1)

where K is a complex conjugation operator and UK is a unitary
matrix. Similarly, the particle-hole symmetry is defined by

A = UAR, AH (−k) = −H (k)A, (2)

where R is a transpose operator and UA is a unitary matrix
[81]. Given that T is the time-reversal operator and A the
particle-hole operator, � = TA is the chiral symmetry opera-
tor. Similar to the Hermitian case, AZ classes are constructed
by T , A, and � (see Table II).

B. Bernard-LeClair class

Bernard and LeClair made a full classification for non-
Hermitian random matrix [83], and it is the basic building
block of non-Hermitian symmetries. In general, there are four
types of symmetries in the non-Hermitian case denoted by K,
Q, C, and P, which are defined by

H = kH∗k−1, kk∗ = ηkI, K sym.; (3)

H = qH†q−1, q2 = I, Q sym.; (4)

H = εccHT c−1, cc∗ = ηcI, C sym.; (5)

H = −pH p−1, p2 = I, P sym.; (6)

where k, q, c, and p are unitary matrices and ηk, εc, ηc = ±1.
The four unitary matrices satisfy:

c = εpc pcpT , k = εpk pkpT , c = εqcqcqT , p= εpqqpq†,

(7)

with εpc, εpk, εqc, εpq = ±1. We can construct 63 sym-
metry classes by these symmetries and the sign of
ηk, εc, ηc, εpc, εpk, εqc, and εpq. For the point gap system, one
can redefine H → iH as it does not change the properties of
point gap. Consequently, H = −kH∗k−1 and H = −qH†q−1

transform to K and Q symmetries, respectively. The 63 sym-
metry classes reduce to 38 topological classes (Non, P, Q,
K1-2, C1-4, PQ1-2, PK1-3, PC1-4, QC1-8, PQC1-12) up to
a redefinition of equivalence [80,81] (see Table III). For line
gap systems, the transformation H → iH can not be taken as
an equivalent transformation, and then we need more than
38 classes beyond the BL classes. To understand this, we
would like to introduce definition of gap before going to the
discussion of the generalization of BL classes.

C. Point, real, and imaginary gaps

In general, an energy gap in the band theory means a
forbidden energy region with no occupancy of states. For
the non-Hermitian systems, the definition of energy gap is
nontrivial as the spectrum becomes complex. According to
Kawabata et al. [81], non-Hermitian systems should have two
different types of complex-energy gaps, i.e., the pointlike and
linelike gaps. Here we follow the definitions of Kawabata
et al. Consider the complex energy plane, if a system has
a point gap, it means that the band spectra can’t cross the
zero point [i.e., ∀k, det(H (k)) �= 0] as schematically shown
in Fig. 1(a). If a system has a real gap, it means that the
band energies can not cross the imaginary axis (i.e., ∀ j, k,
Re(Ej (k)) �= 0) as shown in Fig. 1(b). If a system has an
imaginary gap, it means that the band energies can not cross
the real axis [i.e., ∀ j, k, Im(Ej (k)) �= 0] as shown in Fig. 1(c).
Based on the three different constraints, we can get three
different classifications.
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FIG. 1. Schematic diagram of gap types. Red point (line) rep-
resents the gap, and blue areas represent the bands. (a) Point gap.
(b) Real gap. (c) Imaginary gap.

D. Generalized Bernard-LeClair class

Since the transformation H → iH is not an equivalent
transformation for line gap systems, we now construct all
nonequivalent non-Hermitian classes without considering
H → iH as an equivalent transformation. In this case,

H = εkkH∗k−1, kk∗ = ηkI, K sym.; (8)

H = εqqH†q−1, q2 = I, Q sym.; (9)

H = εccHT c−1, cc∗ = ηcI, C sym.; (10)

H = −pH p−1, p2 = I, P sym.; (11)

were εk = ±1, εq = ±1, and other notations are the same as
the BL class. We can construct 54 nonequivalent symmetry
classes (Non, P, Qa-b, K1-2a-b, C1-4, PQ1-2, PK1-2, PK3a-b,
PC1-4, QC1-8a-b, PQC1-8, PQC9-12a-b) by these symme-
tries and the sign of εk, εq, ηk, εc, ηc, εpc, εpk, εqc, and εpq and
equivalence relations (see Tables IV and V). The equivalence
relations are similar to the equivalence relationships described
by Zhou et al. [80], except that εk̃ = −εk and εq̃ = −εq when
we consider P and K symmetries or P and Q symmetries (k̃ =
pk and q̃ = √

εpqqp) [80]. To distinguish with the previous BL
class which supports 38 different classes, we call this class a
GBL class.

III. TOPOLOGICAL CLASSIFICATION

A non-Hermitian periodic system with topological defects
is described by H (k, r), where k is defined in a d-dimensional
Brillouin zone T d , and r is defined on a D-dimensional
surface SD surrounding the defect (Fig. 2). The defect Hamil-
tonian is a band Hamiltonian slowly modulated by a param-
eter r, which includes spatial coordinates and/or a temporal
parameter and changes slow enough so that the bulk system

d=1 d=2

D=0

D=1 t

FIG. 2. Schematic diagram of topological defects. A topological
defect in d dimension is surrounded by a D-dimensional surface SD.
For point defects, d − D = 1. For line defects, d − D = 2.

separated far from the defect core still can be characterized by
momentum k [28].

A. Point gap classification

If the system has a point gap, we can map the non-
Hermitian Hamiltonian to a Hermitian one by the doubling
process [52,81,83,85]:

H̃ (k, r) =
[

0 H (k, r)
H (k, r)† 0

]
. (12)

The doubled Hamiltonian H̃ (k, r) fulfills an enforced addi-
tional chiral symmetry:

�H̃ (k, r) = −H̃ (k, r)�, (13)

where � = σz ⊗ 1 and �2 = 1. And the constraint on
det(H (k, r)) �= 0 is equivalent to det(H̃ (k, r)) �= 0. Then
H (k, r) is homeomorphic to H̃ (k, r), and it is equivalent to
classify Hermitian Hamiltonian H̃ (k, r) with chiral symmetry.
If H (k, r) has T , A, �, K , Q, P, and C symmetries, H̃ (k, r)
has the corresponding symmetries

T̃ H̃ (k, r) = H̃ (−k, r)T̃ , (14)

ÃH̃ (k, r) = −H̃ (−k, r)Ã, (15)

�̃H̃ (k, r) = −H̃ (k, r)�̃, (16)

K̃H̃ (k, r) = H̃ (−k, r)K̃, (17)

Q̃H̃ (k, r) = H̃ (k, r)Q̃, (18)

P̃H̃ (k, r) = −H̃ (k, r)P̃, (19)

C̃H̃ (k, r) = εcH̃ (−k, r)C̃, (20)

with T̃ = σ0 ⊗ UTK, Ã = σx ⊗ UAK, �̃ = T̃ Ã, K̃ = σ0 ⊗ kK,
Q̃ = σx ⊗ q, P̃ = σ0 ⊗ p, and C̃ = σx ⊗ cK.

Generally, we can represent the defect Hamiltonian as

H̃ (k, r) = γ̃0 + k1γ̃
k
1 + · · · + kd γ̃

k
d + r1γ̃

r
1 + · · · + rDγ̃ r

D,

(21)
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TABLE I. The correspondence between the Clifford algebra’s
extension and space of the mass term.

Clifford algebra’s extension Space of the mass term

Cli → Cli+1 Ci = Ci+2

Clp,q → Clp,q+1 Rq−p = Rq−p+8

Clp,q → Clp+1,q Rp−q+2 = Rp−q+10

where γ̃0, γ̃
k
i (i = 1, . . . , d ) and γ̃ r

j ( j = 1, . . . , D) anticom-
mute with each other and their squares equal to the identity
operator. Using the commutation relations of symmetry oper-
ators and Hamiltonian, we can construct the Clifford algebra’s
extension for each symmetry class. Then we can get the
space of the mass term (γ̃0) by the correspondence between
the Clifford algebra’s extension and space of the mass term
(Table I).

For convenience, here we briefly introduce a Clifford al-
gebra. There are two types of Clifford algebra, i.e., the com-
plex Clifford algebra and real Clifford algebra. The complex
Clifford algebra is defined in the complex domain, and its
generators {γ1, . . . , γn} satisfy that {γi, γ j} = 2δi j . The com-
plex Clifford algebra can be represented as Cln. On the other
hand, the real Clifford algebra is defined in the real domain,
and its generators {γ −

1 , . . . , γ −
n1, γ

+
1 , . . . , γ +

n2} anticommute
with each others. While γ −

i (i = 1, . . . , n1) are squared to −1,
γ +

j ( j = 1, . . . , n2) are squared to 1. The real Clifford algebra
can be represented as Cln1,n2.

Once we know the space of the mass term, we can get
the topological classification by calculating the zero-order
homotopy group of the space of the mass term. For the
case of point gap, we give the classification according to the
symmetry classes labeled by both standard AZ classes and BL
classes, despite that the former ones are the subclasses of the
latter ones. For convenience, when we discuss the AZ classes,
we also label the corresponding BL classes simultaneously.
Firstly, we consider the complex classes:

Class A (Non). The generators of this class are
{γ̃0, γ̃

k
1 , . . . , γ̃ k

d , γ̃ r
1 , . . . , γ̃ r

D, �} (The generators of class are
different from generators of the Clifford algebra). The Clif-
ford algebra’s extension of this class is {γ̃ k

1 , . . . , γ̃ k
d , γ̃ r

1 , . . . ,

γ̃ r
D, �} → {γ̃0, γ̃1, . . . , γ̃

k
d , γ̃ r

1 , . . . , γ̃ r
D, �} = Cld+D+1 →

Cld+D+2 = Cl1−(d−D) → Cl2−(d−D). The space of the mass
term (γ̃0) is C1−δ (δ = d − D), and the topological classifica-
tion of defects for the non-Hermitian class A is characterized
by π0(C1−δ ) = 0 (Z) for even (odd) δ, and the classifying
space (CL) is C1 (classifying space is equivalent to the space
of mass term when δ = 0).

Class AIII (Q). The generators of this class are {γ̃0, γ̃
k
1 , . . . ,

γ̃ k
d , γ̃ r

1 , . . . , γ̃ r
D, �, �̃}. The Clifford algebra’s extension of

this class is {γ̃ k
1 , . . . , γ̃ k

d , γ̃ r
1 , . . . , γ̃ r

D, �, �̃} → {γ̃0, γ̃
k
1 , . . . ,

γ̃ k
d , γ̃ r

1 , . . . , γ̃ r
D, �, �̃} = Cld+D+2 → Cld+D+3 = Cl2−(d−D) →

Cl3−(d−D). The space of the mass term (γ̃0) is C2−δ (δ = d −
D), and the classification is characterized by π0(C2−δ ) = Z(0)
for even (odd) δ.

Then we classify the real classes.
Class AI (K1). The generators of this class are

{γ̃0, γ̃
k
1 , . . . , γ̃ k

d , γ̃ r
1 , . . . , γ̃ r

D, �, T̃ , J}, where J is the imag-
inary unit. The Clifford algebra’s extension of this class

is {γ̃ k
1 , . . . , γ̃ k

d , J γ̃ r
1 , . . . , J γ̃ r

D, J�, T̃ , JT̃ } → {J γ̃0, γ̃
k
1 , . . . ,

γ̃ k
d , J γ̃ r

1 , . . . , J γ̃ r
D, J�, T̃ , JT̃ } = ClD+1,d+2 → ClD+2,d+2.

The space of the mass term is R1−δ .
Class C (C4). The generators of this class are {γ̃0,

γ̃ k
1 , . . . , γ̃ k

d , γ̃ r
1 , . . . , γ̃ r

D, �, Ã, J}. The Clifford aglebra’s
extension of this class is {J γ̃ k

1 , . . . , J γ̃ k
d , γ̃ r

1 , . . . , γ̃ r
D,

�, Ã, JÃ} → {γ̃0, J γ̃ k
1 , . . . , J γ̃ k

d , γ̃ r
1 , . . . , γ̃ r

D, �, Ã, JÃ} =
Cld+2,D+1 → Cld+2,D+2. The space of the mass term is R7−δ .

Class BDI (QC5). The generators of this class are
{γ̃0, γ̃

k
1 , . . . , γ̃ k

d , γ̃ r
1 , . . . , γ̃ r

D, �, Ã, �̃, J}. The Clifford
algebra’s extension of this class is {J γ̃ k

1 , . . . , J γ̃ k
d , γ̃ r

1 , . . . ,

γ̃ r
D, �, J�̃, Ã, JÃ} → {γ̃0, J γ̃ k

1 , . . . , J γ̃ k
d , γ̃ r

1 , . . . , γ̃ r
D, �, J�̃,

Ã, JÃ} = Cld+1,D+3 → Cld+1,D+4. The space of the mass
term is R2−δ .

Similarly, we can determine the space of mass term for
the other AZ classes. It was shown that the classification of
topological defects depends only on the topological dimen-
sion δ = d − D. Once the classifying space is known, e.g.,
Rn, we can get the space of mass term in a given topological
dimension by a shift of Rn to Rn−δ , and the topological classi-
fication is obtained by calculating π0(Rn−δ ). The topological
classification of defects for all AZ classes are summarized in
Table II.

In the same way, we can get the topological classification
of BL classes. For example, for the class P, the generators are
{γ̃0, γ̃

k
1 , . . . , γ̃ k

d , γ̃ r
1 , . . . , γ̃ r

D, �, P̃}, and the Clifford algebra’s
extension of this class is {γ̃ k

1 , . . . , γ̃ k
d , γ̃ r

1 , . . . , γ̃ r
D, �} ⊗

{�P̃}→{γ̃0, γ̃
k
1 , . . ., γ̃ k

d , γ̃ r
1 , . . ., γ̃ r

D, �}⊗{�P̃} = Cld+D+1 ⊗
Cl1 → Cld+D+2 ⊗ Cl1. It follows that the space of the mass
term is C1−δ × C1−δ . The space of mass term for other
BL classes can be obtained under the same scheme. The
results are listed in Table III. For classes Cn and C5-n
(n = 1, . . . , 4), the Hermitian Hamiltonians fulfill the same
symmetry constraints, i.e., Eqs. (13) and (20). Then classes
Cn and C5-n have the same topological classification.
Similarly, classes QCn and QC9-n (n = 1, . . . , 8) have the
same topological classification. When D = 0, we have δ = d
and our results can be applied to describe the classification
of point gap systems in the absence of defect, which are
consistent with those in the reference [80,81]. For the
convenience of comparing with results in Refs. [80,81], we
list the correspondence between different notations of BL
class in Table VII of Appendix C.

B. Real gap classification

If a non-Hermitian Hamiltonian has a real gap, it has
been demonstrated that the Hamiltonian can continuously
transform to a Hermitian Hamiltonian H while keeping its
symmetry and real gap [81]. Then the non-Hermitian GBL
class classification is the same with the corresponding Hermi-
tian classification. To classify 54 GBL classes, the K, Q, C,
and P symmetries reduce to

H = εkkH∗k−1, kk∗ = ηkI K sym.; (22)

H = εqqHq−1, q2 = I Q sym.; (23)

H = εccH∗c−1, cc∗ = ηcI C sym.; (24)

H = −pH p−1, p2 = I P sym. (25)
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TABLE II. Periodic table for point gap classification of topological defects in non-Hermitian systems. The rows correspond to the different
AZ symmetry classes, while the columns depend on δ = d − D.

Symmetry δ = d − D

AZ UT U ∗
T UAU ∗

A �2 Cl 0 1 2 3 4 5 6 7

A (Non) 0 0 0 C1 0 Z 0 Z 0 Z 0 Z
AIII (Q) 0 0 1 C0 Z 0 Z 0 Z 0 Z 0
AI (K1) 1 0 0 R1 Z2 Z 0 0 0 2Z 0 Z2

BDI (QC5) 1 1 1 R2 Z2 Z2 Z 0 0 0 2Z 0
D (C3) 0 1 0 R3 0 Z2 Z2 Z 0 0 0 2Z
DIII (QC6) −1 1 1 R4 2Z 0 Z2 Z2 Z 0 0 0
AII (K2) −1 0 0 R5 0 2Z 0 Z2 Z2 Z 0 0
CII (QC7) −1 −1 1 R6 0 0 2Z 0 Z2 Z2 Z 0
C (C4) 0 −1 0 R7 0 0 0 2Z 0 Z2 Z2 Z
CI (QC8) 1 −1 1 R0 Z 0 0 0 2Z 0 Z2 Z2

Here, H is a Hermitian Hamiltonian. The classification prob-
lem reduces to a Hermitian Hamiltonian classification prob-
lem. And we can classify each class by Clifford algebra (see
Appendix A). The results are listed in Table IV. When D = 0,
our results can be applied to describe the classification of real
gap systems in the absence of defect. In order to compare
with results in Ref. [81], we list the correspondence between
our notations and those in the reference [81] in Table VIII of
Appendix C.

C. Imaginary gap classification

If a non-Hermitian Hamiltonian has an imaginary gap, the
Hamiltonian can continuously transform to an anti-Hermitian
Hamiltonian iH [81], where H is a Hermitian Hamiltonian.
To classify 54 GBL classes, the K, Q, C, and P symmetries
reduce to

H = −εkkH∗k−1, kk∗ = ηkI K sym.; (26)

H = −εqqHq−1, q2 = I Q sym.; (27)

H = εccH∗c−1, cc∗ = ηcI C sym.; (28)

H = −pH p−1, p2 = I P sym. (29)

The classification problem reduces to a Hermitian Hamilto-
nian classification problem. And we can classify each class
by Clifford algebra (see Appendix B). The results are listed
in Table V. Similarly, our results can be applied to describe
the classification of imaginary gap systems in the absence
of defect by taking D = 0. The correspondence between our
notations and those in Ref. [81] can be found in Table VIII of
Appendix C.

IV. CONSTRUCTION OF EXPLICIT TOPOLOGICAL
INVARIANTS FOR POINT DEFECTS

Although the periodic tables of topological classification
are given, they do not provide explicit forms of topologi-
cal invariants. In this section, we discuss the construction
of explicit topological invariants for point gap systems by
considering some specific examples. To begin with, we note
that the open boundary condition in one dimension is the
simplest example of topological defects. For this case, our

topological classification of topological defects (d = 1, D =
0) is consistent with classification of one-dimensional gapped
system (d = 1). Next we discuss several one-dimensional and
two-dimensional examples.

Class A (Non), class AI (K1), and class AII (K2). Given
the Hamiltonian H (k, r), which describes a point defect in d
dimensions and is a function of d momentum variables and
D = d − 1 position variables. For any invertible Hamiltonian,
it has a polar decomposition H = UP, where U is a unitary
matrix and P is a positive definite Hermitian matrix. Such a
decomposition is unique, and the Hamiltonian H (k, r) can be
continuously deformed to U (k, r) with the same symmetry
constraint [80,81]. Since H (k, r) is topologically equivalent
to U (k, r), the Z topological number is defined as

n = (d − 1)!

(2d − 1)!(2π i)d

∫
T d ×Sd−1

Tr[(UdU †)2d−1], (30)

which is the winding number associated with the homotopy
group π2d−1[U (n)] = Z [28].

Class P, class PK1, and class PK2. Suppose that the Hamil-
tonian is H (k, r) and the system has P symmetry described
by p = σz. The polar decomposition is H = UP. Consider
the symmetry constraint σzU = −Uσz [80], and U can be
represented as

U (k, r) =
[

0 U1(k, r)
U2(k, r) 0

]
. (31)

Then we can define the Z⊕Z topological number as

n j = (d − 1)!

(2d − 1)!(2π i)d

∫
T d ×Sd−1

Tr[(UjdU †
j )2d−1], (32)

where j = 1 and 2.
Class PK3. Suppose that the Hamiltonian of a point defect

is H (k, r), and the system has both P and K symmetries
described by p = σz and k = σx, respectively. The polar de-
composition is H = UP. Consider the symmetry constraint
σzU (k, r) = −U (k, r)σz and σxU ∗(−k, r) = U (k, r)σx, and
U can be represented as

U (k, r) =
[

0 U1(k, r)
U ∗

1 (−k, r) 0

]
. (33)
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TABLE III. Periodic table of point gap classification of topological defects in non-Hermitian systems. The rows correspond to the different
BL symmetry classes, while the columns depend on δ = d − D. The topological numbers in the table are stable strong topological numbers.

BL Gen. Rel. Cl δ = 0 1 2 3 4 5 6 7

Non C1 0 Z 0 Z 0 Z 0 Z
P C2

1 0 ⊕ 0 Z⊕Z 0 ⊕ 0 Z⊕Z 0 ⊕ 0 Z⊕Z 0 ⊕ 0 Z⊕Z
Q C0 Z 0 Z 0 Z 0 Z 0
K1 ηk = 1 R1 Z2 Z 0 0 0 2Z 0 Z2

K2 ηk = −1 R5 0 2Z 0 Z2 Z2 Z 0 0
C1 εc = 1, ηc = 1 R7 0 0 0 2Z 0 Z2 Z2 Z
C2 εc = 1, ηc = −1 R3 0 Z2 Z2 Z 0 0 0 2Z
C3 εc = −1, ηc = 1 R3 0 Z2 Z2 Z 0 0 0 2Z
C4 εc = −1, ηc = −1 R7 0 0 0 2Z 0 Z2 Z2 Z
PQ1 εpq = 1 C1 0 Z 0 Z 0 Z 0 Z
PQ2 εpq = −1 C2

0 Z⊕Z 0 ⊕ 0 Z⊕Z 0 ⊕ 0 Z⊕Z 0 ⊕ 0 Z⊕Z 0 ⊕ 0

PK1 ηk = 1, εpk = 1 R2
1 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2

PK2 ηk = −1, εpk = 1 R2
5 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0 0 ⊕ 0

PK3
ηk = 1, εpk =−1

ηk = −1, εpk =−1
C1 0 Z 0 Z 0 Z 0 Z

PC1
εc = 1, ηc = 1, εpc = 1

εc =−1, ηc = 1, εpc = 1
C1 0 Z 0 Z 0 Z 0 Z

PC2
εc = 1, ηc = 1, εpc = −1

εc = −1, ηc = −1, εpc =−1
R2

7 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z

PC3
εc = 1, ηc = −1, εpc = 1

εc = −1, ηc =−1, εpc = 1
C1 0 Z 0 Z 0 Z 0 Z

PC4
εc = 1, ηc = −1, εpc =−1
εc = −1, ηc = 1, εpc =−1

R2
3 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z

QC1 εc = 1, ηc = 1, εqc = 1 R0 Z 0 0 0 2Z 0 Z2 Z2

QC2 εc = 1, ηc = 1, εqc = −1 R6 0 0 2Z 0 Z2 Z2 Z 0
QC3 εc = 1, ηc = −1, εqc = 1 R4 2Z 0 Z2 Z2 Z 0 0 0
QC4 εc = 1, ηc = −1, εqc = −1 R2 Z2 Z2 Z 0 0 0 2Z 0
QC5 εc = −1, ηc = 1, εqc = 1 R2 Z2 Z2 Z 0 0 0 2Z 0
QC6 εc = −1, ηc = 1, εqc = −1 R4 2Z 0 Z2 Z2 Z 0 0 0
QC7 εc = −1, ηc = −1, εqc = 1 R6 0 0 2Z 0 Z2 Z2 Z 0
QC8 εc = −1, ηc = −1, εqc = −1 R0 Z 0 0 0 2Z 0 Z2 Z2

PQC1
εc = 1, ηc = 1, εpq = 1, εpc = 1, εqc = 1

εc = −1, ηc = 1, εpq = 1, εpc = 1, εqc = 1
R1 Z2 Z 0 0 0 2Z 0 Z2

PQC2
εc = 1, ηc = 1, εpq = 1, εpc = 1, εqc =−1

εc = −1, ηc = 1, εpq = 1, εpc = 1, εqc =−1
R5 0 2Z 0 Z2 Z2 Z 0 0

PQC3
εc = 1, ηc = 1, εpq =−1, εpc =−1, εqc = 1

εc = −1, ηc =−1, εpq =−1, εpc = −1, εqc =−1
R2

0 Z⊕Z 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2

PQC4
εc = 1, ηc = 1, εpq = −1, εpc =−1, εqc = −1

εc =−1, ηc =−1, εpq =−1, εpc = −1, εqc = 1
R2

6 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0

PQC5
εc = 1, ηc = −1, εpq = 1, εpc = 1, εqc = 1

εc = −1, ηc = −1, εpq = 1, εpc = 1, εqc = 1
R5 0 2Z 0 Z2 Z2 Z 0 0

PQC6
εc = 1, ηc =−1, εpq = 1, εpc = 1, εqc =−1

εc =−1, ηc = −1, εpq = 1, εpc = 1, εqc = −1
R1 Z2 Z 0 0 0 2Z 0 Z2

PQC7
εc = 1, ηc =−1, εpq =−1, εpc = −1, εqc = 1

εc =−1, ηc = 1, εpq =−1, εpc =−1, εqc = −1
R2

4 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0

PQC8
εc = 1, η =−1, εpq =−1, εpc = −1, εqc = −1
εc =−1, ηc = 1, εpq =−1, εpc = −1, εqc = 1

R2
2 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0

PQC9

εc = 1, ηc = 1, εpq = 1, εpc =−1, εqc = 1
εc =−1, ηc = −1, εpq = 1, εpc = −1, εqc = 1
εc = 1, ηc = 1, εpq = 1, εpc = −1, εqc =−1

εc =−1, ηc =−1, εpq = 1, εpc =−1, εqc = −1

R7 0 0 0 2Z 0 Z2 Z2 Z

PQC10

εc = 1, ηc = 1, εpq =−1, εpc = 1, εqc = 1
εc =−1, ηc = 1, εpq =−1, εpc = 1, εqc = −1
εc = 1, ηc = 1, εpq =−1, εpc = 1, εqc =−1
εc = −1, ηc = 1, εpq =−1, εpc = 1, εqc = 1

C0 Z 0 Z 0 Z 0 Z 0

PQC11

εc = 1, ηc =−1, εpq = 1, εpc =−1, εqc = 1
εc = −1, ηc = 1, εpq = 1, εpc =−1, εqc = 1

εc = 1, ηc =−1, εpq = 1, εpc =−1, εqc = −1
εc =−1, ηc = 1, εpq = 1, εpc =−1, εqc = −1

R3 0 Z2 Z2 Z 0 0 0 2Z

PQC12

εc = 1, ηc =−1, εpq =−1, εpc = 1, εqc = 1
εc =−1, ηc =−1, εpq =−1, εpc = 1, εqc = −1
εc = 1, ηc =−1, εpq =−1, εpc = 1, εqc = −1
εc =−1, ηc = −1, εpq = −1, εpc = 1, εqc = 1

C0 Z 0 Z 0 Z 0 Z 0
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TABLE IV. Periodic table of real gap classification of topological defects in non-Hermitian systems. The rows correspond to the different
GBL symmetry classes, while the columns depend on δ = d − D. For classes with P and at least one of Q and K symmetries, we omitted the
signs of εq = 1 or εk = 1 or εq = εk = 1. Also we omitted the classes with P and at least one of Q and K symmetries and εq = −1 or εk = −1,
because they are equivalent to the corresponding classes with P and at least one of Q and K symmetries and εq = 1 or εk = 1. The topological
numbers in the table are stable strong topological numbers.

GBL Gen. Rel. Cl δ = 0 1 2 3 4 5 6 7

Non C0 Z 0 Z 0 Z 0 Z 0
P C1 0 Z 0 Z 0 Z 0 Z
Qa εq = 1 C2

0 Z⊕Z 0 ⊕ 0 Z⊕Z 0 ⊕ 0 Z⊕Z 0 ⊕ 0 Z⊕Z 0 ⊕ 0
Qb εq = −1 C1 0 Z 0 Z 0 Z 0 Z
K1a εk = 1, ηk = 1 R0 Z 0 0 0 2Z 0 Z2 Z2

K1b εk = −1, ηk = 1 R2 Z2 Z2 Z 0 0 0 2Z 0
K2a εk = 1, ηk = −1 R4 2Z 0 Z2 Z2 Z 0 0 0
K2b εk = −1, ηk = −1 R6 0 0 2Z 0 Z2 Z2 Z 0
C1 εc = 1, ηc = 1 R0 Z 0 0 0 2Z 0 Z2 Z2

C2 εc = 1, ηc = −1 R4 2Z 0 Z2 Z2 Z 0 0 0
C3 εc = −1, ηc = 1 R2 Z2 Z2 Z 0 0 0 2Z 0
C4 εc = −1, ηc = −1 R6 0 0 2Z 0 Z2 Z2 Z 0
PQ1 εpq = 1 C2

1 0 ⊕ 0 Z⊕Z 0 ⊕ 0 Z⊕Z 0 ⊕ 0 Z⊕Z 0 ⊕ 0 Z⊕Z
PQ2 εpq = −1 C0 Z 0 Z 0 Z 0 Z 0
PK1 ηk = 1, εpk = 1 R1 Z2 Z 0 0 0 2Z 0 Z2

PK2 ηk = −1, εpk = 1 R5 0 2Z 0 Z2 Z2 Z 0 0
PK3a ηk = 1, εpk = −1 R7 0 0 0 2Z 0 Z2 Z2 Z
PK3b ηk = −1, εpk = −1 R3 0 Z2 Z2 Z 0 0 0 2Z

PC1
εc = 1, ηc = 1, εpc = 1

εc = −1, ηc = 1, εpc = 1
R1 Z2 Z 0 0 0 2Z 0 Z2

PC2
εc = 1, ηc = 1, εpc = −1

εc =−1, ηc = −1, εpc = −1
R7 0 0 0 2Z 0 Z2 Z2 Z

PC3
εc = 1, ηc = −1, εpc = 1

εc = −1, ηc = −1, εpc = 1
R5 0 2Z 0 Z2 Z2 Z 0 0

PC4
εc = 1, ηc =−1, εpc = −1
εc = −1, ηc = 1, εpc = −1

R3 0 Z2 Z2 Z 0 0 0 2Z

QC1a εq = 1, εc = 1, ηc = 1, εqc = 1 R2
0 Z⊕Z 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2

QC1b εq = −1, εc = 1, ηc = 1, εqc = 1 R1 Z2 Z 0 0 0 2Z 0 Z2

QC2a εq = 1, εc = 1, ηc = 1, εqc = −1 C0 Z 0 Z 0 Z 0 Z 0
QC2b εq = −1, εc = 1, ηc = 1, εqc = −1 R7 0 0 0 2Z 0 Z2 Z2 Z
QC3a εq = 1, εc = 1, ηc = −1, εqc = 1 R2

4 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0
QC3b εq = −1, εc = 1, ηc = −1, εqc = 1 R5 0 2Z 0 Z2 Z2 Z 0 0
QC4a εq = 1, εc = 1, ηc = −1, εqc = −1 C0 Z 0 Z 0 Z 0 Z 0
QC4b εq = −1, εc = 1, ηc = −1, εqc = −1 R3 0 Z2 Z2 Z 0 0 0 2Z
QC5a εq = 1, εc = −1, ηc = 1, εqc = 1 R2

2 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0
QC5b εq = −1, εc = −1, ηc = 1, εqc = 1 R1 Z2 Z 0 0 0 2Z 0 Z2

QC6a εq = 1, εc = −1, ηc = 1, εqc = −1 C0 Z 0 Z 0 Z 0 Z 0
QC6b εq = −1, εc = −1, ηc = 1, εqc = −1 R3 0 Z2 Z2 Z 0 0 0 2Z
QC7a εq = 1, εc = −1, ηc = −1, εqc = 1 R2

6 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0
QC7b εq = −1, εc = −1, ηc = −1, εqc = 1 R5 0 2Z 0 Z2 Z2 Z 0 0
QC8a εq = 1, εc = −1, ηc = −1, εqc = −1 C0 Z 0 Z 0 Z 0 Z 0
QC8b εq = −1, εc = −1, ηc = −1, εqc = −1 R7 0 0 0 2Z 0 Z2 Z2 Z

PQC1
εc = 1, ηc = 1, εpq = 1, εpc = 1, εqc = 1

εc =−1, ηc = 1, εpq = 1, εpc = 1, εqc = 1
R2

1 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2

PQC2
εc = 1, ηc = 1, εpq = 1, εpc = 1, εqc = −1

εc =−1, ηc = 1, εpq = 1, εpc = 1, εqc =−1
C1 0 Z 0 Z 0 Z 0 Z

PQC3
εc = 1, ηc = 1, εpq = −1, εpc =−1, εqc = 1

εc = −1, ηc = −1, εpq = −1, εpc =−1, εqc = −1
R0 Z 0 0 0 2Z 0 Z2 Z2

PQC4
εc = 1, ηc = 1, εpq =−1, εpc = −1, εqc =−1

εc = −1, ηc =−1, εpq =−1, εpc =−1, εqc = 1
R6 0 0 2Z 0 Z2 Z2 Z 0

PQC5
εc = 1, ηc =−1, εpq = 1, εpc = 1, εqc = 1

εc =−1, ηc =−1, εpq = 1, εpc = 1, εqc = 1
R2

5 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0 0 ⊕ 0

PQC6
εc = 1, ηc =−1, εpq = 1, εpc = 1, εqc =−1

εc = −1, ηc =−1, εpq = 1, εpc = 1, εqc =−1
C1 0 Z 0 Z 0 Z 0 Z

PQC7
εc = 1, ηc = −1, εpq = −1, εpc =−1, εqc = 1

εc = −1, ηc = 1, εpq = −1, εpc =−1, εqc =−1
R4 2Z 0 Z2 Z2 Z 0 0 0

PQC8
εc = 1, ηc = −1, εpq = −1, εpc =−1, εqc =−1
εc = −1, ηc = 1, εpq = −1, εpc =−1, εqc = 1

R2 Z2 Z2 Z 0 0 0 2Z 0
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TABLE IV. (Continued.)

GBL Gen. Rel. Cl δ = 0 1 2 3 4 5 6 7

PQC9a
εc = 1, ηc = 1, εpq = 1, εpc = −1, εqc = 1

εc = −1, ηc =−1, εpq = 1, εpc =−1, εqc = 1
R2

7 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z

PQC9b
εc = 1, ηc = 1, εpq = 1, εpc = −1, εqc = −1

εc = −1, ηc = −1, εpq = 1, εpc = −1, εqc =−1
C1 0 Z 0 Z 0 Z 0 Z

PQC10a
εc = 1, ηc = 1, εpq = −1, εpc = 1, εqc = 1

εc = −1, ηc = 1, εpq = −1, εpc = 1, εqc =−1
R0 Z 0 0 0 2Z 0 Z2 Z2

PQC10b
εc = 1, ηc = 1, εpq = −1, εpc = 1, εqc = −1
εc =−1, ηc = 1, εpq = −1, εpc = 1, εqc = 1

R2 Z2 Z2 Z 0 0 0 2Z 0

PQC11a
εc = 1, ηc = −1, εpq = 1, εpc = −1, εqc = 1
εc =−1, ηc = 1, εpq = 1, εpc = −1, εqc = 1

R2
3 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z

PQC11b
εc = 1, ηc = −1, εpq = 1, εpc = −1, εqc =−1
εc = −1, ηc = 1, εpq = 1, εpc = −1, εqc =−1

C1 0 Z 0 Z 0 Z 0 Z

PQC12a
εc = 1, ηc = −1, εpq = −1, εpc = 1, εqc = 1

εc = −1, ηc = −1, εpq = −1, εpc = 1, εqc =−1
R4 2Z 0 Z2 Z2 Z 0 0 0

PQC12b
εc = 1, ηc = −1, εpq = −1, εpc = 1, εqc =−1
εc = −1, ηc =−1, εpq =−1, εpc = 1, εqc = 1

R6 0 0 2Z 0 Z2 Z2 Z 0

TABLE V. Periodic table of imaginary gap classification of topological defects in non-Hermitian systems. The rows correspond to different
GBL symmetry classes, while the columns depend on δ = d − D. For classes with P and at least one of Q and K symmetries, we omitted the
signs of εq = 1 or εk = 1 or εq = εk = 1. Also we omitted the classes with P and at least one of Q and K symmetries and εq = −1 or εk = −1,
because they are equivalent to the corresponding classes with P and at least one of Q and K symmetries and εq = 1 or εk = 1. The topological
numbers in the table are stable strong topological numbers.

GBL Gen. Rel. Cl δ = 0 1 2 3 4 5 6 7

Non C0 Z 0 Z 0 Z 0 Z 0
P C1 0 Z 0 Z 0 Z 0 Z
Qa εq = 1 C1 0 Z 0 Z 0 Z 0 Z
Qb εq = −1 C2

0 Z⊕Z 0 ⊕ 0 Z⊕Z 0 ⊕ 0 Z⊕Z 0 ⊕ 0 Z⊕Z 0 ⊕ 0
K1a εk = 1, ηk = 1 R2 Z2 Z2 Z 0 0 0 2Z 0
K1b εk = −1, ηk = 1 R0 Z 0 0 0 2Z 0 Z2 Z2

K2a εk = 1, ηk = −1 R6 0 0 2Z 0 Z2 Z2 Z 0
K2b εk = −1, ηk = −1 R4 2Z 0 Z2 Z2 Z 0 0 0
C1 εc = 1, ηc = 1 R0 Z 0 0 0 2Z 0 Z2 Z2

C2 εc = 1, ηc = −1 R4 2Z 0 Z2 Z2 Z 0 0 0
C3 εc = −1, ηc = 1 R2 Z2 Z2 Z 0 0 0 2Z 0
C4 εc = −1, ηc = −1 R6 0 0 2Z 0 Z2 Z2 Z 0
PQ1 εpq = 1 C2

1 0 ⊕ 0 Z⊕Z 0 ⊕ 0 Z⊕Z 0 ⊕ 0 Z⊕Z 0 ⊕ 0 Z⊕Z
PQ2 εpq = −1 C0 Z 0 Z 0 Z 0 Z 0
PK1 ηk = 1, εpk = 1 R1 Z2 Z 0 0 0 2Z 0 Z2

PK2 ηk = −1, εpk = 1 R5 0 2Z 0 Z2 Z2 Z 0 0
PK3a ηk = 1, εpk =−1 R3 0 Z2 Z2 Z 0 0 0 2Z
PK3b ηk =−1, εpk =−1 R7 0 0 0 2Z 0 Z2 Z2 Z

PC1
εc = 1, ηc = 1, εpc = 1

εc =−1, ηc = 1, εpc = 1
R1 Z2 Z 0 0 0 2Z 0 Z2

PC2
εc = 1, ηc = 1, εpc =−1

εc = −1, ηc =−1, εpc =−1
R7 0 0 0 2Z 0 Z2 Z2 Z

PC3
εc = 1, ηc =−1, εpc = 1

εc =−1, ηc =−1, εpc = 1
R5 0 2Z 0 Z2 Z2 Z 0 0

PC4
εc = 1, ηc = −1, εpc =−1
εc =−1, ηc = 1, εpc =−1

R3 0 Z2 Z2 Z 0 0 0 2Z

QC1a εq = 1, εc = 1, ηc = 1, εqc = 1 R1 Z2 Z 0 0 0 2Z 0 Z2

QC1b εq = −1, εc = 1, ηc = 1, εqc = 1 R2
0 Z⊕Z 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2

QC2a εq = 1, εc = 1, ηc = 1, εqc = −1 R7 0 0 0 2Z 0 Z2 Z2 Z
QC2b εq = −1, εc = 1, ηc = 1, εqc = −1 C0 Z 0 Z 0 Z 0 Z 0
QC3a εq = 1, εc = 1, ηc = −1, εqc = 1 R5 0 2Z 0 Z2 Z2 Z 0 0
QC3b εq = −1, εc = 1, ηc = −1, εqc = 1 R2

4 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0
QC4a εq = 1, εc = 1, ηc = −1, εqc = −1 R3 0 Z2 Z2 Z 0 0 0 2Z
QC4b εq = −1, εc = 1, ηc = −1, εqc = −1 C0 Z 0 Z 0 Z 0 Z 0
QC5a εq = 1, εc = −1, ηc = 1, εqc = 1 R1 Z2 Z 0 0 0 2Z 0 Z2

QC5b εq = −1, εc = −1, ηc = 1, εqc = 1 R2
2 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0
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TABLE V. (Continued.)

GBL Gen. Rel. Cl δ = 0 1 2 3 4 5 6 7

QC6a εq = 1, εc = −1, ηc = 1, εqc = −1 R3 0 Z2 Z2 Z 0 0 0 2Z
QC6b εq = −1, εc = −1, ηc = 1, εqc = −1 C0 Z 0 Z 0 Z 0 Z 0
QC7a εq = 1, εc = −1, ηc = −1, εqc = 1 R5 0 2Z 0 Z2 Z2 Z 0 0
QC7b εq = −1, εc = −1, ηc = −1, εqc = 1 R2

6 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0
QC8a εq = 1, εc = −1, ηc = −1, εqc = −1 R7 0 0 0 2Z 0 Z2 Z2 Z
QC8b εq = −1, εc = −1, ηc = −1, εqc = −1 C0 Z 0 Z 0 Z 0 Z 0

PQC1
εc = 1, ηc = 1, εpq = 1, εpc = 1, εqc = 1

εc = −1, ηc = 1, εpq = 1, εpc = 1, εqc = 1
R2

1 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2

PQC2
εc = 1, ηc = 1, εpq = 1, εpc = 1, εqc =−1

εc =−1, ηc = 1, εpq = 1, εpc = 1, εqc =−1
C1 0 Z 0 Z 0 Z 0 Z

PQC3
εc = 1, ηc = 1, εpq = −1, εpc =−1, εqc = 1

εc = −1, ηc =−1, εpq =−1, εpc =−1, εqc = −1
R0 Z 0 0 0 2Z 0 Z2 Z2

PQC4
εc = 1, ηc = 1, εpq = −1, εpc = −1, εqc =−1

εc = −1, ηc =−1, εpq =−1, εpc = −1, εqc = 1
R6 0 0 2Z 0 Z2 Z2 Z 0

PQC5
εc = 1, ηc =−1, εpq = 1, εpc = 1, εqc = 1

εc =−1, ηc = −1, εpq = 1, εpc = 1, εqc = 1
R2

5 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0 0 ⊕ 0

PQC6
εc = 1, ηc =−1, εpq = 1, εpc = 1, εqc =−1

εc =−1, ηc =−1, εpq = 1, εpc = 1, εqc =−1
C1 0 Z 0 Z 0 Z 0 Z

PQC7
εc = 1, ηc =−1, εpq =−1, εpc =−1, εqc = 1

εc = −1, ηc = 1, εpq = −1, εpc =−1, εqc = −1
R4 2Z 0 Z2 Z2 Z 0 0 0

PQC8
εc = 1, ηc = −1, εpq = −1, εpc =−1, εqc = −1
εc =−1, ηc = 1, εpq =−1, εpc =−1, εqc = 1

R2 Z2 Z2 Z 0 0 0 2Z 0

PQC9a
εc = 1, ηc = 1, εpq = 1, εpc = −1, εqc = 1

εc =−1, ηc =−1, εpq = 1, εpc =−1, εqc = 1
C1 0 Z 0 Z 0 Z 0 Z

PQC9b
εc = 1, ηc = 1, εpq = 1, εpc = −1, εqc =−1

εc = −1, ηc =−1, εpq = 1, εpc =−1, εqc = −1
R2

7 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z

PQC10a
εc = 1, ηc = 1, εpq =−1, εpc = 1, εqc = 1

εc =−1, ηc = 1, εpq =−1, εpc = 1, εqc =−1
R2 Z2 Z2 Z 0 0 0 2Z 0

PQC10b
εc = 1, ηc = 1, εpq = −1, εpc = 1, εqc =−1
εc =−1, ηc = 1, εpq =−1, εpc = 1, εqc = 1

R0 Z 0 0 0 2Z 0 Z2 Z2

PQC11a
εc = 1, ηc =−1, εpq = 1, εpc =−1, εqc = 1
εc =−1, ηc = 1, εpq = 1, εpc =−1, εqc = 1

C1 0 Z 0 Z 0 Z 0 Z

PQC11b
εc = 1, ηc =−1, εpq = 1, εpc = −1, εqc =−1
εc =−1, ηc = 1, εpq = 1, εpc = −1, εqc =−1

R2
3 0 ⊕ 0 Z2 ⊕Z2 Z2 ⊕Z2 Z⊕Z 0 ⊕ 0 0 ⊕ 0 0 ⊕ 0 2Z⊕ 2Z

PQC12a
εc = 1, ηc =−1, εpq =−1, εpc = 1, εqc = 1

εc = −1, ηc =−1, εpq =−1, εpc = 1, εqc = −1
R6 0 0 2Z 0 Z2 Z2 Z 0

PQC12b
εc = 1, ηc =−1, εpq =−1, εpc = 1, εqc =−1
εc =−1, ηc =−1, εpq =−1, εpc = 1, εqc = 1

R4 2Z 0 Z2 Z2 Z 0 0 0

Then we can define the Z topological number as

n = (d − 1)!

(2d − 1)!(2π i)d

∫
T d ×Sd−1

Tr[(U1dU †
1 )2d−1]. (34)

Class PQ1. The Hamiltonian of a point defect is H (k, r)
with the P and Q symmetries described by p = q = σz. Con-
sider the symmetry constraints σzH (k, r) = −H (k, r)σz and
σzH†(k, r) = H (k, r)σz as well as the polar decomposition is
H = UP, and thus U can be written as

H (k, r) =
[

0 U1(k, r)
−U †

1 (k, r) 0

]
. (35)

Then we can define the Z topological number by Eq. (34).
Class PC1. The Hamiltonian of a point defect is H (k, r)

with the P symmetry described by p = σz and C symme-
try described by c = σ0 as well as the polar decomposition
H = UP. Consider the symmetry constraints σzU (k, r) =
−U (k, r)σz and U T (−k, r) = U (k, r), and thus U has the
following form:

U (k, r) =
[

0 U1(k, r)
U T

1 (−k, r) 0

]
. (36)

Then we can define the Z topological number by Eq. (34).

Class PC3. The Hamiltonian of a point defect is H (k, r)
with P symmetry described by p = σz ⊗ σ0 and C symmetry
described by c = σ0 ⊗ σy as well as the polar decomposi-
tion H = UP. Consider the symmetry constraints pU (k, r) =
−U (k, r)p and cU T (−k, r) = U (k, r)c, and thus U has the
following form:

U (k, r) =
[

0 U1(k, r)
σyU T

1 (−k, r)σy 0

]
. (37)

Then we can define the Z topological number by Eq. (34).
Class PQC1 and class QC5. If we chose q = I, the

Hamiltonian reduces to a Hermitian Hamiltonian. And the
non-Hermitian classes of PQC1 and QC5 reduce to Hermitian
classes of BDI and D. So we can define the Z and Z2

topological numbers for classes of PQC1 and QC5 the same as
the Hermitian classes of BDI and D [28], which is consistent
with our classification.

V. EXAMPLES OF POINT DEFECT MODELS

To gain an intuitive understanding of nontrivial topolog-
ical defects in non-Hermitian systems, we construct some
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examples with a point gap. Through the study of some con-
crete models, we discuss the correspondence between topo-
logical number and zero modes at the defect.

A. Point defects in 1D PC1 class

Consider the one-dimensional (1D) lattice models de-
scribed by

H1 =
∑

n

[t1(a†
nbn + b†

nan) + t2eiθ1 (b†
nan+1 + a†

n+1bn)] (38)

and

H2 =
∑

n

[t3(a†
nbn + b†

nan) + t4eiθ2 (b†
nan+1 + a†

n+1bn)]. (39)

These two Hamiltonians have the same forms but with differ-
ent parameters. If we consider the periodic boundary condi-
tion, both of them can be represented in the momentum space
after a Fourier transformation. The corresponding Hamiltoni-
ans in the k space are

H1(k) =
[

0 t1 + t2eiθ1−ik

t1 + t2eiθ1+ik 0

]
(40)

and

H2(k) =
[

0 t3 + t4eiθ2−ik

t3 + t4eiθ2+ik 0

]
. (41)

Both the Hamiltonians belong to the PC1 Class as they have
P and C symmetries with p = σz and c = σ0. The topolog-
ical properties of the systems are characterized by the Z
topological numbers, i.e., n1 = 1

2π i

∫ 2π

0 dk∂k ln(t1 + t2eiθ1−ik )

and n2 = 1
2π i

∫ 2π

0 dk∂k ln(t3 + t4eiθ2−ik ) for H1 and H2,
respectively.

Now we connect H1 and H2 together end to end to form a
new Hamiltonian H . As schematically displayed in Fig. 3(a),
H1 and H2 are coupled together with a coupling constant t .
Each connected point can be viewed as a topological defect.
The topological invariant for the defect is characterized by
W = n2 − n1. In Fig. 3(b), we display W versus t1 by fixing
t = t2 = t3 = 1, t4 = 0.5, θ1 = π/3 and θ2 = π/4. In the re-
gion of t1 < 1, we have W = 1, which indicates H1 and H2 in
topologically different phases. Correspondingly, we observe
the existence of zero mode states in the region of t1 < 1 as
shown in Fig. 3(c). The zero mode states are found to be
localized at the places of defects, according to Fig. 3(d) for
t1 = 0.5.

Next we consider the continuous model:

H (k, x) = k̂σz + [m(x) + iα]σx, (42)

where k̂ represents the momentum operator (k̂ = −i∂x in the
coordinate representation), α is a real constant and m(x) is a
function of x, which changes sign as x crosses the zero point.
Here we take |α| 	 |m(x)| with x ∈ S0, where S0 is the 0D
loop around the defect. When α = 0, this model reduces to the
Jackiw-Rebbi model [20,49]. The Hamiltonian has P and C
symmetries with εc = −1, ηc = 1, c = σz and p = σy, and be-
longs to the PC1 class. The topological defect is characterized

FIG. 3. Parameters are set as t = t2 = t3 = 1, t4 = 0.5,
θ1 = π/3, and θ2 = π/4. The number of cells for H1 is 100, and
the number of cells for H2 is also 100. (a) Schematic diagram, the
left part represents H1 and the right part represents H2. (b) The
topological number W versus t1. (c) Energy spectrum as a function
of t1. (d) The spatial distributions for zero modes of the system with
t1 = 0.5. There is a zero mode at the place of each connected point
(defect).

by a Z topological number. When α continuously changes
from 0 to nonzero, det(H ) �= 0 on S0 because |α| 	 |m(x)|
on S0. Then the topological number is the same as that of
Jackiw-Rebbi model, i.e.,

W = 1
2 [sgn(m(x1)) − sgn(m(x2))], (43)

where x1 > 0 and x2 < 0 with x1, x2 ∈ S0.
When m = bx (b > 0 is a constant), in the momentum

representation, x̂ = i∂k and the Hamiltonian can be written as

H (k, i∂k ) = kσz + (bi∂k + iα)σx. (44)

Define H ′ = eαk/bHe−αk/b, then H ′ is given by

H ′(k̂, x̂) = k̂σz + bx̂σx, (45)

which is a special form of Jackiw-Rebbi Hamiltonian and
has a topologically protected zero mode at the defect. Denote
the zero mode state of H ′ as 
′

0(x) = 〈x|
′
0〉, then H has

a topologically protected zero mode 
0(x) = eiα∂x/b
′
0(x) at

the defect. Our results show that there is a correspondence
between zero modes of defect and the topological number of
defect.

For the non-Hermitian continuous model described by

H (k, x) = (−i∂x + iβ )σz + m(x)σx, (46)

we can make a similarity transformation H ′ = e−βxHeβx and
get

H ′(k̂, x̂) = −i∂xσz + m(x)σx, (47)

which is a standard Jackiw-Rebbi Hamiltonian. Similarly, we
conclude that H has a topologically protected zero mode

0(x) = eβx
′

0(x), where 
′
0(x) is the zero mode wave func-

tion of H ′.
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B. Point defects in 1D K1 class

Consider a toy model described by

H =
{

eik̂, x < 0
1, x > 0

, (48)

where k̂ represents the momentum operator. The model be-
longs to the K1 class. The Z topological number is given
by W = 1

2π i

∫ 2π

0 dk∂k ln(eik ) = 1, which indicates the system
belonging to a topological nontrivial class. It is straightfor-
ward to check that � = const is an eigenfunction of the
Hamiltonian with the eigenvalue 1. For this case, we do not
observe the correspondence between the zero mode and Z
topological number.

C. Point defects in 2D PC1 class

Consider a two-dimensional (2D) Hamiltonian described
by

H (k̂, r̂) = vk̂xγ1 + vk̂yγ2 + (�1 + iα1)γ3 + (�2 + iα2)γ4

=
[

vσ · k � + iα
�∗ + iα∗ −vσ · k

]
, (49)

where (γ1, γ2, γ3, γ4) = (τzσx, τzσy, τx,−τy), k = (k̂x, k̂y)
and σ = (σx, σy). σx,y,z and τx,y,z are Pauli matrices in
the spin and particle-hole spaces. Here, �1 and �2 are
functions of r̂ = (x̂, ŷ), α1 and α2 are real constants,
�1 + i�2 = � = |�|eiφ and α1 + iα2 = α. We take
|α1| 	 |�1|, |α2| 	 |�2| on S1, where S1 is the loop
around the defect. When α1 = α2 = 0, this model reduces to
the Jackiw-Rossi model [21,28]. The Hamiltonian has P and
C symmetries with εc = −1, ηc = 1, c = τyσy and p = τzσz,
and thus belongs to the PC1 class. The topological defect is
characterized by a Z topological number. When α1 and α2

continuous change from 0 to nonzero, the det(H (k, r)) �= 0
on S1 in Eq. (36) because |α1| 	 |�1| and |α2| 	 |�2| on S1.
Then the topological number is same as that of Jackiw-Rossi
model with

n = 1

2π

∫
s1

dφ. (50)

When �1 = bx̂ and �2 = bŷ (b is a real constant), in mo-
mentum representation, the Hamiltonian takes the following
form:

H (k, i∂k) = vγ1kx + vγ2ky + γ3(bi∂kx + iα1)

+ γ4(bi∂ky + iα2). (51)

Define H ′ = e
α1kx+α2ky

b He− α1kx+α2ky
b , then H ′ is given by

H ′(k̂, r̂) = vγ1k̂x + vγ2k̂y + γ3bx̂ + γ4bŷ, (52)

which is a special form of Jackiw-Rossi Hamiltonian and has
a topologically protected zero mode at the defect. Denote the
zero mode state of H ′ as 
′

0(r) = 〈r|
′
0〉, then H has a topo-

logically protected zero mode 
0(r) = eiα1∂x/b+iα2∂y/b
′
0(r) at

the defect.
When we take �1 = b(x̂2 − ŷ2) and �2 = 2bx̂ŷ, the corre-

sponding topological number is given by n = 2. We can prove
that there are two topologically protected zero modes at the

defect by a similar method. In the momentum space, we can
write the Hamiltonian explicitly as

H (k, i∂k) = vγ1kx + vγ2ky + γ3
[
b
(−∂2

kx + ∂2
ky

) + iα1
]

+ γ4(−2b∂kx∂ky + iα2). (53)

Define H ′ = e
√

i(β1kx+β2ky )He−√
i(β1kx+β2ky ), where β1 and β2

fulfill that −bβ2
1 + bβ2

2 + α1 = 0 and −2bβ1β2 + α2 = 0,
then H ′ is given by

H ′(k̂, r̂) = vγ1k̂x + vγ2k̂y + γ3b(x̂2 − ŷ2) + γ42bx̂ŷ. (54)

The Hermitian Hamiltonian H ′ has two zero modes, then
H also has two zero modes at the defects. The study can
be directly extended to situations with n > 2. There is a
correspondence between the zero modes of defects and the
topological number in the 2D PC1 class.

For the non-Hermitian continuous model described by

H (k, r) = γ1(−iv∂x + iβ1) + γ2(−iv∂y + iβ2)

+b�1γ3 + b�2γ4, (55)

where �1 and �2 are functions of r, � = �1 + i�2 has non-
trivial winding on S1, and S1 is the loop around the defect. we
can make a similarity transformation H ′ = e− β1x+β2y

v He
β1x+β2y

v

and get

H ′(k̂, r̂) = vk̂xγ1 + vk̂yγ2 + b�1γ3 + b�2γ4, (56)

which is a standard Jackiw-Rossi Hamiltonian. Similarly, we
conclude that H has a topologically protected zero mode

0(r) = e

β1x+β2y
v 
′

0(r), where 
′
0(r) is the zero mode wave

function of H ′.

D. Point defects in 2D C3 class

Consider the Hamiltonian:

H (k̂, r̂) = vk̂xγ1 + vk̂yγ2 + (�1 + iα1)γ3 + (�2 + iα2)γ4

+ hσz − μτz

=
[
vσ · k + σzh − μ � + iα

�∗ + iα∗ −vσ · k + σzh + μ

]
, (57)

where the first four terms are the same as Eq. (49), h is a mag-
netic field and μ is a chemical potentia. When α1 = α2 = 0,
this model is Fu-Kane model [86–88]. The Hamiltonian has
C symmetries with εc = −1, ηc = 1 and c = τyσy and belongs
to the C3 class. The h and μ terms couple the zero modes that
we discussed in the above section. The topological properties
of the system are characterized by a Z2 topological number.
Consider α1 and α2 continuously changing from 0 to nonzero.
In this process, det(H (k, r)) �= 0 on S1 (loop round the de-
fect) because |α1| 	 |�1| and |α2| 	 |�2| on S1. Then the
topological number is the same as the Hermitian case [86,87]
given by

n = 1

2π

∫
s1

dφ mod 2. (58)

When �1 = bx̂ and �2 = bŷ (b is a real constant), the
topological invariant is given by n = 1. Next, we demonstrate
the existence of a zero mode at the defect. In momentum
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representation, the Hamiltonian is written as

H (k, i∂k) = vγ1kx + vγ2ky + γ3(bi∂kx + iα1)

+ γ4(bi∂ky + iα2) + hσz − μτz. (59)

Define H ′ = e
α1kx+α2ky

b He− α1kx+α2ky
b , then H ′ is given by

H ′(k̂, r̂) = vγ1k̂x + vγ2k̂y + γ3bx̂ + γ4bŷ + hσz − μτz, (60)

which is a special form of Fu-Kane Hamiltonian and has a
topological protected zero mode at the defect. Denote the
zero mode state of the Fu-Kane Hamiltonian H ′ as 
′

1(r) =
〈r|
′

1〉, then H has a topological protected zero mode 
1(r) =
eiα1∂x/b+iα2∂y/b
′

1(r) at the defect. When we choose �1 =
b(x̂2 − ŷ2) and �2 = 2bx̂ŷ, the corresponding topological
number is n = 0. And we can demonstrate that there is no
topologically protected zero mode at the defect by a similar
method. There is a correspondence between the zero mode of
defect and the topological number in the 2D C3 class.

For the non-Hermitian continuous model described by

H (k, r) = γ1(−iv∂x + iβ1) + γ2(−iv∂y + iβ2)

+ �1γ3 + �2γ4 + hσz − μτz, (61)

where �1 and �2 are functions of r, � = �1 + i�2 has odd
winding number on S1, and S1 is the loop around the defect.
We can prove that there is topologically protected zero mode
by a similar method.

E. Point defects in 2D PQC1 and QC5 class

Consider the Hamiltonian Eq. (49) with α1 = α2 = 0, i.e.,
the Jackiw-Rossi model. This model has one more sym-
metry Q than Eq. (49) with q = I. According to the BL
classification, the Jackiw-Rossi model belongs to the PQC1
class, and the Hermitian model has a correspondence between
zero modes and Z topological number. Similarly, consider
the Hamiltonian (57) with α1 = α2 = 0, i.e., the Fu-Kane
model. This model has one more symmetry Q than Eq. (57)
with q = I. According to the BL classification, the Fu-Kane
model belongs to the QC5 class, and the Hermitian model
has a correspondence between zero modes and Z2 topological
number.

VI. SUMMARY

In summary, we have studied topological defects in non-
Hermitian systems with point, real, and imaginary gaps and
made a topological classification for all the BL or GBL classes
in all dimensions. While the BL class covers all 38 nonequiv-
alent symmetry classes for the point gap systems, we find that
a full classification for non-Hermitian systems with line gap
should include 54 nonequivalent GBL classes, which are a
natural generalization of BL classes. The periodical classifica-
tion tables of point gap defects are summarized in Table II for
the AZ classes and in Table III for the BL classes with point
gap, respectively, and periodical classification tables of real
and imaginary gap defects are summarized in Tables IV and
V (GBL class), respectively. By considering some concrete
examples of point gap defects, we constructed explicitly the
topological invariants. Through the study of some concrete
models, we calculated explicitly the topological invariants and

discussed the correspondence between topological invariants
and zero modes at the defect for some classes.
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APPENDIX A: REAL GAP CLASSIFICATION

According to the discussion in the main text, the clas-
sification is equivalent to the classification of a Hermitian
Hamiltonian with corresponding symmetries:

H = εkkH∗k−1, kk∗ = ηkI K sym.; (A1)

H = εqqHq−1, q2 = I Q sym.; (A2)

H = εccH∗c−1, cc∗ = ηcI C sym.; (A3)

H = −pH p−1, p2 = I P sym. (A4)

We can use Clifford algebra to represent the Hamiltonian:

H (k, r) = γ0 + k1γ
k
1 + · · · + kdγ

k
d + r1γ

r
1 + · · · + rDγ r

D.

(A5)

Define K = kK, Q = q, C = cK, and P = p, where K is a
complex conjugate operator. We can get the space of mass
term by constructing the Clifford algebra’s extension. The cor-
respondence between Clifford algebra’s extension and space
of mass term was listed in Tables I and VI. Then we get the
topological classification by calculating the homotopy group
of the space of mass term. The following is the topological
classification for some GBL classes.

Class Non. The generators are {γ0, γ
k
1 , γ k

2 , . . . , γ k
d ,

γ r
1 , γ r

2 , . . . , γ r
D}. Clifford algebra’s extension is

{γ k
1 , γ k

2 , . . . , γ k
d , γ r

1 , γ r
2 , . . . , γ r

D} → {γ0, γ
k
1 , γ k

2 , . . . , γ k
d , γ r

1 ,

γ r
2 , . . . , γ r

D} = Cld+D → Cld+D+1. The space of mass term
is Cd+D = C−(d−D) = C−δ . The topological classification is
determined by π0(C−δ ) = Z (0) for even (odd) δ.

Class P. The generators are {γ0, γ
k
1 , γ k

2 , . . . , γ k
d , γ r

1 ,

γ r
2 , . . . , γ r

D, P}. Clifford algebra’s extension is {γ k
1 , γ k

2 , . . . ,

γ k
d , γ r

1 , γ r
2 , . . . , γ r

D, P}→{γ0, γ
k
1 , γ k

2 , . . . , γ k
d , γ r

1 , γ r
2 , . . . , γ r

D,

P} = Cld+D+1 → Cld+D+2. The space of mass term is

TABLE VI. The correspondence between Clifford algebra’s ex-
tension Clp,q+p ⊗ Cl0,m → Clp,p+q+1 ⊗ Cl0,m(Clq+p−2,p ⊗ Cl0,m →
Clq+p−1,p ⊗ Cl0,m) and the space of mass term.

m(mod 8) Space of mass term π0

0 Rq π0(Rq)
1 Rq × Rq π0(Rq ) ⊕ π0(Rq)
2 Rq π0(Rq)
3 Cq π0(Cq)
4 Rq+4 π0(Rq+4)
5 Rq+4 × Rq+4 π0(Rq+4) ⊕ π0(Rq+4)
6 Rq+4 π0(Rq+4)
7 Cq+4 π0(Cq+4)
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Cd+D+1 = C−(d−D)+1 = C−δ+1. The topological classification
is determined by π0(C−δ+1) = 0 (Z) for even (odd) δ.

Class Qa. The generators are {γ0, γ
k
1 , γ k

2 , . . . , γ k
d , γ r

1 ,

γ r
2 , . . . , γ r

D, Q}. Clifford algebra’s extension is {γ k
1 ,

γ k
2 , . . . , γ k

d , γ r
1 , γ r

2 , . . . , γ r
D} ⊗ {Q} → {γ0, γ

k
1 , γ k

2 , . . . , γ k
d ,

γ r
1 , γ r

2 , . . . , γ r
D} ⊗ {Q} = Cld+D ⊗ Cl1 → Cld+D+1 ⊗ Cl1.

The space of mass term is Cd+D × Cd+D = C−δ × C−δ . The
topological classification is determined by π0(C−δ × C−δ ) =
Z⊕Z (0 ⊕ 0) for even (odd) δ.

Class C1. The generators are {γ0, γ
k
1 , γ k

2 , . . . , γ k
d , γ r

1 ,

γ r
2 , . . . , γ r

D,C, J}. Clifford algebra’s extension is {γ k
1 ,

γ k
2 , . . . , γ k

d , Jγ r
1 , Jγ r

2 , . . . , Jγ r
D,C, JC} → {Jγ0, γ

k
1 , γ k

2 , . . . ,

γ k
d , Jγ r

1 , Jγ r
2 , . . . , Jγ r

D,C, JC} = ClD,d+2 → ClD+1,d+2. The
space of mass term is RD−d = R−δ .

Class PQ1. The generators are {γ0, γ
k
1 , γ k

2 , . . . ,

γ k
d , γ r

1 , γ r
2 , . . . , γ r

D, P, Q}. Clifford algebra’s exten-
sion is {γ k

1 , γ k
2 , . . . , γ k

d , γ r
1 , γ r

2 , . . . , γ r
D, P} ⊗ {Q} →

{γ0, γ
k
1 , γ k

2 , . . . , γ k
d , γ r

1 , γ r
2 , . . . , γ r

D, P} ⊗ {Q} = Cld+D+1 ⊗
Cl1 → Cld+D+2 ⊗ Cl1. The space of mass term is
Cd+D+1 × Cd+D+1 = C−δ+1 × C−δ+1. The topological
classification is determined by π0(C−δ+1 × C−δ+1) =
Z⊕Z (0 ⊕ 0) for odd (even) δ.

Class PK1. The generators are {γ0, γ
k
1 , γ k

2 , . . . , γ k
d ,

γ r
1 , γ r

2 , . . . , γ r
D, P, K, J}. Clifford algebra’s extension is

{γ k
1 , γ k

2 , . . . , γ k
d , Jγ r

1 , Jγ r
2 , . . . , Jγ r

D, JP, K, JK} → {Jγ0, γ
k
1 ,

γ k
2 , . . . , γ k

d , Jγ r
1 , Jγ r

2 , . . . , Jγ r
D, JP, K, JK} = ClD+1,d+2 →

ClD+2,d+2. The space of mass term is RD−d+1 = R1−δ .
Class PC1. The generators are {γ0, γ

k
1 , γ k

2 , . . . , γ k
d ,

γ r
1 , γ r

2 , . . . , γ r
D, P,C, J}. Clifford algebra’s extension is

{γ k
1 , γ k

2 , . . . , γ k
d , Jγ r

1 , Jγ r
2 , . . . , Jγ r

D, JP,C, JC} → {Jγ0, γ
k
1 ,

γ k
2 , . . . , γ k

d , Jγ r
1 , Jγ r

2 , . . . , Jγ r
D, JP,C, JC} = ClD+1,d+2 →

ClD+2,d+2. The space of mass term is RD−d+1 = R1−δ .
Class QC1a. The generators are {γ0, γ

k
1 , γ k

2 , . . . , γ k
d ,

γ r
1 , γ r

2 , . . . , γ r
D, Q,C, J}. Clifford algebra’s extension is

{γ k
1 , γ k

2 , . . . , γ k
d , Jγ r

1 , Jγ r
2 , . . . , Jγ r

D,C, JC} ⊗ {Q} → {Jγ0,

γ k
1 , γ k

2 , . . . , γ k
d , Jγ r

1 , Jγ r
2 , . . . , Jγ r

D,C, JC} ⊗ {Q} = ClD,d+2

⊗ Cl0,1 → ClD+1,d+2 ⊗ Cl0,1. The space of mass term is
RD−d × RD−d = R−δ × R−δ .

Class PQC1. The generators are {γ0, γ
k
1 , γ k

2 , . . . , γ k
d ,

γ r
1 , γ r

2 , . . . , γ r
D, P, Q,C, J}. Clifford algebra’s extension is

{γ k
1 , γ k

2 , . . . , γ k
d , Jγ r

1 , Jγ r
2 , . . . , Jγ r

D, JP, C, JC} ⊗ {Q} →
{Jγ0, γ

k
1 , γ k

2 , . . . , γ k
d , Jγ r

1 , Jγ r
2 , . . . , Jγ r

D, JP,C, JC} ⊗{Q} =
ClD+1,d+2 ⊗ Cl0,1 → ClD+2,d+2 ⊗ Cl0,1. The space of mass
term is RD−d+1 × RD−d+1 = R1−δ × R1−δ .

APPENDIX B: IMAGINARY GAP CLASSIFICATION

According to the discussion in the main text, the clas-
sification is equivalent to the classification of a Hermitian
Hamiltonian with corresponding symmetries:

H (−k, r) = −εkkH (k, r)∗k−1, kk∗ = ηkI K sym.;

(B1)

H (k, r) = −εqqH (k, r)q−1, q2 = I Q sym.; (B2)

H (−k, r) = εccH (k, r)∗c−1, cc∗ = ηcI C sym.; (B3)

H (k, r) = −pH (k, r)p−1, p2 = I P sym. (B4)

We can use Clifford algebra to represent the Hamiltonian:

H (k, r) = γ0 + k1γ
k
1 + . . . + kdγ

k
d + r1γ

r
1 + . . . + rDγ r

D.

(B5)

Define K = kK, Q = q, C = cK, and P = p, where K is the
complex conjugate operator. Then we can get the space of
mass term by constructing the Clifford algebra’s extension.
And we get the topological classification by calculating the
homotopy group of the space of mass term. The C and P give
the same symmetry constraint for the topological equivalent
Hermitian Hamiltonian in real gap systems and imaginary

TABLE VII. The correspondence between different notations of Bernard-LeClair class.

LC ZL KSUS LC ZL KSUS

Non 1 A QC2 18 CI†, η−AII
P 2 SA QC3 15 CII†, η+AII
Q 3 AIII, ηA QC4 19 DIII†, η−AI
K1 34 AI, D† QC5 16 BDI, η+D
K2 35 AII, C† QC6 20 DIII, η−D
C1 6 AI† QC7 17 CII, η+C
C2 7 AII† QC8 21 CI, η−C
C3 8 D PQC1 22 S++BDI, η++BDI
C4 9 C PQC2 32 S++DIII, η−−DIII
PQ1 4 S+AIII, η+AIII PQC3 28 S+−CI, η+−CI
PQ2 5 S−AIII, η−AIII PQC4 31 S+−CII, η−+CII
PK1 36 S+AI PQC5 23 S++CII, η++CII
PK2 37 S+AII PQC6 33 S++CI, η−−CI
PK3 38 S−AI, S−AII PQC7 29 S+−DIII, η+−DIII
PC1 10 S+D PQC8 30 S+−BDI, η−+BDI
PC2 12 S−C PQC9 26 S−−CI, S−−CII, η++CI, η−−CII
PC3 11 S+C PQC10 24 S−+BDI, S−+DIII, η+−BDI, η−+DIII
PC4 13 S−D PQC11 27 S−−DIII, S−−BDI, η++DIII, η−−BDI
QC1 14 BDI†, η+AI PQC12 25 S−+CII, S−+CI, η+−CII, η−+CI
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TABLE VIII. The correspondence between different notations of
generalized Bernard-LeClair class.

LC KSUS LC KSUS

Non A QC3b CII†

P SA QC4a η−AI
Qa ηA QC4b DIII†

Qb AIII QC5a η+D
K1a AI QC5b BDI
K1b D† QC6a η−D
K2a AII QC6b DIII
K2b C† QC7a η+C
C1 AI† QC7b CII
C2 AII† QC8a η−C
C3 D QC8b CI
C4 C PQC1 S++BDI, η++BDI
PQ1 S+AIII, η+AIII PQC2 S++DIII, η−−DIII
PQ2 S−AIII, η−AIII PQC3 S+−CI, η+−CI
PK1 S+AI PQC4 S+−CII, η−+CII
PK2 S+AII PQC5 S++CII, η++CII
PK3a S−AI PQC6 S++CI, η−−CI
PK3b S−AII PQC7 S+−DIII, η+−DIII
PC1 S+D PQC8 S+−BDI, η−+BDI
PC2 S−C PQC9a S−−CI, η++CI
PC3 S+C PQC9b S−−CII, η−−CII
PC4 S−D PQC10a S−+BDI η+−BDI
QC1a η+AI PQC10b S−+DIII, η−+DIII
QC1b BDI† PQC11a S−−DIII η++DIII
QC2a η−AII PQC11b S−−BDI η−−BDI
QC2b CI† PQC12a S−+CII, η+−CII
QC3a η+AII PQC12b S−+CI, η−+CI

gap systems. Then the two systems have the same topological
classification for GBL classes: Non, P, C1-4, and PC1-4.
For one of PQC1-8 classes, the constraint of topologically
equivalent Hermitian Hamiltonian in imaginary gap systems
transforms to that in the corresponding real gap systems
after defining q̃ = √

εpq pq. Then real gap and imaginary gap
classification of class PQC1-8 are also same. The following is
the topological classification for some GBL classes.

Class Qa. The generators are {γ0, γ
k
1 , γ k

2 , . . . , γ k
d , γ r

1 ,

γ r
2 , . . . , γ r

D, Q}. Clifford algebra’s extension is
{γ k

1 , γ k
2 , . . . , γ k

d , γ r
1 , γ r

2 , . . . , γ r
D, Q} → {γ0, γ

k
1 , γ k

2 , . . . , γ k
d ,

γ r
1 , γ r

2 , . . . , γ r
D, Q} = Cld+D+1 → Cld+D+2. The space of

mass term is Cd+D+1 = C−(d−D)+1 = C−δ+1. The topological
classification is determined by π0(C−δ+1) = 0 (Z) for even
(odd) δ.

Class K1a. The generators are {γ0, γ
k
1 , γ k

2 , . . . , γ k
d , γ r

1 ,

γ r
2 , . . . , γ r

D, K, J}. Clifford algebra’s extension is
{Jγ k

1 , Jγ k
2 , . . . , Jγ k

d , γ r
1 , γ r

2 , . . . , γ r
D, K, JK} → {γ0, Jγ k

1 ,

Jγ k
2 , . . . , Jγ k

d , γ r
1 , γ r

2 , . . . , γ r
D, K, JK} = Cld,D+2 → Cld,D+3.

The space of mass term is RD−d+2 = R2−δ .
Class PQ1. The generators are {γ0, γ

k
1 , γ k

2 , . . . , γ k
d , γ r

1 ,

γ r
2 , . . . , γ r

D, P, Q}. Clifford algebra’s extension is {γ k
1 ,

γ k
2 , . . . , γ k

d , γ r
1 , γ r

2 , . . . , γ r
D, P} ⊗ {PQ} → {γ0, γ

k
1 , γ k

2 , . . . ,

γ k
d , γ r

1 , γ r
2 , . . . , γ r

D, P}⊗{PQ}= Cld+D+1⊗ Cl1 →Cld+D+2⊗
Cl1. The space of mass term is Cd+D+1 × Cd+D+1 =
C1−δ × C1−δ .

Class PK1. The generators are {γ0, γ
k
1 , γ k

2 , . . . , γ k
d , γ r

1 ,

γ r
2 , . . . , γ r

D, P, K, J}. Clifford algebra’s extension is {Jγ k
1 ,

Jγ k
2 , . . . , Jγ k

d , γ r
1 , γ r

2 , . . . , γ r
D, JP, K, JK} → {γ0, Jγ k

1 , Jγ k
2 ,

. . . , Jγ k
d , γ r

1 , γ r
2 , . . . , γ r

D, JP, K, JK} = Cld+1,D+2 →
Cld+1,D+3. The space of mass term is RD−d+1 = R1−δ .

Class PC1. The generators are {γ0, γ
k
1 , γ k

2 , . . . ,

γ k
d , γ r

1 , γ r
2 , . . . , γ r

D, P,C, J}. Clifford algebra’s extension
is {γ k

1 , γ k
2 ,. . ., γ k

d , Jγ r
1 , Jγ r

2 ,. . ., Jγ r
D, JP,C, JC}→{Jγ0, γ

k
1 ,

γ k
2 , . . . , γ k

d , Jγ r
1 , Jγ r

2 , . . . , Jγ r
D, JP,C, JC} = ClD+1,d+2 →

ClD+2,d+2. The space of mass term is RD−d+1 = R1−δ .
Class QC1a. The generators are {γ0, γ

k
1 , γ k

2 , . . . ,

γ k
d , γ r

1 , γ r
2 , . . . , γ r

D, Q,C, J}. Clifford algebra’s extension is
{γ k

1 , γ k
2 , . . . , γ k

d , Jγ r
1 , Jγ r

2 , . . . , Jγ r
D, JQ,C, JC} → {Jγ0, γ

k
1 ,

γ k
2 , . . . , γ k

d , Jγ r
1 , Jγ r

2 , . . . , Jγ r
D, JQ,C, JC} = ClD+1,d+2 →

ClD+2,d+2. The space of mass term is RD−d+1 = R1−δ .

APPENDIX C: THE CORRESPONDENCE BETWEEN
DIFFERENT NOTATIONS OF BL CLASS AND GBL CLASS

There are three different notations of Bernard-LeClair
class: Kawabata-Shiozaki-Ueda-Sato (KSUS) notations [81],
Zhou-Lee (ZL) notations [80], and our (LC) notations used
in the present work. For the convenience of comparing with
the existing results in references, we list the correspon-
dence between different notations of Bernard-LeClair class in
Table VII. For the line gap systems, there are two different
notations of generalized Bernard-LeClair class: Kawabata-
Shiozaki-Ueda-Sato (KSUS) notations and our (LC) nota-
tions. We list the correspondence of different notations of
generalized Bernard-LeClair class in Table VIII.
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