
PHYSICAL REVIEW B 100, 144101 (2019)

Crystalline phase transitions and vibrational spectra of silicon up to multiterapascal pressures
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A composite high-pressure phase diagram for silicon has been predicted for up to 4 TPa. This diagram has
been built using a combination of evolutionary algorithm-based structure searches, electronic density functional
theory, lattice dynamics of perfect crystals, and anharmonic corrections for the solid state in conjunction with
molecular dynamics for evaluating the melt curve. The anharmonic corrections to free energy, arising from
both finite-temperature multiphonon interactions and temperature dependence of the lattice axial ratios, play a
critical role in properly identifying the solid-solid transition boundaries of the orthorhombic structures. A double
hexagonal close-packed structure has been found to be thermodynamically and dynamically stable, sandwiched
between the experimentally observed base-centered orthorhombic and hexagonal close-packed structures. In
addition, beyond 2.8 TPa, there exists a sequence of face-centered cubic-to-body-centered cubic-to-simple cubic
transitions that are accompanied by the localization of electrons in the interstitial spaces between the ions.
Supplementing the structural calculations, second- and third-order interatomic force constants were evaluated
to compute the phonon vibration modes and linewidths, respectively. This allowed an elaborate analysis of the
Raman and infrared spectra for all of the structures of silicon identified so far.
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I. INTRODUCTION

In the past several decades, there has been a sustained effort
in the condensed matter and materials science research com-
munity to computationally construct comprehensive pressure-
temperature-density (P-T -ρ) phase diagrams of pure ele-
ments, such as H [1,2], Li [3], Be [4], C [5,6], N [7], Na [8],
and Al [9] or compounds such as MgO [10] and SiO2 [11],
encompassing ambient to extreme conditions. The importance
of most of these elements or compounds stems from their
occurrence in planetary interiors [12] or their application to
inertial confinement fusion (ICF) designs [13–15], both of
which fall under the umbrella of the emerging field of high-
energy-density sciences.

A ubiquitous material like silicon has a plethora of appli-
cations [16–18], including the ones mentioned earlier. This
had prompted us to investigate a lower-temperature region of
the silicon phase diagram hitherto ignored, spanning pressures
up to a multi-TPa range. In the design of ICF ablators,
moderate-Z material is desired because of the mitigating effect
on hot electrons in coronal plasma, which arises because of the
two-plasmon-decay instability [15]. As such, ablator material
based on silicon can reduce the detrimental effects of para-
metric instabilities in plasma on direct-drive ICF implosions.
Also, in the interiors of many rocky planets, silicon forms the
basis of multiple coordination compounds. These compounds
play a crucial role in the convection currents in the planetary
mantle, where pressure-temperature (P-T) conditions can be
up to ∼4.7 TPa and ∼18 000 K, respectively [19]. However,
constructing phase diagrams of molecular crystals is both
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complicated and computationally intensive, so simplifying the
problem to that of construction of binary or ternary phase
diagrams using elemental phase diagrams [20] is a step in the
right direction.

Existing experimental data on silicon have firmly estab-
lished a melt curve up to ∼35 GPa [21–25] and the existence
of the following structures upon compression from ambient
conditions along the 300 K isotherm [26]: cubic diamond
(Si-I) at 0.0001–12.5 GPa [27–34], β-tin (Si-II) at 8.8–16 GPa
[27–34], body-centered orthorhombic Imma (Si-XI) at 13–16
GPa [35], simple hexagonal (Si-V) at 14–38 GPa [30–33],
base-centered orthorhombic Cmce (Si-VI) at 40–42 GPa [36],
hexagonal close-packed (Si-VII) at 40–78 GPa [32,34,37],
and face-centered cubic (Si-X) at 78–248 GPa [34,37]. All
such experimental data are limited to below 250 GPa, be-
yond which the existence of additional phase transitions were
unknown. This has also been accompanied by a large body
of cold-curve calculations [26,38–40] and equation-of-state
(EOS) studies [41–44].

This work presents the first-principles construction of a
high-P-T phase diagram of Si up to 4 TPa, which revealed
stable phases at multi-TPa conditions. The methodology em-
ployed in this work was a combination of different first-
principles approaches centered on the use of Mermin’s exten-
sion of Kohn-Sham density functional theory (DFT) [45,46]
and ab initio lattice dynamics of perfect crystals. Such a com-
putational effort has already been reported earlier, however,
without the melt curve [47] and also lacked the anharmonic
corrections that are crucial in establishing an accurate free-
energy map F(P,T). This was highlighted previously [48] by
the authors who pointed out that the slope of the principal
Hugoniot and the orthorhombic phase boundaries are dras-
tically affected if the anharmonicity is taken into account.
This paper is an elaboration of this earlier work [48] and also
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presents a detailed vibrational spectra analysis that could be
of assistance to experimentalists.

This paper is broadly divided into four sections. Section
I, the current section, deals with the existing literature on the
state of the art when it comes to experimental and computa-
tional findings on silicon EOS and phases. Section II details
the theory behind the calculations performed in this work,
whereas Sec. III lays out the results and provides insights
and discussions. Lastly, Sec. IV provides our conclusions and
closing remarks.

II. THEORY AND METHODOLOGY

This section details the theory and methodology applied
in building the solid-state phase diagram from the cold-curve
(T = 0 K) structures. The flow chart corresponding to this
section is shown in Fig. 1. In this paper, state refers to either
solid or liquid, and structure refers to crystalline structures
such as face-centered cubic, simple hexagonal, etc., whereas
geometry refers to the lattice constants (a) and axial ratios
(b/a, c/a) for a given structure in solid state. Both state and
structure are loosely defined as phases. Figure 1(a) shows that
a cold-curve structure search using evolutionary algorithms at
different pressures, ranging from P01 to Pend, with different
number of atoms (Na) in a unit cell yields the energetically
most favorable (corresponding to least enthalpy) structures �

whose geometry u would be a function of pressure. Sections
II A and II B detail the theory behind the complete Gibbs
free-energy calculations, while Sec. II C details the theory
for vibrational transition spectra, namely, the inelastic scat-
tering/Raman spectra and the infrared absorption spectra.

A. Cold-curve equation of state

Once a favorable structure � is obtained at a certain pres-
sure, starting from that particular geometry u (P, T = 0 K) of
the structure �, the entire pressure (P) domain can be scanned
using the simple transformation matrices,

�a =
⎡
⎣1 + ε 0 0

0 1 + ε 0
0 0 1 + ε

⎤
⎦,

�b/a =
⎡
⎣1 + ε 0 0

0 1√
1+ε

0
0 0 1 + ε

⎤
⎦, (1)

and

�c/a =
⎡
⎣1 + ε 0 0

0 1 + ε 0
0 0 1√

1+ε

⎤
⎦,

for scaling volume by changing the lattice constant a, the b/a
axial ratio, and the c/a axial ratio, respectively (preserving
the unit cell volume when using �b/a and �c/a). Here, ε is
the strain rate and can be used as a controlling parameter in the
enthalpy minimization. Eventually, the Gibbs free energy G
(P, T = 0 K) or enthalpy H (P) can be given an analytic form
by fitting with an appropriate EOS, such as the augmented

stabilized jellium EOS (ASJEOS) [49]:

Gcold(x) = a

x3
g(x) + b

x2
+ c

x
+ d, (2)

with g(x) = 1 + α(1 − x)4 − β(1 − x)5 + γ (1 − x)6 and the
volume ratio x = v/v0, v0 being the volume corresponding
to the equilibrium geometry (corresponding to the minima
of the EOS). This procedure is shown in Fig. 1(b), where
“×” implies matrix multiplication and Ganalytic(�;V ) refers
to the analytic cold-curve EOS fit between a minimum and
a maximum volume per atom, i.e., {Vmin,Vmax} for the optimal
axial ratios γ ≡ (b/a, c/a) at each pressure.

B. Ab initio lattice dynamics: Finite-temperature
quasiharmonic formulation

For the purpose of calculating finite-temperature thermo-
dynamic variables, we resort to the use of lattice dynamics.
The main goal of such a problem is to solve for the many-body
ionic total energy E,

E = U + T

= U (0) + U (1) + U (2) + U (3) + · · · + T

= U (0) + 1

1!

∑
ικ

∑
x


(1)
x �rx(ικ )

+ 1

2!

∑
ικ

∑
ι′κ ′

∑
xy


(2)
xy (ικ; ι′κ ′)�rx(ικ )�ry(ι′κ ′)

+ 1

3!

∑
ικ

∑
ι′κ ′

∑
ι′′κ ′′

∑
xyz


(3)
xyz(ικ; ι′κ ′; ι′′κ ′′)

×�rx(ικ )�ry(ι′κ ′)�rz(ι′′κ ′′) + · · · + T

= U (0) + 1

1!

∑
ικ

∑
x

∂U

∂rx(ικ )

∣∣∣∣
r0

�rx(ικ )

+ 1

2!

∑
ικ

∑
ι′κ ′

∑
xy

∂2U

∂rx(ικ )∂ry(ι′κ ′)

∣∣∣∣
r0

�rx(ικ )�ry(ι′κ ′)

+ 1

3!

∑
ικ

∑
ι′κ ′

∑
ι′′κ ′′

∑
xyz

∂3U

∂rx(ικ )∂ry(ι′κ ′)∂rz(ι′′κ ′′)

∣∣∣∣
r0

×�rx(ικ )�ry(ι′κ ′)�rz(ι′′κ ′′) + · · · + T, (3)

where ι,κ , and �r denote unit cell indices, atomic indices,
and atomic displacements from their equilibrium positions
r0, respectively; U (0) ≡ Uperf is the nonvibrating/rigid-body
potential energy of a perfect crystal, U (1) is zero by definition
as ∂U (ικ )/∂rx(ικ )|r0 = 0 at equilibrium position r0, U (2) ≡
Uharm is the harmonic potential energy, and U (3) ≡ Uanharm

is the anharmonic potential energy; the coefficients of the
series expansion 
(1)

x , 
(2)
xy , and 
(3)

xyz are the first-, second-,
and third-order interatomic force constants, respectively, with
indices x, y, z denoting the Cartesian coordinates; and T =
1
2

∑
ικ

∑
x mκ ṙ2

x (ικ ) is the atomic kinetic energy. We have
used PHONOPY [50,51], which takes in the forces obtained
from density functional perturbation theory (DFPT) [52]
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(a)

(c)

(b)

FIG. 1. Flow charts showing the general scheme of methods used, as described in Secs. II A, II B, and II C.

calculations, and computed the harmonic derivatives


(2)
xy (ικ; ι′κ ′) = ∂2U

∂rx(ικ )∂ry(ι′κ ′)

∣∣∣∣
r0

= − ∂Fx(ικ )

∂ry(ι′κ ′)

∣∣∣∣
r0

(4)

as Fx(ικ ) = −∂U/∂rx(ικ ) to calculate the second-order force
constant 
(2)

xy . The second-order force constant is related to

the dynamical matrix/tensor D(k) as

Dxy(κκ ′, k) = 1√
mκmκ ′

∑
ι′


(2)
xy (ικ; ι′κ ′)

× exp[ik. (r0,ι′κ ′ − r0,ικ ′ )], (5)

where mκ is the mass of atom κ , and k is the wave vector.
Once 
(2)

xy is known, the dynamical matrix can be accurately
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determined. Thereafter, we solve the characteristic equation

D(k)Wk,λ − ω2
k,λWk,λ = 0, (6)

where Wk,λ is the matrix of atomic displacements caused by
the traveling wave k (eigenvectors) and obtain the phonon
frequencies ω (from eigenvalues ω2) of band indices λ.

The phonon spectra, i.e., phonon density of states (PDOS),
can be calculated as

Z (ω) = 1

Na

∑
k

∑
λ

δ[ω − ωλ(k)] (7)

for a phonon wave vector k of band index λ, being normalized
such that

∫ ωmax

0 Z (ω)dω = 1, where Na is the total number
of ions. Once the phonon spectra over the first Brillouin
zone (1BZ) is obtained from PHONOPY calculations, finite-
temperature thermodynamic variables can be obtained via a
thermodynamic integration within the quasiharmonic (QH)
approximation [only the first and third terms of the expression
for total energy in Eq. (3) are considered]. Within the QH
approximation, the finite-temperature ionic contribution to the
Helmholtz free energy Fi,QH was calculated using

Fi,QH(V, T ) = FZP(V ) + Fi-th,QH(V, T )

= 1

2

∑
k,λ

h̄ωλ(k,V )

+ kBT
∑

kλ

ln[1 − e−h̄ωλ(k,V,T )/kBT ]. (8)

The first term corresponds to the energy due to the quantum
zero-point harmonic oscillations in a perfect crystal that is
nonvibrating/rigid, whereas the latter corresponds to the ther-
mal lattice-vibrational free energy above T = 0 K. In integral
form, Eq. (8) becomes

Fi,QH(V, T )

= FZP(V, T ) + Fi-th,QH(V, T )

= 3Na

∫ ωmax

0

[
h̄ω

2
+ kBT ln

(
2 sinh

h̄ω

2kBT

)]
Z (ω)dω,

(9)

where kB is the Boltzmann constant and h̄ is the reduced
Planck constant.

However, this QH approach works only if all the struc-
tures have positive vibration frequencies at T = 0 K, which
is not the case for the Cmce and Imma structures. In such
cases of vibrational instability, performing thermodynamic
integration relative to the T = 0 K system (as a reference
system) becomes impossible. Since free energy is a state
function and the energy expended in the reversible process
while switching from a harmonic to a QH system does not
depend on the path followed, any adequate modifications
to the harmonic reference system should suffice as long as

it is uniformly applied to all the relevant structures. This
implies that the reference system should not affect the value
of the QH ionic-thermal contribution Fi-th,QH. We employed
a methodology similar to the ones employed for Fe [53,54]
that uses an inverse power (IP) potential as an additive to the
calculated harmonic potential. It should also be noted that
merely using an inverse power potential of the form UIP =
4A(r/r0)ϕ does not alleviate the said problem for Cmce-Si
and Imma-Si because for c/a < 1, as is the case for both
Cmce and Imma, this IP reference system also becomes vi-
brationally unstable. Therefore, to circumvent this handicap,
we did not use an IP potential and resorted to using an
Einsteinian potential energy for solids, UE = ∑Na

κ=1
1
2 B�r2

κ ,

which is added to the harmonic component of the potential

energy, U (2) ≡ Uharm. Here, B is a constant (1.7261 eV/Å
2

for

Cmce and 0.8507 eV/Å
2

for Imma) that is calibrated in such a
way that the imaginary modes in the band structure/imaginary
frequencies in the PDOS disappear for both Cmce and Imma.
The added Einsteinian potential makes sure the system has
sufficient energy that the imaginary frequency values dis-
appear. However, since it is uniformly added for both the
T = 0 K and finite-temperature cases, it does not show up in
the free-energy difference data. This summarizes the approach
used to calculate Fi,QH for vibrationally unstable structures.

C. Anharmonicity

The complete classical anharmonic ionic-thermal contribu-
tion Fi-th,AH, with γT being the optimal axial ratio for a given
state (V, T), was evaluated by breaking it up into two separate
components [55]:

Fi-th,AH(V, T ; Te → 0, γ → γT)

= Fi-th,AH(V, T )(1) + Fi-th,AH(V, T )(2)

= Fi-th,AH(V, T ; Te → 0, γ = γ0)

+ Fi-th,AH(V, T ; Te → 0, γ0 → γT), (10)

with T being the ionic temperature and Te being the electronic
temperature. The first component tracks the change in free
energy, while moving along an isochore, from T = 0 K to
some finite temperature keeping the axial ratio γ0 constant,
whereas the second term tracks the free-energy change when
the axial ratio is changed from γ0 to γT at that temperature.

For the former component, we used a form of thermody-
namic integration that relied on the difference between the
internal energy U obtained from quantum molecular dynamics
(QMD) simulations and the QH Helmholtz free energy. This
is because QMD does not explicitly calculate the ionic en-
tropy. The value of this quantity was evaluated at a reference
temperature Tref such that Tmelt > Tref > � (� is the Debye
temperature) and scaled with respect to that temperature for
temperatures below the melting point along an isochore. The
mathematical form of the expression is as follows:

〈Fi-th,AH(V, T ; Te → 0, γ = γ0)〉|V = 〈Fi-th,AH(V, Tref ; Te → 0, γ = γ0)〉|V T

Tref

−T
∫ T

Tref

〈U (T )〉QMD − [U (T )]cold+i-th,QH − d (Na−1)
2 kBT

T 2

∣∣∣∣∣
V

dT, (11)
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where 〈· · · 〉QMD was calculated by averaging in a QMD
system in thermal equilibrium and [· · · ]cold+i-th,QH was ob-
tained from summing the cold-curve and QH calculations, and
d (Na − 1) is the total number of internal degrees of freedom.
The zero-point energy is not a part of the formulation because
atomic motions in QMD follow a classical trajectory. Also,
since Tref is chosen as close to the melting point as possi-
ble, the unknown term 〈Fi-th,AH(V, Tref ; Te → 0, γ = γ0)〉|V is
negligible, since anharmonicity is quantitatively significant at
lower temperatures.

For the latter component in Eq. (10) (originating as a result
of the temperature dependence of the axial ratios, especially
in cases of the orthorhombic structures), a Taylor expansion,
truncated after the second-order term, was employed:

δFcold+i-th,tot(V, T )

= ∂

∂γ
Fcold+i-th,tot (V, T )|γ0δγ

+ 1

2!

∂2

∂γ 2
Fcold+i-th,QH(V, T )|γ0 (δγ )2, (12)

under the assumption that ∂2/∂γ 2Fi-th,AH(V, T )|γ0 ≈ 0, which
was observed from calculations, where δFcold+i-th,tot (V, T ) =
Fcold+i-th,tot (γ ,V, T )-Fcold+i-th,tot (γ0,V, T ), δγ = γ−γ0, and
the notation i-th, tot[≡ i-th, QH + i-th, AH] denotes the sum
of the QH and anharmonic free energies, where “cold” de-
notes the cold-curve (electronic) free energy. Differentiating
Eq. (11) with respect to δγ and evaluating at γ = γT with
∂/∂ (δγ )Fcold+i-th,tot (V, T )|γT = 0 and δγT = γT − γ0 results
in

δγT =
− ∂

∂γ
Fcold+i-th,tot (V, T )

∣∣
γ0

∂2

∂γ 2 Fcold+i-th,QH(V, T )
∣∣
γ0

, (13)

which gives the correction to the axial ratio caused by tem-
perature effects. Expressing free energy as a function of its
natural independent state variable [56], i.e., (∂/∂γ )F (V, T ) =
(2V/3γ )σ aniso, Eq. (13) can be rewritten as

δγT =
−(

2V
3γT

)〈
σ aniso

i-th,tot(V, T )
〉

∂2

∂γ 2 Fcold+i-th,QH(V, T )
∣∣
γ0

. (14)

Here, σ aniso = σ33–(1/2)(σ11 + σ22) is the deviatoric stress,
where σ11, σ22, and σ33 are the uniaxial normal stresses.
These can be obtained from QMD alone, without phonon
calculations, since zero-point motion does not contribute to
system stress. Rearranging the stress tensor for the anhar-
monic component,

〈
σ aniso

i-th,AH(V, T )
〉

= 〈
σ aniso

i-th,tot(V, T )
〉 − σ aniso

cold+i-th,QH(V, T )

= 〈
σ aniso

i-th,tot(V, T )
〉 − (

3γT

2V

)
∂

∂γ
Fcold+i-th,QH(V, T )

∣∣∣∣
γT

,

(15)

Fi-th,AH(V, T ; Te → 0, γ0 → γT ) can be rewritten as

Fi-th,AH(V, T ; Te → 0, γ0 → γT )

= −
(

2V

3γT

)2
〈
σ aniso

i-th,tot(T )
〉〈
σ aniso

i-th,AH(T )
〉

∂2

∂γ 2 Fcold+i-th,QH(T )
∣∣∣
γ0

. (16)

The finite-temperature electronic contribution to the
Helmholtz free energy originating from electronic ther-
mal excitation (Fe-th ) was calculated from single-point DFT
calculations with Fermi-Dirac smearing corresponding to
Te(= Ti ). The cumulative Gibbs free energy was obtained by
adding up the computed individual components of a canonical
decomposition, i.e.,

G(V, T ) = Gcold(V ) + Fi,QH(V, T ) + Fi-th,AH(V, T )

+ Fe-th(V, T ) + PthV, (17)

where the thermal pressure Pth = P(V, T )–P(V, 0). The ther-
modynamically most stable structure at each (V,T) point could
thereafter be identified by fitting the directly calculated G(V,T)
points with an EOS model and identifying the structure with
the minimum G(V,T). This has been shown in Fig. 1(c),
which gives a graphical overview of the different compo-
nents of the Gibbs free energy, where Gcold is equivalent to
Ganalytic(�;V, γ ) in Fig. 1(b).

For the purpose of setting a reference, � is calculated
for a quasiharmonic Debye model with the assumption of an
isotropic solid with Poisson’s ratio σP (assumed to have a
limiting value of 0.5 in this work),

� = h̄

kB

3
√

6π2V 1/2n f (σP)

√
Bs

Ma
, (18)

where Ma is the atomic mass and Bs is the adia-
batic bulk modulus, approximated as Bs ≈ Bstatic(V, γ , T ) =
V (d2/du2)E (V, γ , T ) and

f (σP) =
⎧⎨
⎩3

[
2

(
2

3

1 + σP

1 − 2σP

)3/2

+
(

1

3

1 + σP

1 − σP

)3/2
]−1

⎫⎬
⎭

1/3

.

D. Vibrational transitional spectra

This subsection details the methodology used to calcu-
late the two types of spectra that involve ionic vibrational
transitions—inelastic scattering or Raman spectra, and in-
frared (IR) absorption spectra. The calculations of the vibra-
tional transition spectra require the calculation of the second-
and third-order interatomic force constants for the crystal
structures, with the first being used to calculate the normal
modes of the phonon vibrations, whereas the second is used
to calculate the width of the spectra. For this purpose, we
resorted to using PHONOPY and PHONO3PY [57], respectively.
All such calculations are performed at the � point of the 1BZ.

The IR activity is calculated using the Born effective
charge tensor Z∗, whose components are

Z∗
xy,κ = 1

|e|
∂μxy

∂ry,κ
= V

|e|
∂Px

∂ry,κ
= − 1

|e|
∂Fy,κ

∂εx
= 1

|e|
∂2E

∂εx∂ry,κ
,

(19)
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where V is the volume of the unit cell; P is the macroscopic
polarization tensor; μ is the electric dipole moment; F is
the Hellmann-Feynman force; ε is the electric field; E is the
total energy; and x, y denote Cartesian coordinates, with the
derivatives being taken at fixed strain and fixed electric field.
This can be computed using DFPT calculations. Within the
dipole approximation, the IR intensity of an eigenmode can
be written as

IIR(� : λ) ∝
3∑

x=1

∣∣∣∣∣∣
Na∑

κ=1

3∑
y=1

∂μxy

∂ry,κ
Xy,κ (λ)

∣∣∣∣∣∣
2

=
3∑

x=1

∣∣∣∣∣∣
Na∑

κ=1

3∑
y=1

Z∗
xy,κXy,κ (λ)

∣∣∣∣∣∣
2

, (20)

where Xy,κ (λ) is the normalized eigendisplacement along the
direction y of atom κ , Xκ (λ) = Wκ (λ)/

√
mκ , Wκ (λ) repre-

sents the eigenvector defined in Eq. (5), and λ represents the
phonon band index. The outermost summation stems from the
fact that IR intensities are the sum of the uniaxial intensities.

To calculate the Raman activity, Placzek’s expression [58]
for nonresonant Raman intensity for an eigenmode in the
Stokes process,

IRaman,xy(� : λ) ∝
∣∣∣∣∣eI ·

Na∑
κ=1

∂α

∂rκ

X κ (λ) · eS

∣∣∣∣∣
2

nBE(λ, T ) + 1

νλ

,

(21)

was used, where α is the microscopic polarizability tensor; eI

and eS are unit vectors along the direction of incidence and
scattering, respectively; nBE is the Bose-Einstein distribution
function,

nBE(λ, T ) =
[

exp

(
hνλ

kBT

)
− 1

]−1

, (22)

and νλ is the frequency of band index λ. Since the long-
wavelength limit (k → 0) of the macroscopic dielectric tensor
determines optical properties of a system, the high-frequency
macroscopic dielectric constant ∈∞ is the variable of interest
here. Now, α is related to ∈∞ as

∂αxy

∂ry,κ
= 1

Na

∂χxy

∂ry,κ
= 1

Na

∂2Px

∂ry,κ∂εy

= − 1

NaV

∂2Fy,κ

∂εx∂εy
≡ 1

Na

∂ ∈∞
xy

∂ry,κ
, (23)

since the susceptibility χ =∈ −1 and χ = Naα, by virtue of
the local and ambient fields being equal. This leads to

IRaman,xy(� : λ) ∝
∣∣∣∣∣

Na∑
κ=1

∂ ∈∞
xy

∂rκ

Xy,κ (λ)

∣∣∣∣∣
2

nBE(λ, T ) + 1

νλ

(24)

along a plane in which spatial axes x and y lie. The cumulative
Raman intensity is obtained by using [59]

IRaman(� : λ) = 5(I11 + I22 + I33)2 + 7
2 (I11 − I22)2

+ 7
2 (I11 − I33)2 + 21

(
I2
12 + I2

13 + I2
23

)
, (25)

with indices 1, 2, and 3 referring to the three spatial directions.
It should be noted that each band index λ corresponds to

a different phonon normal mode of atomic vibration; whether
that particular mode is Raman active or IR active or both is
determined from its space group (see Table VII in Sec. III) by
the selection rules.

The aforementioned analysis yields the intensities of the
vibration spectra, but in order to capture the temperature
effect, the full width at half maximum (FWHM) of the peaks
must be computed as well. Since optical phonon lifetimes are
predominantly determined from three-phonon interactions,
we evaluated the phonon lifetime τλ(� : ωλ, T ) from the third-
order interatomic force constants [57]:

1

τλ(� : ωλ, T )
≡ 2�λ(� : ωλ, T )

= 36π

h̄2

∑
λ1λ2

∑
x,y,z

∣∣
(3)
xyz

∣∣2{[1 + nBE(λ1, T ) + nBE(λ2, T )]

× δ
(
ωλ − ωλ1 − ωλ2

) + [nBE(λ1, T ) − nBE(λ2, T )]

× [
δ
(
ωλ + ωλ1 − ωλ2

) − δ
(
ωλ − ωλ1 + ωλ2

)]}
, (26)

where �λ refers to the linewidth of the phonon eigenmode
λ and 
(3)

xyz is the third-order interatomic force constant from
Eq. (3). This quantity can be used to estimate the width of the
Raman/IR peaks, when fitted in a Lorentzian,

I (� : T ) =
∑

λ

I (� : λ)
1

π

1
2�λ(� : T )

(ν − νλ)2 + [
1
2�λ(� : T )

]2 ,

(27)
corresponding to a temperature T.

However, the above expression separately takes only two
effects into account: the location of the normal modes at
T = 0 K and superimposition of the finite-temperature spread
�λ(� : T ). To gauge the finite-temperature effects, i.e., (1) the
shift in normal modes caused by crystal thermal expansion

�ν[V (T )] ≈ νphonon[V (T )] − νphonon(T = 0), (28)

TABLE I. Pressure-temperature combinations for which UPSEX runs were performed.

Temperature (K) Pressure (GPa)

0 5, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50, 75, 100, 200, 300, 500,
1000, 2000, 2300, 2500, 2700, 2800, 3000, 3500, 3700, 3800, 3900

300 14, 16, 18, 34, 36, 38
500 38, 40
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TABLE II. Classification details of the different crystal structures.

Space group Point group

Crystal structure Pearson symbol Short Number Hermann-Mauguin notation Schönflies notation

Cubic diamond (cd) cF8 Fd 3̄m 227 m3̄m Oh

Body-centered tI4 I41/amd 141 4/mmm D4h

Tetragonal (bct/β-Sn)
Body-centered oI4 Imma 64 mmm D2h

Orthorhombic
Simple hexagonal (sh) hP1 P6/mmm 191 6/mmm D6h

Hexagonal close-packed hP2 194 6/mmm D6h

(hcp) P63/mmc
Double hexagonal hP4 194 6/mmm D6h

Close-packed (dhcp) P63/mmc
Base-centered oC16 Cmce 74 mmm D2h

Orthorhombic
Face-centered cubic cF4 Fm3̄m 225 m3̄m Oh

(fcc)
Body-centered cubic cI2 Im3̄m 229 m3̄m Oh

(bcc)
Simple cubic (sc) cP1 Pm3̄m 221 m3̄m Oh

and (2) the change in the intensity peaks,

�Ipeak(� : T ) ∝ �Gmax(� : ω), (29)

we take the aid of the power spectrum constructed from
phonon eigenvector-projected atomic velocities. This was
achieved by using DYNAPHOPY [60], which calculates the full
power spectra,

G(k : ω) = 2
∑
κ,x

∫ ∞

−∞

〈
vk∗

κ,x(0)vk
κ,x(t )

〉
eiωt dt, (30)

and the phonon frequencies νphonon[V (T )] were obtained by
using atomic velocities v from QMD simulations. With these
two finite-temperature corrections, the temperature-dependent
Raman and IR spectra can be calculated.

III. RESULTS AND DISCUSSIONS

The section contains all of the results, culminating in the
complete pressure-temperature (P-T) phase diagram of sili-
con. Section III A concerns the cold-curve structure searches;

TABLE III. Optimal k mesh for equilibrium geometries of the
structures.

Crystal Structure Pressure (GPa) k mesh

cd 11 21 × 21 × 21
bct/β-Sn 13 15 × 15 × 23
Imma 15 15 × 21 × 23
sh 29 21 × 21 × 15
hcp 48 21 × 21 × 17
Cmce 41 21 × 23 × 15
dhcp 52 21 × 21 × 17
fcc 168 23 × 23 × 23
bcc 3115 29 × 29 × 29
sc 3839 31 × 31 × 31

Sec. III B describes all of the free-energy calculations, includ-
ing the quasiharmonic and anharmonic components to capture
finite-temperature effects; Sec. III C is focused solely on de-
termining the melt curve; Sec. III D presents the holistic phase
diagram with additional observations on electronic properties
along the cold curve; and, finally, Sec. III E details all of the
Raman and IR spectra calculations.

A. Structure search using evolutionary algorithms

The evolutionary algorithm USPEX [61–63] was used to
predict the most stable structures for a given pressure. The
structure relaxations were performed using the DFT code Vi-
enna ab initio simulation package (VASP) [64–66], which uses
the Perdew-Burke-Ernzerhof (PBE) formulation [67] of the
generalized gradient approximation (GGA) [68] exchange-
correlation functional and employs projector augmented wave
(PAW) pseudopotentials [69]. For the Si atoms, PAW pseu-
dopotentials with an 0.85-Å cutoff radius were used with
the 2s2 2p6 3s2 3p2 electrons being treated as valence elec-
trons. The plane-wave kinetic energy cutoff was 1100 eV,

FIG. 2. Convergence of enthalpy per atom for (a) low-pressure
and (b) high-pressure cases against a number of uniaxial k points.
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FIG. 3. (a) Helmholtz free-energy–pressure (F-P) fits along the
cold compression curve for the low-pressure (left) and the high-
pressure (right) domains. (b) The comparison of fitting errors be-
tween the ASJEOS and 3BMEOS relative to discrete data.

and the Brillouin zone was sampled with a resolution of

2π × 0.04 Å
−1

. For the structure search, the first generation
of 10 to 40 structures was created randomly. All structures
were relaxed at 0 K and at a constant pressure after being
run over 20–40 subsequent generations until minimization
and convergence of the fitness criteria (enthalpy). The struc-
tures having the lowest enthalpy were used as the seed for
creating offspring of the next generation. Each subsequent
generation was created using 60% of the best structures of the
previous generation using a combination of heredity (65%),

randomness (10%), soft mutation (10%), and lattice mutation
(15%). This procedure was repeated for 16 different cases
with Na = 1, 2, 3, . . . , 16 atoms, respectively, in a unit cell
under periodic boundary conditions, with three to five repeti-
tions of the searches being performed for each target pressure
and Na. The structure searches yielded eight stable struc-
tures: cubic diamond (cd), body-centered tetragonal/beta-tin
(bct/β-Sn), simple hexagonal (sh), hexagonal close-packed
(hcp), face-centered cubic (fcc), body-centered cubic (bcc),
and simple cubic (sc), and a metastable double hexagonal
close-packed (dhcp) structure along with hcp.

Using a priori knowledge from earlier experiments, we
also considered two other structures: body-centered or-
thorhombic (Imma) and base-centered orthorhombic (Cmce).
The Imma structure was observed in the pressure range of
13–16 GPa [35], whereas the Cmce structure was indicated
in an x-ray diffraction experiment at pressures of ∼40 GPa
[36]. To computationally find these two structures, a few
USPEX evolutionary metadynamics [70] runs were also per-
formed at 300 and 500 K, starting with β-Sn, sh, and hcp
to obtain the targeted structures of Imma, Cmce, and dhcp,
respectively, but instead they yielded β-Sn, dhcp, and dhcp,
respectively. The necessity of a rather similar starting struc-
ture renders this method impractical for these particular cases.
The pressure-temperature combinations for which USPEX runs
were performed are shown in Table I, and the crystallographic
classification information for all of the forenamed ten struc-
tures has been tabulated in Table II.

B. Solid-state thermodynamic calculations

The lattice constants obtained at particular state (P, T =
0 K) points using a structure search were used as starting
points to scan the entire pressure domain up to ∼4 TPa along
the cold compression (T = 0 K) curve. The upper bound of
the pressure was imposed by the limitation of the 12-active-
electron PAW potential we used for our computations. In
addition, it is to be noted that the orthorhombic structures have
internal parameters (x, y, z) that must be separately optimized.
To minimize computational time, however, such internal pa-
rameter optimization was performed only after optimizing the
lattice constants and axial ratios, at particular pressures: for
Imma at 6.2, 10.7, and 17.9 GPa, and for Cmca at 2.8, 10.9,
22.4, 35.1, and 47.9 GPa.

TABLE IV. ASJEOS fitting parameters for Gibbs free energy at T = 0 K.

Crystal Structure a b c d α β γ

cd 7.8025 2.3478 5.4701 9.2939 6.4432 2.0774 3.1110
bct/β-Sn 3.8974 3.5316 2.9632 7.7571 3.7861 3.0125 9.2338
Imma 2.4169 8.2119 7.4469 4.8679 8.1158 4.7092 4.3021
sh 4.0391 0.1540 1.8896 4.3586 5.3283 2.3049 1.8482
hcp 0.9645 0.4302 6.8678 4.4678 3.5073 8.4431 9.0488
Cmce 1.3197 1.6899 1.8351 3.0635 9.3900 1.9476 9.7975
dhcp 9.4205 6.4912 3.6848 5.0851 8.7594 2.2592 4.3887
fcc 9.5613 7.3172 6.2562 5.1077 5.5016 1.7071 1.1112
bcc 5.7521 6.4775 7.8023 8.1763 6.2248 2.2766 2.5806
sc 0.5978 4.5092 0.8113 7.9483 5.8704 4.3570 4.0872
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TABLE V. Equilibrium lattice parameters for the crystal structures.

Crystal structure a (Å) b/a c/a

cd 5.457
bct/β-Sn 4.762 0.548
Imma 4.735 0.948 0.540
sh 2.542 0.942
hcp 2.526 1.611
Cmce 8.019 0.598 0.596
dhcp 2.744 3.250
fcc 3.408
bcc 2.682
sc 2.463

The convergence tests for the Monkhorst-Pack [71] k
points were performed for each of the structures by checking
the enthalpy per atom in the single-point calculations. Due to
the large span of pressures scanned, we report in Table III only
the k mesh chosen near the equilibrium geometries (discussed
later in this subsection) for each of the structures. For higher
pressures than those at which the equilibrium geometries
exist, we increased the size of the k mesh to take into account
the increased size in the reciprocal space. The results for the
convergence tests for two specific structures are shown in
Fig. 2, where the convergence criterion was selected to be
0.5 meV/atom. They show that the chosen k points listed in
Table III give convergent results.

The discrete cold-compression-curve Gibbs free-energy
(G) data (i.e., enthalpy) obtained from single-point cal-
culations for each of the structures were fitted with
ASJEOS [Eq. (2)] [49] and third-order Birch-Murnaghan
EOS (3BMEOS) [72], shown in Fig. 3. It was observed
from Fig. 3(b) that far away from equilibrium, at pressures
exceeding ∼2 TPa, the discrepancy between the fit values
and the computed discrete data points at a particular pressure
was much lower for ASJEOS than for 3BMEOS. As such, we
eventually used the ASJEOS fit across the entire pressure do-
main. The fitting parameters have been tabulated in Table IV
and the equilibrium geometries in Table V. The fits for all
the structures are shown in Fig. 3(a), whereas ASJEOS and
3BMEOS are compared in Fig. 3(b). It should be noted that
the fits progressively become less accurate when moving this
far away from the equilibrium. We determine the thermody-
namically most stable structure of silicon by choosing the one
with the lowest Gibbs free energy at a given pressure.

To examine the mechanical stability of each structure,
we calculated their PDOS (discussed in the next section in
detail) along the cold curve. These required DFPT calcu-
lations, which were performed in 128-atom supercells with
the convergence criteria being the electronic energy error
<10−8 eV/atom and the ionic force error <10−3 eV/Å. The
PDOS was analyzed for multiple geometries of each structure,
and the results for the TPa-range geometries are shown in
Fig. 4. The absence of imaginary phonon frequencies indi-
cates the structures are dynamically stable.

An apt gauge of the applicability of the QH analysis for
the structure in question is to check for the effect of finite
electronic temperature Te, despite having ions at 0 K. This

FIG. 4. Phonon density of states (DOS) for the fcc, bcc, and sc
structures at TPa pressures showing dynamical stability.

is shown in Fig. 5, which illustrates the limitations of QH
analysis in cases of orthorhombic geometries, such as Cmce
and Imma. At the bare minimum, QH analysis should be
insensitive to electronic temperatures, which is not the case
for these two structures. For more-ordered structures, such
as the cubic ones, the QH approximation seems to hold for
temperatures below the melt curve (discussed in Sec. III C).
The same observation holds true for the hexagonal structures,
even though their PDOS is not shown in Fig. 5.

The effect of anharmonicity on the Helmholtz free energy
was evaluated after completing the melt-curve calculations
to ensure that the reference temperature (Tref ) selected was
such that Tmelt > Tref > �. Figure 6 summarizes the choices
of our reference temperature along different isochores, which

FIG. 5. PDOS at relevant electronic temperatures Te as indicated
in the legends, while maintaining ionic temperature Ti = 0.
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FIG. 6. Values of melting point, reference temperature for an-
harmonicity calculations, and Debye temperature for different iso-
chores. The inset shows the zoomed view of the figure near the slope
inversion.

were always higher than the Debye temperature of the cor-
responding solid-state structure. The anharmonic contribution
Fi-th,AH was found to be of the same order of magnitude as the
harmonic contribution, especially for the cd, Imma, and Cmce
structures. We tested finite-size effects by carrying out QMD
simulations with a maximum 1024 atoms in the supercell,
which gave <0.6% change in the free-energy results.

Delving into the different components of the Helmholtz
free energy at T = 500 K, as listed in Table VI, shows that
the anharmonic contributions are negligible for the fcc, bcc,
and sc structures, in clear contrast to the cd, Imma, Cmce,
and dhcp structures, where the anharmonic contribution
Fi-th,AH(V, T )(1) [see Eq. (10)] is of the same order as the
harmonic one. Also, the component Fi-th,AH(V, T )(2), corres-
ponding to the change in axial ratios with temperature, clearly
has a negligible contribution to the total anharmonic free
energy.

Computing the cumulative Gibbs free energy G(V,T)
along each isotherm allows one to determine the most stable
solid-state structures at finite temperatures. This forms the
basis of the solid-state pressure-temperature (P-T) phase
diagram. Figure 7 shows the computed results from an
isothermal point of view, i.e., the density-pressure (ρ-P)

FIG. 7. Density-pressure (ρ-P) plot showing discontinuities in ρ

at pressures corresponding to phase transitions at T = 100 K.

EOS for T = 100 K, which demonstrates the jump in density
due to phase transitions as is characteristic of first-order
phase transitions. Quantitatively, this corresponds to an
approximately tenfold increase in density on compressing
from ambient pressure to 4 TPa.

C. Solid-liquid phase transitions

Quantum molecular dynamics simulations, within the
Born-Oppenheimer approximation, were performed using a
canonical (constant-NVT) ensemble to determine the melting
points Tmelt, while incrementally increasing system tempera-
ture along isochores. This “heat until melts” method [73,74]
is an established approach that suffers from the drawback of
overpredicting Tmelt. This is mostly because perfect crystals
in simulations undergo phase transitions in bulk, whereas
anisotropic defect-laden imperfect crystals in experiments
start localized transitions near defects, which hastens the
entire solid-liquid phase change. VASP was used for the QMD
calculations, with the temperature being controlled via a
Nosé-Hoover thermostat [75]. Instead of using Monkhorst-
Pack k mesh, we resorted to the use of a single special k point
(1/4, 1/4, 1/4) for sampling the Brillouin zone (1BZ), as was
introduced by Baldereschi [76]. Supercells were used, with
216–256 atoms, with the ionic time step ranging from 0.26
to 0.63 fs for a total of 4000–6500 QMD ionic steps. Time
steps were selected after being considered to be an inverse

TABLE VI. The different contributions (in eV/atom) to the free energy at 500 K.

Pressure Fe-th Fi,QH F (1)
i-th,AH F (2)

i-th,AH

Structure (GPa) (eV/atom) (eV/atom) (eV/atom) (eV/atom)

cd 11 –4.1721 0.4176 0.1344
Imma 15 –3.7807 0.4687 0.1821 0.0047
Cmce 41 –1.4281 0.1879 0.0863 0.0072
dhcp 52 –1.1071 0.1514 0.0605 0.0021
fcc 2583 76.4725 1.2636 0.0022
bcc 3115 87.8349 1.5747 0.0104
sc 3839 101.4307 1.8380 0.0398
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FIG. 8. Convergence of pressure with respect to different
reciprocal-space (k-space) discretization schemes chosen during
NVT-QMD simulations.

function of the square root of temperature and the cube root
of the density. The combination of ionic step size and total
number of steps was selected for each QMD simulation such
that the total physical time for the system was always more
than 2 ps.

Convergence tests for the k mesh are illustrated in Fig. 8,
which clearly demonstrates that the Baldereschi mean-value
point is as accurate as a 2 × 2 × 2 Monkhorst-Pack k mesh
near the phase-transition boundary, while deviations occur as
we move away from the melt curve in the solid regime. The
two panels in the figure correspond to two isochores, one for

bcc at 13.55 g/cm3 and the other for sc at 19.64 g/cm3, which
both yield the same conclusion as discussed here.

To detect melting in an NVT-QMD simulation, we used
a combination of checking the ion-ion radial pair correlation
function,

g(r) = V

4πr2N2
a

〈∑
i

∑
j �=i

δ(r − ri j )

〉
, (31)

and tracking for abrupt changes in Gibbs free energy (G) and
pressure (P) with increasing temperatures along an isochore.
This is illustrated in Fig. 9, which shows the changes for
[(a)–(c)] a low-pressure cd and [(d)–(f)] a high-pressure bcc
geometry. The g(r), upon transition from a solid to a liquid
state, changes from having multiple discrete peaks to just one
prominent peak corresponding to the first coordination sphere.
G always exhibits a jump owing to absorption of the latent
heat of melting, whereas P can show a jump or a drop. The
interpretation of the drop in P for cd and a jump for all other
structures [only the case of bcc is shown in Figs. 9(d)–9(f)] is
discussed in a later subsection.

We fit our discrete melt-curve predictions Tmelt with the
Kechin equation [77],

Tmelt (P) = T0

(
1 + Pm − P0

a1

)a2

e−a3(Pm−P0 ), (32)

in the cd and the other structures separately. This was
done to ensure that the opposing isochoric pressure change
trends for cd vis-à-vis other structures were accurately

FIG. 9. The change in nature of the radial pair distribution function (left), jump/drop in pressure (center), and jump in free energy (right)
used as a signature to detect solid-liquid phase transition, i.e., melting in NVT-QMD simulations.

144101-11



R. PAUL, S. X. HU, AND V. V. KARASIEV PHYSICAL REVIEW B 100, 144101 (2019)

et al. [21]    
[28]

[33]
et al. [34]

et al. [36]

et al.[32] 
et al.[23] 

and Williamson [22] 
et al. [24]

FIG. 10. Pressure-temperature (P-T) phase diagram of silicon predicted using first-principles methodology. Here, the gray horizontal line
represents the T = 300 K isotherm, whereas the solid blue line represents the principal shock Hugoniot. The discrete data points, which are
also labeled in the legend, correspond to experimentally observed phase-transition points [21–24,28,32–34,36].

captured. The values of these constants for the cd branch
of the melt curve are T0 = 92.37 K, P0 = 21.31 GPa, a1 =
2.27 GPa, a2 = 1.983, and a3 = 0.013, whereas the values for
the remainder of the melt curve are T0 = 10 458.3 K, P0 =
1114.48 GPa, a1 = 783.56 GPa, a2 = 4.565, and a3 = 3.755.

D. Phase diagram and important observations

The overall P-T phase diagram, spanning up to P = 4 TPa
and T = 26 000 K, is shown in Fig. 10 with experimental
melting points and solid-solid phase transitions marked as
shown in the legend. We can observe good agreement between
previous experiments with our melting temperature predic-
tions within ±150 K up to ∼35 GPa. Because of reasons
mentioned in Sec. III D (imperfect crystals in experiments),
the observed melting temperatures are consistently ∼50–
150 K lower than our predictions. Previously observed exper-
imental solid-solid transitions along the T = 300 K isotherm

also agree well with our calculated transition points in the
corresponding pressure ranges. The principal shock Hugoniot
(solid blue line in Fig. 10) for a shock wave is determined by
solving the Rankine-Hugoniot equation with our multiphase
EOS data. Overall, the Hugoniot shows good agreement with
the recent experimental data [24,25]. The contrasting slopes
of the cd branch of the melt curve and the others can be
interpreted using the Clausius-Clapeyron relation,

dP

dT
= L

Tmelt�v
, (33)

whereby one can see that dP/dT < 0 for cd, which would
imply that the change in specific volume �v(∼1/ρ) is neg-
ative; i.e., density increases with increasing temperatures for
cd along an isobar (negative thermal expansion coefficient).
Another way to interpret this is that a cd isochore in the P-T
space would have a negative slope. This critical observation

FIG. 11. (Top) Electronic density of states (EDOS) and (bottom) electron localization function (ELF) with increasing pressure for the cubic
high-pressure structures. For the EDOS, the Fermi energy (EF) has been subtracted from the electronic energies.
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TABLE VII. Character tables for Raman- and IR-active normal
modes of the structures of silicon. The point group notation has been
listed in Table II.

Point group Structures Raman-active modes IR-active modes

Oh cd T2g T1u

fcc Eg, T2g T1u

bcc T1u

sc T1u

D2h Imma Ag B1u, B2u

Cmce Ag, B1g, B2g, B3g B1u, B2u, B3u

D4h β-Sn B1g, Eg A2u

D6h sh A1g, E2g A2u

hcp E2g A2u

dhcp E2g E1u, A2u

has an important effect in explaining the observations in the
next subsection. The opposite is true for the remainder of the
melt curve since dP/dT is positive.

Pressure-induced phase transitions generally follow the
pressure-coordination rule by Neuhaus [78] (with increasing
pressure, an increase of the coordination number takes place)
and the pressure-distance paradox by Kleber [79] (when the
coordination number increases according to the previous rule,
the interatomic distances also increase). Here, the fcc-to-bcc-
to-sc transition corresponds to a reduction in coordination
number from 12 to 8 to 6 and a decrease in minimum inter-
atomic distance. To explain this anomalous fcc-to-bcc-to-sc
transition after a pressure span of ∼2.8 TPa, where fcc is
stable, we looked into the electron distribution. A dip had
started to develop in the electronic DOS near the Fermi level,
as can be seen in Fig. 11 (top). This dip becomes more
pronounced with increasing pressures along the cold curve for
fcc but retains more or less the same nature for bcc and sc.
Consequently, neither bcc nor sc exhibits electride behavior
up to 4 TPa. To further delve into this particular concern, we
looked into the electron localization function (ELF) [80]:

ELFσ (r) = 1

1 + χ2
σ (r)

,

χσ (r) = Dσ (r)

D0
σ (r)

, (34)

Dσ (r) =
Nσ∑
i=1

|∇�i(r)|2 − 1

4

|∇ρσ (r)|2
ρσ (r)

,

where Dσ (r) is the Pauli kinetic energy density, i.e., the
difference between the total fermionic and the bosonic kinetic
energy densities; D0

σ (r) is the same for a uniform electron
gas; and ρσ (r) is the electron spin density. The corresponding
ELF isosurface plots are shown in Fig. 11 (bottom), which
shows that electrons move from the hybridized orbital space
to the interstitial space, stabilizing the ionic structure at higher
pressures. This is akin to observations in the paired Cmce
structure in dense lithium [81] and the formation of band-gap
electrides in calcium [82].

FIG. 12. (a) Raman spectra at 500 K for all the structures of
silicon mentioned in this paper; (b) comparison with experimentally
available data [83,84].

E. Raman and IR spectra

An analysis, using the phonon spectra, is used to calcu-
late the normal vibrational modes of the different structures
yielding the characteristic frequencies. Using point group
symmetry character tables, these normal modes can be sorted
as to whether they are Raman active, IR active, or neither.
This information has been tabulated in Table VII for all the
structures of silicon mentioned in this work.

The calculated Raman spectra at 500 K are shown in
Fig. 12(a) for all the structures that have Raman-active modes,
including three separate cases for fcc to demonstrate the
increase in Raman shift with pressure. Figure 12(b) compares
computed and experimental data for cd [83] and sh [84],
which demonstrate similar peaks. It should be noted, how-
ever, that the experimental data for both cd and sh are for
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FIG. 13. Infrared spectra at 500 K for all the structures of silicon
mentioned in this paper.

300 K, whereas the calculations are at 500 K. Similar com-
puted information on IR-active modes is shown in Fig. 13.
Most structures have one or, in certain cases, two sharp peaks.
The only noteworthy deviations from this feature are in cases
of the orthorhombic structures, where there are greater widths

FIG. 14. Power spectra for (top) cd and (bottom) fcc along
isochores, corresponding to densities of 2.48 and 4.74 g/cm3, respec-
tively, with increasing ionic and electronic temperatures (Ti = Te),
highlighting the change in wave-projected power and contrasting
shift in peaks.

FIG. 15. Raman spectra of cd and fcc along isochores, corre-
sponding to densities of (a) 2.48 g/cm3 and (b) 4.74 g/cm3, respec-
tively, with increasing ionic and electronic temperatures (Ti = Te).

compared to the other structures. This originates as a result
of higher anharmonicity in the orthorhombic structures, quan-
titatively manifesting in higher values of 
(3)

xyz, and since the
FWHM is proportional to |
(3)

xyz|2, the effect of anharmonicity
will be much more pronounced in the spectra widths.

To calculate the effect of finite temperature on Raman shift,
as discussed near the end of Sec. II D, the power spectra for
cd and fcc were calculated using QMD and DYNAPHOPY. The
results are shown in Fig. 14, where it is interesting to note that
the first-peak phonon frequency for cd [Fig. 14 (top)] exhibits
decreasing values with increasing temperature, whereas the
maximum value of wave-projected power increases. This is

144101-14
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in clear contrast to fcc [Fig. 14 (bottom)], where the phonon
frequencies, generally speaking, increase along with the mag-
nitude of the wave-projected power for all of the peaks.
Qualitatively, this contrasting behavior can be attributed to the
fact discussed earlier in Sec. III D that the cd isochore has a
negative slope (corresponding to increasing density along an
isobar), whereas the fcc isochore has a positive slope in the
P-T space.

The change in Raman shift can be tracked as a function
of temperature along an isochore; this can be used as another
signature of melting. The cases are shown in Fig. 15, where
the Raman shift wave number for cd increases from 545 to
587 cm−1, accompanied by a broadening of the Lorentzian
due to temperature effects. For fcc, the first Raman shift peak
decreases from 342 to 278 cm−1 with increasing temperature.
There is a second smaller peak as well, which disappears
even earlier as temperature increases. The contrast between
cd and fcc, concerning the direction of the movement of the
peak in Raman shift, can be attributed to the different natures
of their isochores, as discussed above. However, it is worth
mentioning that the melting point (Tmelt) predicted using this
approach is intricately linked to NVT-QMD simulations, by
virtue of the dependence on the power spectra for determining
the FWHM and the Raman shift caused by thermal effects.

IV. CONCLUSIONS

In essence, we have built a holistic pressure-temperature
(P-T) phase diagram, from first-principles calculations, in-
cluding anharmonicity originating from finite-temperature
ionic vibrations as well as changes in equilibrium lattice
constants and axial ratios with temperature. In the lower-
pressure solid regime, the dhcp structure has been predicted,
corroborating an earlier computational prediction [47]. This

particular structure emerges as a metastable prediction from
evolutionary algorithm-based structure searches. In terms of
pressure, extreme states of up to 4 TPa have been investigated.
The results showed the existence of an anomalous sequence of
fcc-bcc-sc transitions triggered by the movement of electrons
from the interionic shared orbital space to the interstitial
void; however, these high-pressure structures are still metallic
solids. The melt curve has been calculated using NVT-QMD
simulations; it is shown to have a negative slope for cd-liquid
transitions. The remainder of the melt curve monotonically in-
creases up to 4 TPa (corresponding to Tmelt =∼ 26 000 K). In
addition, the Raman and IR spectra of the different structures
have been calculated and presented. We hope these results can
facilitate experiments to probe the predicted unusual high-
pressure states of silicon, which in turn may improve our
understanding of materials under extreme conditions.
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[54] L. Vočadlo, I. G. Wood, M. J. Gillan, J. Brodholt, D. P. Dobson,
G. D. Price, and D. Alfè, Phys. Earth Planet. Inter. 170, 52
(2008).

[55] S. G. Moustafa, A. J. Schultz, E. Zurek, and D. A. Kofke, Phys.
Rev. B 96, 014117 (2017).

[56] V. A. Lubarda, Int. J. Solids Struct. 41, 7377 (2004).
[57] A. Togo, L. Chaput, and I. Tanaka, Phys. Rev. B 91, 094306

(2015).
[58] P. Brüesch, in Phonons: Theory and Experiments II, edited

by P. Fulde, Springer Series in Solid-State Sciences Vol. 65
(Springer-Verlag, Berlin, 1986), pp. 97–101, 277(E)–278(E)
(1986).

[59] D. Porezag and M. R. Pederson, Phys. Rev. B 54, 7830 (1996).
[60] A. Carreras, A. Togo, and I. Tanaka, Comput. Phys. Commun.

221, 221 (2017).
[61] A. R. Oganov and C. W. Glass, J. Phys. Chem. 124, 244704

(2006).
[62] A. R. Oganov, A. O. Lyakhov, and M. Valle, Acc. Chem. Res.

44, 227 (2011).
[63] A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu,

Comput. Phys. Commun. 184, 1172 (2013).
[64] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); 49, 14251

(1994).
[65] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
[66] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[67] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[68] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.

Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671
(1992); 48, 4978(E) (1993).

[69] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[70] Q. Zhu, A. R. Oganov, and A. O. Lyakhov, CrystEngComm 14,

3596 (2012).
[71] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[72] F. Birch, Phys. Rev. 71, 809 (1947).
[73] E. R. Hernández and J. Íñiguez, Phys. Rev. Lett. 98, 055501

(2007).
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