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Collective modes in pumped unconventional superconductors with competing ground states
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Motivated by the recent development of terahertz pump-probe experiments, we investigate the short-time
dynamics in superconductors with multiple attractive pairing channels. Studying a single-band square lattice
model with a spin-spin interaction as an example, we find the signatures of collective excitations of the
pairing symmetries (known as Bardasis-Schrieffer modes) as well as the order parameter amplitude (Higgs
mode) in the short-time dynamics of the spectral gap and quasiparticle distribution after an excitation by a
pump pulse. We show that the polarization and intensity of the pulse can be used to control the symmetry
of the nonequilibrium state as well as frequencies and relative intensities of the contributions of different
collective modes. We find particularly strong signatures of the Bardasis-Schrieffer mode in the dynamics of the
quasiparticle distribution function. Our work shows the potential of modern ultrafast experiments to address
the collective excitations in unconventional superconductors and highlights the importance of subdominant
interactions for the nonequilibrium dynamics in these systems.
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Recently, ultrafast pump-probe techniques became a pow-
erful tool to probe the temporal evolution of symmetry broken
states and relaxation in conventional and unconventional su-
perconductors [1–12]. An intense pulse couples nonlinearly
to the Cooper pairs of the superconductor and, as was argued
theoretically, should lead to a coherent excitation of the Higgs
amplitude mode, i.e., |�(t )| performs a damped oscillation
with frequency ωH = 2|�(∞)| [13–24]. Nonlinear terahertz
spectroscopy has enabled the observation of the Higgs mode
in conventional superconductors in the form of a free or
forced oscillation and the resulting third-harmonic generation
[4,8,11]. Interestingly, this technique has been also recently
applied to the unconventional superconductors such as high-Tc

cuprates with the d-wave symmetry of the superconducting
gap [12,25] where some additional oscillations have been
reported [25].

In contrast to conventional superconductors, where the
pairing is driven by the attractive electron-phonon interaction,
the pairing interaction in unconventional superconductors is
most likely of a repulsive nature. To overcome the net re-
pulsion among the quasiparticles, the superconducting gap
has to change its sign across different parts of the Fermi
surface, which typically yields the superconducting gap of a
lower symmetry than an isotropic s-wave. For example, it is
generally known that the antiferromagnetic spin fluctuations
peaking near the wave vector QAF = (π, π ) within a single-
band model on a square lattice give rise to a dx2−y2 -wave
symmetry of the superconducting gap, yet states having other
symmetries, such as strongly anisotropic sign-changing (ex-
tended) s-wave symmetry and the dxy symmetry, are closely
competing. As a result, the temporal dynamics of single-band
unconventional superconductors might be significantly richer
than that of the conventional ones [15,16,19,22].

In this Rapid Communication we analyze the short-time
dynamics in a single-band unconventional superconductor
with multiple competing pairing symmetries. In particular, we
consider a single-band model of fermions on a square lattice
interacting via a spin-spin interaction. The interaction can be
decoupled into various pairing channels with different sym-
metry. Varying the band filling we find two competing even-
parity superconducting states forming a typical phase diagram
of an unconventional superconductor where different ground
states can be accessed by doping. Studying the system driven
out of equilibrium by a laser pulse, we show how the collective
signatures of symmetries different from a given ground-state
symmetry, known as Bardasis-Schrieffer modes [26–29] in
the context of an s-wave ground state in the equilibrium,
evolve as a function of doping and the polarization direction.
Depending on the polarization direction of the incoming light
the tetragonal symmetry is broken, which necessarily leads to
a mixing of s- and d-wave symmetries in nonequilibrium. Fur-
thermore, we show that the particle distribution acquires an
additional dx2−y2 character and oscillates dominantly with the
Bardasis-Schrieffer mode frequency, which may be observed
in time-resolved angle-resolved photoemission spectroscopy
(tr-ARPES) experiments. Our study highlights the important
role of subdominant pairing states in the short-time dynamics
of unconventional superconductors and we identify the signa-
tures of the resulting collective modes that can be observed in
future pump-probe experiments.

Our starting point is a model of fermions interacting via a
spin-spin interaction,

H = −t
∑
〈i j〉,σ

c†
iσ c jσ + J

∑
〈i j〉

Si · S j, (1)
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FIG. 1. Phase diagram of HMF at T = 0 for the fillings where
the dx2−y2 -wave order parameter closely competes with that of the
extended s-wave symmetry. The solid lines refer to the actual ground-
state values for �s and �dx2−y2 , while the dashed lines show the
behavior of a pure s-wave or pure dx2−y2 -wave solution, ignoring the
possibility of coexistence.

where c(†)
i,σ are fermionic annihilation (creation) operators on

site i and spin σ , t is the hopping integral between nearest
neighbors, and Sα

i = 1
2

∑
s,s′ c†

isσ
α
ss′cis′ are the spin-1/2 op-

erators. This model was considered before in the context
of cuprates, pnictides, and heavy fermion systems [30]. In
the momentum space the tight-binding energy dispersion is
given by ξk = −2t[cos(kx ) + cos(ky)] − μ. The spin-spin in-
teraction can also be transformed into momentum space and
decoupled into a number of superconducting channels,

Jk,k′ ≡ Vsγk,sγk′,s + Vdx2−y2 γk,dx2−y2 γk′,dx2−y2

+ Vpx γk,px γk′,px + Vpyγk,pyγk′,py , (2)

where Vs = Vdx2−y2 = −3J/2 is the even-parity spin-
singlet interaction with γk,s = [cos(kx ) + cos(ky)]/2 and
γk,dx2−y2 = [cos(kx ) − cos(ky)]/2 form factors, respectively.
The remnant components are repulsive odd-parity spin-triplet
coupling constants Vpx = Vpy = J/2 with the px- and py-wave
form factors γk,px(y) = sin(kx(y) ). As we show below, the light
pulse we consider does not couple the odd- and even-parity
channels. As we focus on the regime, where the ground
state has even parity, the odd- and even-parity solutions
cannot mix both in and out of equilibrium. In the mean-field
approximation the Hamiltonian reduces to

HMF �
∑
kσ

ξkc†
kσ ckσ +

∑
k,l

[�lγk,l c
†
k↑c†

−k↓ + H.c.], (3)

where l = s, dx2−y2 and the �l = −Vl
∑

k γk,l〈c−k↓ck↑〉 are
the s- and dx2−y2 -wave component of the total superconducting
order parameter �k = �sγk,s + �dx2−y2 γk,dx2−y2 . In what fol-
lows, we work at T = 0. Minimizing the energy, we obtain the
equilibrium values of the superconducting order parameters
�s,�dx2−y2 as a function of n, shown in Fig. 1. We concentrate
on the region of the phase diagram where s-wave and d-wave
symmetries are neighbors, but avoid the regime of coexistence
of both order parameters, i.e., a possible s + id state, as this
state (and the similar case of d + id state) and its nonequilib-
rium dynamics were discussed previously [27,31,32]. Instead,
we focus on pairing fluctuations of the subdominant symmetry

close to the transition points. To simplify further calculations,
we introduce the Anderson pseudospin notation [33]

sk = 1

2
(c†

k↑, c−k↓)σ

(
ck↑

c†
−k↓

)
, (4)

where σ = (σx, σy, σz )T are the Pauli matrices. Using this vec-
tor, one can recast the Hamiltonian H = ∑

k Bk · sk, which
has the form of a set of (pseudo)spins sk coupled to a
(pseudo)magnetic field Bk = (2�′

k, 2�′′
k, 2ξk )T , with the no-

tation �k = �′
k − i�′′

k. At zero temperature the thermal ex-
pectation values of the pseudospin components are given by
〈sx

k〉 = − �′
k

2Ek
, 〈sy

k〉 = − �′′
k

2Ek
, and 〈sz

k〉 = − ξk
2Ek

with the quasi-

particle energy dispersion Ek =
√

ξ 2
k + |�k|2.

To investigate the collective modes in our model, we study
the equations of motion for the pseudospin expectation values
sk that have the form of Bloch equations,

d

dt
〈sk〉 = Bk × 〈sk〉. (5)

This equation, together with the self-consistency
equation for the superconducting gaps �s,d (t ) =
−∑

k Vs,dγk,s,d [〈sx
k〉(t ) − i〈sy

k〉(t )], yields a closed set
of coupled differential equations, which defines the
temporal evolution of all relevant quantities. To drive the
system out of equilibrium we model the electric field
of a laser pulse by including a time-dependent vector
potential A(t ) via the Peierls substitution. This results in
Bk = (2�′

k, 2�′′
k, ξk+ e

c A + ξk− e
c A)T [34].

To consider the possibility of exciting order parame-
ter symmetries, different from the ground-state one, it is
instructive to split the equations of motion in Eq. (5)
into different symmetry channels. As the pulse temporar-
ily breaks C4-rotational symmetry, different symmetry rep-
resentations may mix. In particular, we can decompose the
pseudomagnetic field into all even-parity irreducible rep-
resentation for the tetragonal D4h symmetry as follows,
Bk = Bk,s + Bk,dx2−y2 + Bk,dxy + Bk,gxy(x2−y2 )

, where we de-

fine Bk,l = (2�′
lγk,l , 2�′′

l γk,l , ξk,A,l )
T , where we have intro-

duced the symmetrized notations for Bz
k = ξk+ e

c A + ξk− e
c A ≡

ξk,A,s + ξk,A,dx2−y2 + ξk,A,dxy + ξk,A,gxy(x2−y2 )
. There is no odd-

parity component of the pseudomagnetic field Bk, as can be
seen immediately from the definition above.

Let us now discuss the symmetry mixing in nonequi-
librium. Denoting the ground-state symmetry as l0, one
finds that immediately after the perturbation d

dt 〈sx
k,l ′ 〉 = 0 and

d
dt 〈sy

k,l ′ 〉 = Bz
k,l〈sx

k,l0
〉, where l ′ = l ⊗ l0 is the symmetry of

a product of functions with symmetries l and l0. Therefore,
a finite l-symmetry component of the Bk field is needed to
induce pairing correlations of symmetry l ′. Moreover, the
self-consistency equations imply that inducing an out-of equi-
librium order parameter �l ′ additionally requires a nonzero
Vl ′ , making the consideration of the subdominant pairing
interaction crucial.

In our case, the pseudospin expectation values 〈sk〉 at t = 0
are the equilibrium values, with s- or dx2−y2 -wave symmetry.
Consequently, one requires Bz

k,dx2−y2
= ξk,A,dx2−y2 to be finite

at nonzero t to induce a finite dx2−y2 -wave order parameter
in the s-wave ground state and vice versa. In particular,
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a finite ξk,dx2−y2 ∼ cos(Ax ) − cos(Ay) [34] can be induced by
a vector potential A with polarization at φ ≈ 0, where φ is
the polar angle in momentum space. Importantly, the effect
manifestly depends on the polarization of A, suggesting a
possibility to control the induced order parameter symmetry
in nonequilibrium. As ξk,A,dxy , ξk,A,gxy(x2−y2 )

and the odd-parity
components are identically zero, only s and dx2−y2 components
remain in Eq. (5), leading to

d

dt
〈sk,s〉 = Bk,s × 〈sk,s〉 + Bk,dx2−y2 × 〈

sk,dx2−y2

〉
,

d

dt

〈
sk,dx2−y2

〉 = Bk,dx2−y2 × 〈sk,s〉 + Bk,s × 〈
sk,dx2−y2

〉
. (6)

We note that this result does depend on the absence of
spatial variations of A. However, for THz light used in the
experiments [35], the wavelength is of the order ∼100 μm,
which is much larger than, e.g., a superconducting coherence
length that rarely exceeds ∼100 nm (as estimated by the
upper critical field Hc2 [36–38]), justifying the assumption.
Yet spatial variations and its pulse polarization were discussed
in Ref. [39] for a pure d-wave superconductor.

We discuss now the short-time dynamics described
by Eqs. (6). We integrate the equations numerically
using the Runge-Kutta method with a momentum grid of
513 × 513 points for fixed Vs = Vd = −0.4t varying n and
the polarization of A(t ). Let us consider first the situation
of an extended s-wave ground-state symmetry for �k, i.e.,
�s �= 0 and �dx2−y2 = 0 at n = 0.411. The transition into
an s + idx2−y2 state occurs at the filling n ≈ 0.415. We start
the analysis by driving the model out of equilibrium with
a vector potential in the kx direction. The vector potential
A is for simplicity chosen as A = A0θ (t − τ )θ (2τ − t )
simulating two pulses at t = τ and t = 2τ . Here, we choose
e
c |A0| = 0.01 and τ� = 0.05. Typically, a Gaussian pulse
shape is used in similar approaches [19], with a half duration
t1/2 � �−1 to work in the nonadiabatic regime. Our choice
of the pulse is equivalent to this approach in the nonadiabatic
limit, but we found it to be advantageous for computations.
The results of the numerical calculations are shown in Fig. 2.
As one can see, the vector potential (pump pulse) induces a
nonzero dx2−y2 -wave order parameter �dx2−y2 in the extended
s-wave ground state, which shows undamped oscillations at
a frequency ωBS. Note that |�dx2−y2 | shown in Fig. 2 oscillates
at twice the frequency of �dx2−y2 due to the absence of sign
changes in the former. According to above considerations a
finite �dx2−y2 can only be induced if ξk,A,dx2−y2 is finite for some
period of time. Thus by applying the pulse along the diagonal
kx = ky, for which ξk,dx2−y2 remains zero, there is no induced
oscillation of the dx2−y2 -wave order parameter. In both cases
the s-wave order parameter oscillates with its Higgs mode
ωH = 2�s,max, where �s,max = max{�sγk|k ∈ FS} is the
maximum gap size on the Fermi surface. The frequency ωBS

is smaller than ωH due to a residual attractive interaction and
therefore undamped, while ωH shows weak damping similar
to the one expected [13,15] for isotropic s-wave states due to
coupling to the quasiparticle continuum. This similarity is due
to the s-wave solution being highly isotropic at the dopings we
consider. Indeed, for an anisotropic gap (see the d-wave case
in the Supplemental Material [34]) damping can be expected
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FIG. 2. Calculated evolution of the superconducting gap ampli-
tudes for an s-wave ground state and an applied light pulse with
polarization at an angle φ = 0 (solid line) and an angle φ = π/4
(dashed line) to the kx axis. (a) and (b) show the short-time dynamics
of the s- and dx2−y2 -wave order parameter, respectively. To make the
existence of a second frequency in (a) clear, arrows illustrate the
beating pattern. (c) and (d) refer to the Fourier transform of |�s| and
|�dx2−y2 (t )|, respectively. As |�dx2−y2 (t )| remains 0 for φ = π/4, no
Fourier transform of this case is shown in (d).

to be stronger. We note that in our BCS approach we do not
take into account other sources of dissipation, such as the
electron-phonon coupling. However, thermalization effects
due to coupling to the acoustic phonons occur at a much
longer timescale of approximately 100 ps [40] compared to
the typical timescale of the superconductivity, h̄/� ∼ 1 ps.
In particular, in modern THz experiments the quasiparticle
lifetime due to phonons may reach nanoseconds, due to the
absence of high-energy phonons created by the pulse [4,8].
Furthermore, quasiparticle interactions beyond BCS theory
may play a role at high pump fluences yet these effects do not
seem to alter the qualitative picture that results from a BCS-
like approach [41]. Nonetheless, some effects of increasing
fluence can be already observed within the BCS approach. In
Fig. 3 we show the fluence dependence of ωBS and ωH . It can
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FIG. 3. Fluence dependence of the Bardasis-Schrieffer and the
Higgs mode in the s-wave ground state for the filling (a) n = 0.38
and (b) n = 0.411, away (a) and close (b) to the phase transition to
the s + idx2−y2 ground state, respectively.
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FIG. 4. Frequency of the Bardasis-Schrieffer mode for different
band fillings close to the transition point between extended s-wave
and dx2−y2 -wave ground states at n ≈ 0.415. The numerical results
(squares) and the results of the linearized equations (solid blue curve)
are in good agreement.

be seen that in the case where ωBS and ωH are well separated
[Fig. 3(b)], ωBS is not directly affected by the light pulse,
unlike ωH . However, once the Higgs mode frequency becomes
close to ωBS, both start being suppressed by the increasing
fluence and eventually become indistinguishable. Note that
instead of using a pulse one could also by hand set a finite
�dx2−y2 �= 0 as the initial value, as it was shown above that the
pulse also generates a finite dx2−y2 -wave component. We find
that the quench scenario yields results equivalent to Fig. 2.

To verify whether the oscillations at ωBS are due to the
existence of the Bardasis-Schrieffer mode in the subdominant
pairing channel, we analyze Eq. (5) in the linear regime (i.e.,
weak driving) and compare the frequencies of the resulting
modes to the ones observed in the nonequilibrium (see Fig. 2).
In particular, we linearize Eq. (5) around the equilibrium
state at T = 0 and perform a subsequent Fourier transform
−iωδsk = Beq

k × δsk + δBk × seq
k . A numerical solution of

the homogeneous part of the resulting equations [34] gives
three types of solutions: (i) ω = 0 mode for the ground-state
pairing symmetry independent of doping, (ii) ω = 2�l,max

modes for the both types of the ground states l = s and
l = dx2−y2 (Higgs mode), and (iii) the Bardasis-Schrieffer
mode, whose frequency depends on the proximity to the
phase boundary between extended s-wave and dx2−y2 -wave
symmetries in the equilibrium. We show the frequency of
the Bardasis-Schrieffer mode in the s-wave ground state in
Fig. 4 together with the results of the numerical solution of
the full nonlinear equation [Eq. (5)] as a function of doping.
For values of n far away from the transition this mode merges
into the Higgs mode, while close to the phase transition it
softens as is expected, signaling the transition to the new
ground state. The results of the linearized calculation of ωBS

are in good agreement with the results for the full nonlinear
dynamics.

We also considered the excitation of the Bardasis-
Schrieffer mode in the dx2−y2 -wave ground state, which should
also exist once the s-wave ground state is close enough. As
the dx2−y2 -wave gap is nodal, all excited modes, including the
Higgs mode, are strongly damped. However, we still see a
clear signature of a mode at ω < 2�d,max = ωH . Due to the

FIG. 5. Oscillation of the quasiparticle distribution, projected
into fully symmetric s-wave (a) and dx2−y2 -wave (b) parts. The oscil-
lation of the kx-integrated dx2−y2 -wave part in (c) shows a signature
of the Bardasis-Schrieffer mode and of the Higgs mode as shown in
its Fourier transform (d).

finite-size effects and the limited accuracy of the numerical
integration, the error bar is quite broad. Therefore, we only
show the frequency of this mode close to the s + id transition
in the inset of Fig. 4. To obtain these frequencies we can again
equivalently use both a pulse or a quench, for example, if one
sets �s = 0.1�dx2−y2 . Note that for better numerical accuracy,
all frequencies in the inset of Fig. 4 are obtained via a quench.

The presence of the signatures of the Bardasis-Schrieffer
mode in the order parameter dynamics raises the possibility
of an enhanced third-harmonic generation when the pump fre-
quency roughly matches ωBS. Unlike the Higgs mode, where
the issues of the quasiparticle contribution are still under
debate [11,22,42–45], the signature of a Bardasis-Schrieffer
mode would be definitive as ωBS < 2�0, below the edge of
the quasiparticle continuum, at least for fully gapped s-wave
superconductors. At the same time, the amplitude oscillation
of the order parameter (Higgs oscillation) was also predicted
to show up in the tr-ARPES experiments [46]. The quasiparti-
cle distribution function that can be measured in these experi-
ments can be addressed in our model. In particular, the quasi-
particle distribution function is determined by the sz

k compo-
nent of the pseudospin sz

k = 1
2 (〈c†

k↑ck↑〉 + 〈c†
k↓ck↓〉 − 1). In

equilibrium this quantity is equal to −ξk/(2Ek ) and thus is
C4 symmetric. Due to the perturbation via an electric field,
the tetragonal symmetry is temporarily broken down to C2

symmetry and sz
k develops a finite dx2−y2 -wave component

sz,d
k , i.e., the quasiparticle distribution along the x and y

axis becomes asymmetric. Therefore, one expects that the
nonequilibrium particle distribution acquires the information
on ωBS and ωH . To investigate this in detail we define the
quantity I (t ) = ∫ π

−π
dkx[2sz,d

k=(kx,0)(t )], which describes the in-
tegrated dx2−y2 -wave component of the quasiparticle distribu-
tion along the ky = 0 cut and is equivalent to the number of
particles with ky = 0. In Fig. 5 we show I (t ) for the same
parameters as in Fig. 2 for A oriented along the x axis. One
can readily see that it oscillates mostly with ω = ωBS, where
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we find the amplitude of the oscillations increases with an
increasing pump strength. The integration along the kx = 0
cut leads to similar results but shifted by a phase ϕ = π .

To conclude we analyze the short-time dynamics in a
single-band unconventional superconductor with multiple
competing pairing symmetries. Driving the system out of
equilibrium with a light pulse (modeled as a time-dependent
vector potential), we show how the collective signatures of
symmetries different from a given ground-state symmetry,
known as Bardasis-Schrieffer modes [26–29] in the context
of the s-wave ground state in the equilibrium, evolve as a
function of doping and the polarization direction. Depend-
ing on the polarization direction of the incoming light the
tetragonal symmetry is broken, which necessarily induces a
coupling of s- and d-wave symmetries in a nonequilibrium.
Furthermore, we show that the particle distribution acquires
an additional dx2−y2 character, due to coupling to the vector
potential and that this quantity shows a dominant signature
of the Bardasis-Schrieffer mode frequency, which might be

observed in time-resolved ARPES experiments. Therefore we
conclude that taking the subdominant pairing channels and the
corresponding interactions into account is important, when
discussing the polarization-dependent excitation of uncon-
ventional superconductors. Finally, we find that apart from
quenching the order parameter, the pump pulse can be used to
selectively probe excitations and control the nonequilibrium
state of the system by employing the light polarization. In
addition, stronger pulses lead to a coupling between Higgs
and Bardasis-Schrieffer modes, which affects the frequency
position of both.
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