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Coupling of spins with an electric field in FeV2O4
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The microscopic mechanism of the interaction of exchange-coupled Fe and V spins in a FeV2O4 ferrimagnet
with the electric field has been described. The derived effective energy operator makes it possible to calculate
the electric polarization vector using the information about the magnetic structure. The calculated electric
polarization is consistent with the available experimental data.
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I. INTRODUCTION

The materials which simultaneously exhibit long-range
magnetic order and a spontaneous electric polarization (mul-
tiferroics) have attracted much attention due to their poten-
tial applications in promising electronic devices as well as
a source of fundamental knowledge of the nature of spins
and electric field coupling [1–3]. Recent reviews of such
materials and possible microscopic mechanisms are provided
in Refs. [4–6]. The most celebrated mechanisms are magne-
tostriction and the so-called inverse Dzyaloshinskii-Moriya
(DM) mechanism [7,8]. In recent years, the number of discov-
ered multiferroics has increased essentially. It is natural that a
few new problems arose in understanding the nature of the
magnetoelectric coupling. A number of multiferroics display
the electric polarization, the origin of which cannot be ex-
plained within the current mechanisms of the magnetoelectric
coupling. Among them are LiCuVO4, LiCu2O2, Cu2OSeO3,
noncollinear ferrimagnets with a spinel structure (FeCr2O4,
FeV2O4), etc. In this Rapid Communication, we focus on a
specific compound, FeV2O4.

The FeV2O4 compound has interesting physical properties.
The structural and magnetic phase transitions occur in it as the
temperature decreases. At a temperature of ∼140 K, the cubic
symmetry of the lattice is changed into tetragonal, at T ∼
110 K the symmetry of the lattice becomes orthorhombic, and
at the same time the collinear ordering of spins appears. The
tetragonal phase is restored at T < 70 K and the antiferromag-
netic ordering of Fe and V spins becomes noncollinear. The
spontaneous electric polarization P builds up simultaneously
with the last two transitions reaching a P value of ∼63 mC/m2

at ∼30 K [9]. The origin of the electric polarization and
its connection to the features of spin ordering of iron and
vanadium ions remains unclear. An analytical expression that
would have made it possible to calculate the electric polariza-
tion in the magnetically ordered state is absent.

II. EFFECTIVE HAMILTONIAN OF THE INTERACTION
OF 3d ELECTRONS WITH THE ELECTRIC FIELD

The electrically active ion in FeV2O4 is the Fe2+ ion. It is
located in the center of a tetrahedron formed by oxygen ions.
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The electric field mixes the ground electronic configuration
3d6 L with the states of the excited configurations of opposite
parity. The important role of this mixing was not noted in
previous papers [4–8]. The lowest-energy configurations are
3d54p L and 3d7 L−1. Here, 3d7 L−1 denotes the so-called
charge-transfer configuration, in which an oxygen electron
(from the 2p or 2s shell) is carried into the iron 3d shell.
The operator describing the coupling of orbital states for a
3d electron with the electric field can be written as follows
[10,11],

HE =
∑
p,t,k

{E (1)U (k)}(p)
t

∑
j

d (1k)p(Rj )(−1)tC(p)
−t (ϑ jϕ j ). (1)

The curly brackets denote the Kronecker product of the
spherical tensor of the electric field with the unit irreducible
tensor operator acting on 3d electron states. The spherical
coordinates Rj, ϑ j, ϕ j denote the positions of the lattice ions,
the same as in the crystal field theory, and C(p)

−t (ϑ jϕ j ) =√
4π/(2p + 1)Yp,−t (ϑ jϕ j ) the components of the spherical

tensors. The quantities d (1k)p(Rj ) are calculated in the local
coordinate system with the z axis along the 3d-ion ligand
direction. They contain two contributions,

d (1k)p(Rj ) = d (1k)p
cf (Rj ) + d (1k)p

cov (Rj ). (2)

The first term is associated with the odd crystal field. It can be
calculated using the expression for the operator of the electric
dipole transitions in optical spectroscopy [10],

d (1k)p
cf (Rj ) = 2|e|ε

′ + 2

3

(2k + 1)〈r〉ll ′

|�ll ′ |
√

(2p + 1)
(l‖C(1)‖l ′)

× (l ′‖C(p)‖l )

{
1 k p
l l ′ l

}
a(p)(Rj ). (3)

Here, we assume that l and l ′ refer to 3d and 4p shells,
respectively, ε′ is the relative permittivity, which is about 26
for FeV2O4 [9], |�ll ′ | = 70 000 cm−1 is the energy gap be-
tween the 3d54p and 3d6 configurations [12], and (l ′‖C(p)‖l )
is the reduced matrix element. The quantities a(p)(Rj ) are the
so-called intrinsic crystal field parameters of the odd crystal
field Hamiltonian

Hcf =
∑
p,t

B(p)
t C(p)

t . (4)
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In the superposition model the crystal field parameters B(p)
t are

evaluated as

B(p)
t =

∑
j

a(p)(Rj )(−1)tC(p)
−t (ϑ jϕ j ). (5)

In the exchange charge approximation, the quantities a(p)(Rj )
can be estimated similar to those which are present in the even
crystal field theory [13,14], i.e., as follows,

a(p)(Rj ) = − Zje2

Rp+1
j

〈r3〉ll ′ + (2p + 1)Gpd e2

(l‖C(p)‖l ′)Rj

×
∑

ρ

(−1)l−m

(
l p l ′

−m 0 m

)
Slm,ρSρ,l ′m. (6)

The first term in Eq. (6) accounts for the electrostatic field
from electric charges of lattice ions. The second term takes
into account the effects of overlapping between electronic
shells (l, l ′) of iron and the ρ state (2pm, 2sm) of oxygen ions,
Slm,ρ are overlap integrals, and Gpd is the exchange charge
parameter.

The second term in Eq. (2) is due to the asymmetry in the
overlap of 3d electron states with the shells (2p and 2s) of the
surrounding oxygen ions [11] and as well to the asymmetry
in the amplitudes of probabilities of the virtual transfer of
electrons from the ligands to the 3d shell, which we have taken
into account. It is calculated as follows:

d (1k)p
cov (Rj ) = |e|ε

′ + 2

3

∑
q

(−1)q
√

(2p + 1)

×
(

1 k p
−q q 0

)
d (k)

q (Rj ), (7)

where

d (k)
q (Rj ) = (2k + 1)

∑
m,m′

(−1)l−m

(
l k l

−m q m′

)

×〈lm|rC(1)
q |lm′〉, (8)

〈lm|rC(1)|lm′〉 = λlm,ρ〈ρ|rC(1)
q |ρ ′〉λρ ′,lm′

− 2〈lm|rC(1)
q |ρ〉λρ,lm′ . (9)

Here, for brevity, as usual [15] we denote λlm,ρ = γlm,ρ +
Slm,ρ . γlm,ρ are the so-called covalency parameters and Slm,ρ

are overlap integrals. In Eq. (7) k are even numbers 2 and 4,
and p are odd 1, 3, and 5.

In the local coordinate system (Fig. 1), the Hamiltonian
of the odd crystal field acting on 3d electrons of Fe ions
is written as Hcf = B(3)

2 (C(3)
2 + C(3)

−2 ). The parameter B(3)
2 is

mainly determined by the nearest oxygen ions,

B(3)
2 = 2

3

e2
√

10

R

⎡
⎢⎣2〈r3〉3d,4p

R3
+ 7Gpd√

15

⎛
⎜⎝

S3d0,2p0S2p0,4p0

+S3d0,2sS2s,4p0

− 2√
3
S3d1,2p1S2p1,4p1

⎞
⎟⎠
⎤
⎥⎦.

(10)

The value 〈r3〉3d,4p = 3.26 a.u. was estimated in Ref. [11]
using the Hartree-Fock wave functions of 3d and 4p electrons
[16] of the Fe3+ ion, and R is the oxygen-iron distance which

FIG. 1. Fragment of the FeV2O4 crystal structure. The iron ion
is in the center of the tetrahedron. Vanadium ions are in the centers
of the octahedra. The bridging oxygen ion is located at the top of the
tetrahedron. Its coordinates are (R

√
2/3, 0, R/

√
3).

is about 1.98 Å. The values of the overlap integrals are
S3d0,2p0 = −0.071, S3d0,2s = −0.068, S3d1,2p1 = 0.051, and
S4p0,2s = −0.073, S4p0,2s = −0.043, S4p1,2p1 = 0.036. The
wave functions for the 2p and 2s electron shells of the oxygen
ion are taken from Ref. [17]. Assuming that the Gpd value is
approximately the same as the Gdd , i.e., the same as that for
the even crystal field acting on the state of the 3d electron,
we have Gpd = Gdd = 2.5 and therefore B(3)

2 = B(3)
−2

∼= 2 ×
104 cm−1, and then using Eq. (3) the evaluated quantities are

d (12)3
cf = 0.026|e|〈r〉3d,4p

ε′ + 2

3
∼= 0.13 a.u.,

d (14)3
cf = 0.184|e|〈r〉3d,4p

ε′ + 2

3
∼= 0.94 a.u. (11)

The value 〈r〉3d,4p = 0.55 a.u. was taken from Ref. [11].
Analogously, using Eqs. (7)–(9) and the Hartree-Fock wave
functions from Refs. [16,17], we have

d (12)3
cov

∼= −1.08 a.u.,

d (14)3
cov = 1.37 a.u. (12)

The covalency parameters γ3d0,2p0, γ3d1,2p1, and γ3d0,2s were
taken as −0.1, 0.08, and −0.02, respectively [18,19], and
〈r〉2p,2s = −1.20 a.u.

Finally, the effective Hamiltonian of the electric field act-
ing on 3d electrons of Fe2+ in a tetrahedral coordination is
written as follows,

HE = 4

3

√
5

6
d (12)3

{
Ez
(
U (2)

2 + U (2)
−2

)

+
√

2
(
E (1)

−1U (2)
−1 + E (1)

1 U (2)
1

)}+ 4

3

√
5

6
d (14)3

×
⎧⎨
⎩

−Ez
(
U (4)

2 + U (4)
−2

)+ 1
2

(
E (1)

−1U (4)
−1 + E (1)

1 U (4)
1

)
+ 1

2

√
7
3

(
E (1)

1 U (4)
−3 + E (1)

−1U (4)
3

)
⎫⎬
⎭.

(13)

Comparing (11) and (12), it can be seen that the contributions
to the d (1k)p parameters caused by mixing of the 3d54p L and
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3d6 L−1 configurations to the ground one are of the same order
of magnitude.

III. THE BASIC FRAGMENT OF THE CRYSTAL
STRUCTURE AND A SET OF WAVE FUNCTIONS

Figure 1 shows a fragment of the crystal structure FeV2O4

[20–22]. In order to indicate the most effective channel of the
exchange coupling of the iron ion with vanadium ions via
the intermediate (bridging) oxygen ion, we rotate the local
coordinate axis of the Fe2+ ion by 45◦ with respect to the
crystallographic axes. It is clear that in this case the most
effective exchange channel is through the dxz state. The basis
of the wave functions of Fe2+d6(6D) with MS = 2 in the hole
representation is written as follows,

|5Eζ , 2〉 =
{+ + + +

ε η ϑ ξ

}
, |5Eϑ, 2〉 =

{+ + + +
ε η ξ ζ

}
,

|5T η, 2〉 =
{+ + + +

ζ ϑ ξ ε

}
, |5T ξ, 2〉 =

{+ + + +
ε ϑ η ζ

}
,

|5T ε, 2〉 =
{+ + + +

ξ ζ η ϑ

}
. (14)

Here, we have used the determinantal product states in
the strong crystal field representation, η = dxz, ξ = dyz, ε =
dx2−y2 , ζ = dxy, ϑ = d3z2−r2 .

IV. THE ORIGIN OF THE COUPLING OF Fe AND V SPINS
WITH THE ELECTRIC FIELD IN FeV2O4

According to Refs. [21–23], at T < 70 K the 5Eg state of
the Fe2+ ion splits into 5Eϑ and 5Eζ states. In the total mo-
mentum representation L = 2 and the lowest orbital state in
the crystallographic coordinate system is (| − 2〉 + |2〉)/

√
2.

In the rotated coordinate system (Fig. 1), it is the |5Eζ 〉 =
i(| − 2〉 − |2〉)/

√
2 state. The energy gap between the 5Tη

(5Tξ ) and 5E states is about �ηζ (�ξζ ) ∼= 4000 cm−1 [23]. The
V3+ ions are in the octahedral positions. At T < 70 K the
octahedra are also distorted [20–22]. The orbital triplet 3T1g

of the V3+ ion splits. A simple calculation using the crystal
field theory yields that the ground state of vanadium ions at
T < 70 K is orbitally nondegenerate.

In the third-order perturbation theory, as explained in
Fig. 2, for the effective energy interaction operator of Fe spins
and three V spins (see Fig. 1) with the external electric field,
we derive the following expression,

H (x)
eff = λFe〈ζ |dx|ξ 〉

|�ζξ |2
∑

V

JξV [SFe × SV]yEx, (15)

where λFe 	 −103 cm−1 is the spin-orbit coupling parameter,
and the matrix element of the x component of the effective
electric dipole moment is

〈5Eζ |dx|5Tξ 〉 = 〈ζ |dx|ξ 〉 = 2

3

√
2

7
d (12)3 + 16

9

√
5

42
d (14)3.

(16)
Note that the matrix elements 〈ζ |Ha

E |ϑ〉 and 〈ζ |Ha
E |ε〉 are zero.

The operator of the interaction of the electric field with
exchange-coupled Fe and three V spins via the bridging

 1  3 2

 Fe2+  V3+

5Tξ

5Eζ

FIG. 2. Example of virtual excitation scheme. Line 1 corre-
sponds to the excitation under the action of the electric field (the op-
erator HE ), 3 refers to the transition due to the spin-orbit interaction,
and double line 2 to the superexchange interaction Hex = JξV (SFeSV)
of the V3+ ion with the Fe2+ ion in the excited state.

oxygen in the position (−R/
√

2, 0, R/
√

2) is determined by
the expression similar to Eq. (15).

It is clear (Goodenough-Kanamori-Anderson rule) that the
excited 5Tξ state of iron is the most active for the superex-
change coupling with other six vanadium ions via oxygen ions
in positions (0,±R/

√
2,−R/

√
2). In this case, we have

H (y)
eff = λFe〈ζ |dy|η〉

|�ζη|2
∑

V

JηV [SFe × SV]xEy, (17)

where 〈ζ |dy|η〉 = 〈ζ |dx|ξ 〉.
Note that FeV2O4 is a compound with the geometrical

frustration. There are two types of FeO4 tetrahedra in the
crystal lattice, which are tilted with respect to each other by
90◦ around the c axis of the crystal [20–22]. In this regard,
it is necessary to consider the fragments of the structure in
which the bridging oxygen ions between the Fe and V ions
are located not along the x axis as in Fig. 1, but along the y
axis. The calculation similar to that performed above shows
that for tetrahedra of the second type, the sum of expressions
(15) and (17) remains unchanged.

The presence of the vector product of spins in op-
erators (15) and (17) resembles the so-called inverse
Dzyaloshinskii-Moriya mechanism for the magnetoelectric
coupling [7,8]. However, there is a fundamental difference.
In the Dzyaloshinskii-Moriya interaction, the spin-orbit inter-
action appears in the combination with the exchange integrals
that are nondiagonal in orbital quantum numbers (for details,
see, e.g., Ref. [24]). The presence of the Dzyaloshinskii-
Moriya interaction itself, in the general case, is not necessary.

At T > 75 K, according to the study of the Mössbauer
spectra [23,25,26], the directions of the Fe2+ (S = 2) and V3+

(S = 1) spins are antiparallel. In this case, the vector products
in Eqs. (15) and (17) are equal to zero. This observation
corresponds to the fact that there is no electric polarization
in the collinear ferrimagnetic phase of FeV2O4. At T < 75 K,
as the temperature decreases, the canting angle between the
iron and vanadium spins builds up and, accordingly, the vector
product of spins increases in the absolute value, reaching
[SFe × SV] = SFeSV sin (111◦) = 1.86. This behavior of the
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canting angle explains the smooth increase in the electric
polarization observed in [9] at T < 75 K.

To estimate the exchange interaction parameter JFeV in
order of magnitude, we use the expression from the exchange
channel model [27],

Jab = 1

4SaSb

∑
γ a,γ b

jγ a,γ b, (18)

where jγ a,γ b are contributions of the pairs of one-electron
orbitals of magnetic ions a and b. Using JMnV

∼= 18 K in
MnV2O4 [28] and JMnCr

∼= 16 K in MnCr2O4 [29], we find
JξV

∼= JηV
∼= JFeV

∼= 14 K. Indeed, it is clear from the wave
functions given by Eq. (14) that the dominating channel jξ,V

( jη,V ) is present for the ground 5Eζ state and for the excited
5Tξ (5Tη) state of the Fe2+ ion.

Further, we discuss the role of virtual excitation processes
containing matrix elements,

〈ξ |HE |ξ 〉 =
(

2

3

√
2

7
d (12)3 + 8

9

√
5

42
d (14)3

)
Ez,

〈η|HE |η〉 = −〈ξ |HE |ξ 〉 = 〈ξ |dz|ξ 〉Ez. (19)

These matrix elements can be interpreted as the energy of the
electric polarization of the iron excited states. They induce the
electric polarization component along the z axis. The operator
of the binding energy of the iron and vanadium spins with the
electric field is written in the form

H (z)
eff = λFe〈ξ |dz|ξ 〉

|�ζξ |2
∑

V

Jζ ξ,V [SFe × SV]yEz

+λFe〈η|dz|η〉
|�ζη|2

∑
V

Jζη,V [SFe × SV]xEz. (20)

The parameters of the iron-vanadium exchange coupling in
Eq. (20) are nondiagonal in terms of the orbital quantum
numbers of the iron ion, i.e., the same as it appears in the
microscopic theory of the antisymmetric exchange interaction
[24]. One of the relevant virtual excitation schemes is shown
in Fig. 3. It can be seen from the wave functions (10) and (11)
that Jζ ξ,V

∼= Jζη,Y
∼= JFe,V.

The electric polarization was measured on polycrystalline
samples in Ref. [9], therefore, the direction of the polarization
vector remains uncertain. In the absence of magnetic fields,
the measured value is |P| ∼= 63 μC/m2. If one assumes that
the electric polarization is oriented along the z axis, Eq. (20)

 1(2)

 3

 Fe2+  V3+

5Tξ

5Eζ

4 2(1)

FIG. 3. One of the virtual excitation schemes. Lines 1 and 2
correspond to the excitation of the iron ion via the nondiagonal
superexchange interaction Hex = Jζ ξ,V (SFeSV) of Fe and V ions, 3
to the electric polarization of the excited state, and 4 refers to the
transition caused by the spin-orbit coupling.

yields Pz
∼= 47 μC/m2. If it is assumed that the electric po-

larization is oriented along the x axis, Eq. (15) yields Px
∼=

85 μC/m2. According to Ref. [9], the applied magnetic field
reduces the electric polarization value. Qualitatively, it can be
interpreted as follows. According to Eqs. (15), (17), and (20),
the electric polarization sets up when the vector product of
Fe and V spins is nonzero (a noncollinear ferrimagnet). The
magnetic aligns the spins in parallel, and thus reducing the
value of the vector product of spins.

V. CONCLUDING REMARKS

In this Rapid Communication, we contribute to the cur-
rent microscopic theory of magnetoelectric coupling [6–8].
Focusing on FeV2O4, we have tested in detail the microscopic
mechanism of the interaction of exchange-coupled Fe and V
spins with the electric field. Simple analytical expressions for
magnetoelectric coupling energy are derived. The calculated
electric polarization is consistent with the experimental value
[9] in order of magnitude. The proposed mechanism of the
interaction of the electric field with exchange-coupled spins
is applicable to a wide class of noncollinear ferrimagnets
with magnetic ions located in positions without the inversion
symmetry.
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