
PHYSICAL REVIEW B 100, 140401(R) (2019)
Rapid Communications

Semiquantum thermodynamics of complex ferrimagnets

Joseph Barker 1 and Gerrit E. W. Bauer2,3

1Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2Institute for Materials Research & AIMR & CSRN, Tohoku University, Sendai 980-8577, Japan

3Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands

(Received 1 February 2019; revised manuscript received 11 July 2019; published 2 October 2019)

High-quality magnets such as yttrium iron garnet (YIG) are electrically insulating and very complex. By
implementing a quantum thermostat into atomistic spin dynamics we compute YIG’s key thermodynamic
properties, viz., the magnon power spectrum and specific heat, for a large temperature range. The results differ
(sometimes spectacularly) from simple models and classical statistics, but agree with available experimental
data.
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Introduction. The spin dynamics of electrically insulat-
ing magnets often has high quality because the dissipation
channel by conduction electron scattering is absent. With
few exceptions, they are complex ferrimagnets. Yttrium iron
garnet (YIG) with 80 atoms in the unit cell rules with a
record low Gilbert damping of long-wavelength spin-wave
excitations or magnons, even at room temperature [1,2]. The
implied exceptionally low disorder and weak coupling with
phonons remains a mystery, however. Recently, magnon heat
and spin transport were measured in YIG thin films in a
nonlocal spin injection and detection configuration with Pt
contacts by means of the spin Hall effect [3] and modeled
by spin diffusion [4]. Key parameters of this model are
linked to the thermodynamics of the magnetic order, such
as the magnon heat capacity, which is difficult to measure
because it is orders of magnitude smaller than the phonon heat
capacity—at 10 K the magnon and phonon heat capacities
are Cm ≈ 0.009 J kg−1 K−1 and Cp ≈ 0.270 J kg−1 K−1 [5].
They can be separated by magnetic freeze-out of the magnon
contribution at temperatures up to a few degrees Kelvin [5,6].
The magnon heat capacity at higher temperatures has been es-
timated by extrapolating models that agree with experimental
low-temperature results [4,7]. YIG is often treated as a single-
mode ferromagnet with quadratic ω ∝ Dk2 (or isotropic co-
sine function) dispersion, thereby ignoring higher-frequency
acoustic and optical modes and the temperature dependence
of the exchange stiffness D. Furthermore, magnon-magnon
interactions are also commonly neglected or treated in a mean-
field approximation. Statistical approaches also have issues,
such as the use of classical (Johnson-Nyquist) thermal noise
at low temperatures [8].

In this Rapid Communication we introduce a numerical
method that avoids all of these shortcomings. It allows us to
carry out material-dependent thermodynamic calculations that
are quantitatively accurate with a small number of parameters
that can be determined independently. The crucial ingredient
is a thermostat for Planck quantum (rather than Rayleigh-
Jeans classical) statistics in an atomistic spin dynamics frame-
work [9].

With the inclusion of quantum thermal statistics we find
quantitative agreement for YIG with available experiments at

low temperatures. The computed spin-wave dispersion as a
function of temperature agrees well with results from neutron
scattering. This low-temperature quantitative benchmarking
imbues trust in the technique for calculating thermodynamic
functions and allows access to quantities such as the magnon
heat capacity at room temperature that turns out to be an order
of magnitude larger than previous estimates.

Method. We address the thermodynamics by computing
the atomistic spin dynamics in the long (ergodic) time limit
to generate canonical ensembles of spins. The magnetic mo-
ments (“spins”) in this model are treated as classical unit
vectors S, an excellent approximation for the half-filled 3d
shell of the iron cations in YIG with S = 5/2 and magnetic
moment μs = gμBS, where g ≈ 2 is the electron g-factor and
μB the Bohr magneton.

The Heisenberg Hamiltonian H = − 1
2

∑
i j Ji jSi · S j con-

tains the (super)exchange parameters Ji j between spins on
sites i and j, which are determined by fits to inelastic neutron
scattering data [10]. Recently, the magnon dispersions were
measured again with a higher resolution [11], allowing an im-
proved parametrization of the six nearest-neighbor exchange
constants, which we adopt in the following. We add a Zeeman
term, H = −∑

i μs,iHext · Si with Hext = Hz = 0.1 T, to fix
the quantization axis. On each lattice site “i” the spin dynam-
ics obey the Landau-Lifshitz equation of motion [12],

∂Si

∂t
= −|γ |[Si × Hi + ηSi × (Si × Hi )], (1)

where γ = gμB/h̄ is the gyromagnetic ratio and η is a
damping constant. Each spin feels an effective magnetic field
Hi = ξi − (1/μs,i )∂H /∂Si, where ξi are stochastic processes
controlled by the thermostat at temperature T . 〈ξiα〉 = 0
and the correlation function in frequency space is governed
by the fluctuation-dissipation theorem (FDT) 〈ξiαξ jβ〉ω =
2ηδi jδαβϕ(ω, T )/μs,i, where the Kronecker δ’s reflect the
assumption that the fluctuations between lattice sites i, j
and Cartesian coordinates α, β are uncorrelated. ϕ(ω, T ) de-
scribes the temperature dependence of the noise power and is
chosen such that the steady-state distribution functions obey
equilibrium thermal statistics. By not approximating the spin
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Hamiltonian by a truncated Holstein-Primakoff expansion,
our approach includes magnon-magnon interactions to all
orders [13].

Atomistic spin dynamics methods generally assume the
classical limit of the FDT with frequency-independent (white)
noise ϕ(ω, T ) = kBT , i.e., all magnons are stimulated. The
energy equipartition of the coupled system results in the
Rayleigh-Jeans magnon distribution. However, this is only
valid when the thermal energy is much larger than that of the
magnon mode k under consideration, i.e., when kBT � h̄ωk ,
while the energies of the YIG magnon spectrum—and that
of most room-temperature magnets—extend up to h̄ωk/kB ≈
1000 K [1]. A classical thermostat therefore generates too
many high-energy magnons, which, for example, overesti-
mates the broadening by magnon scattering and leads to other
predictions that can be very wrong.

According to the quantum FDT for magnons [14,15],

ϕ(ω, T ) = h̄ω

exp (h̄ω/kBT ) − 1
, (2)

which means that equipartition is replaced by Planck statistics
of the magnons at temperature T . Quantum statistics in classi-
cal spin systems can partially be mimicked through a postpro-
cess rescaling of the temperature [16] or by using temperature-
dependent frequencies that rely on analytic expressions for
the low-temperature spectrum [15]. These approaches cannot
be used to evaluate all thermodynamic properties and are not
suitable to treat complex magnets such as YIG. We therefore
adopt here the “quantum thermostat” introduced earlier in
molecular dynamics [17,18], i.e., a correlated noise source
that obeys the quantum FDT. This is “colored” noise, but
very different from the one used to describe classical memory
effects in the heat bath [19,20].

We implement the quantum statistics by generating cor-
related fluctuating fields ξi(t ) numerically in time that obey
the FDT in the frequency domain. Savin et al. [18] employ
a set of stochastic differential equations that produce the
required distribution function. We adjust this method to spin
dynamics problems, referring the reader to Ref. [18] and the
Supplemental Material S1 for the technical details [21]. The
solution is a dimensionless stochastic process �iα (t ) with
the spectrum of Eq. (2). The dimensionful noise in the spin
dynamics reads

ξiα (t ) = kBT

√
2ημs,i

γ h̄
�iα (t ). (3)

When we agitate the model of classical spins with these
stochastic fields, the excitations of the ground state (magnons)
obey quantum statistics, quite analogous to quantized phonons
in a classical ball-spring lattice. This approach may loosely
be called “semiquantum” and works very well for the large
Fe3+ spin in YIG with S = 5/2 (μs = 5μB), but requires
more scrutiny for spin S = 1/2 (see Supplemental Material
S2 [21]).

We integrate Eq. (1) using the Heun method with a time
step �t = 0.1 fs. The stochastic differential equations of
the thermostat are integrated using the fourth-order Runge-
Kutta method with the same time step. The exchange pa-
rameters from Ref. [11]—scaled by S2 for to unit spins—
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FIG. 1. (a) YIG magnon spectrum at T = 5 K and T = 300 K
calculated using the quantum thermostat and the exchange param-
eters of Ref. [11]. The color intensity is adjusted on a log scale
such that all modes are visible (even for extremely low occupation)
and is different for both figures. The red/blue color shows the +/−
polarization of the magnons. (b) Magnon gap between optical and
acoustic modes at . Experimental data are adopted from neutron
scattering experiments [10].

read J1 = −42.5, J2 = −3.25, J3a = 0, J3b = −6.875, J4 =
0.4375, J5 = −2.9375, J6 = 0.5625 meV for successive near-
est neighbors. For the magnon spectrum we use η = 2 ×
10−4 representing the low Gilbert damping of YIG. For ther-
modynamic calculations we use overdamped dynamics with
η = 0.1 for faster convergence. Thermodynamic quantities
(energy, magnetization) were calculated for 5 ns, discarding
the initial equilibration period (generally below 0.1 ns). The
remaining time series are used to calculate the thermodynamic
averages. Five independent stochastic trajectories were calcu-
lated and averaged for each data point. Error bars defined as
three times the standard deviation for thermodynamic aver-
ages between these trajectories were mostly smaller than the
data points in the figures.

Magnon spectrum. We compare now the magnon spectrum
computed with the quantum thermostat with our previous
work with classical statistics (and older exchange constants
from Ref. [1]) [9]. Results for low (5 K) and room (300 K)
temperature are shown in Fig. 1(a). The classical thermostat
overestimates the number of high-energy magnons and there-
fore the broadening of the optical modes at higher tempera-
tures. With quantum statistics, the high-energy optical modes
are well resolved at room temperature and should be ob-
servable by inelastic neutron scattering with large frequency
transfer. The agreement between the calculated and measured
[10] temperature dependence of the exchange gap between

140401-2



SEMIQUANTUM THERMODYNAMICS OF COMPLEX FERRIMAGNETS PHYSICAL REVIEW B 100, 140401(R) (2019)

FIG. 2. Temperature-dependent magnetization of YIG calculated
using classical and semiquantum spin dynamics. The experimental
points are from Ref. [27] and Bloch’s law from Eq. (4) with D =
85.2 × 10−41 J m2 [11], which in YIG is temperature independent
until close to the Curie temperature. The inset is a closeup of the
semiquantum method (blue circles) in the low-temperature regime
where Bloch’s law (dashed red line) is valid.

optical and acoustic modes at the  point, shown in Fig. 1(b),
is improved, especially in the low-temperature regime.

Magnetization. The magnetization at low temperatures
mz = 1 − 1

S

∑
kν〈nkν〉T , where 〈nkν〉T is the distribution of

magnons with wave vector k and band index ν in the first
Brillouin zone, cannot be calculated correctly with classical
statistics [22] (at higher temperatures the expression does not
hold since magnon-magnon interactions are important). This
is obvious already for the single parabolic band, noninteract-
ing magnon gas model for which

1 − mz(T ) = vws
1

S


(

3
2

)
ζ
(

3
2

)
2π2

(
kBT

D

)3/2

, (4)

where ωk = Dk2, spin-wave stiffness D = 2SJa2, lattice con-
stant a, vws volume of the Wigner-Seitz cell, while (x) and
ζ (x) are the gamma and Riemann zeta functions. The T 3/2

dependence is known as Bloch’s law [23].
In the ferrimagnet YIG the total magnetization is made

up by two oppositely aligned sublattices with slightly
different temperature-dependent magnetizations. At low
temperatures they are rigidly locked to an antiparallel con-
figuration by the strong nearest-neighbor exchange. At en-
ergies h̄ωk/kB � 30 K YIG’s magnon dispersion is known
to be quadratic and its magnetization obeys Bloch’s T 3/2

law [24]. The expected deviations at higher temperatures can
be assessed by our method. We calculate the magnetization
at temperature T as an average 〈· · · 〉T over the spin con-
figurations at many times over a 1 ns trajectory m(T ) =
〈N−1 ∑N

i μs,iSi〉T /〈N−1 ∑N
i μs,iSi〉T =0, where N = 655 360

is the total number of spins in the simulation.
Figure 2 exposes the obvious problem of classical statistics

to compute magnetizations at low temperatures: The magne-
tization decreases much more rapidly with temperature than
Bloch’s law (and as observed in experiments). The results with
the quantum thermostat, on the other hand, adhere to Bloch’s
law for T < 30 K (see the inset) but also agree well with
experiments that signal a breakdown of T 3/2 scaling, at least
until ∼300 K.

The Curie temperatures for the classical (TC = 420 K)
and quantum thermostated systems (TC = 680 K) are quite
different, while the observed TC = 550 K lies between the
theoretical values. In contrast to classical results that obey
equipartition, the Curie temperature of quantum approaches
depends on S and we find this also in our semiquantum
approach. For a simple ferromagnetic bcc lattice our com-
puted Curie temperatures agree well with those obtained by
semianalytic approaches [25] for a large range of S (see
Supplemental Fig. S3). The overestimation of TC compared
to the experiment might be caused by exchange parameters
that are slightly too large since the neutron scattering data are
fitted only up to 90 meV which does not cover the magnon
modes with highest energy. Also, the choice of S = 5/2
(μs = 5μB) in extracting the exchange parameters does not
fully agree with the measured values of μs,a = 4.11μB and
μs,d = 5.37μB for the octahedral and tetrahedral sites [26].
Hence, a more accurate set of parameters, fitted to neutron
scattering data for large energy transfers or calculated from
first principles, should solve this discrepancy.

Heat capacity. The magnon heat capacity per unit volume
Cm = V −1(∂Um/∂T )V is the change in the internal mag-
netic energy Um with temperature at constant volume V .
It can be calculated from the magnon spectrum as Cm =
V −1(∂/∂T )

∑
kν h̄ωkν〈nkν〉, where 〈nkν〉 is the Planck distri-

bution. In the low-temperature limit magnons occupy only
states close to k = 0, where the magnon dispersion of fer-
romagnets is parabolic. For a single parabolic magnon band
[13],

Cm(T ) = 1

V

5

8


(

5
2

)
ζ
(

5
2

)
π2

kB

(
kBT

D

)3/2

, (5)

where (x) and ζ (x) are the gamma and Riemann zeta func-
tions.

The proportionality Cm ∝ T 3/2 should hold for YIG up
to energies of h̄ωk/kB � 30 K. Rezende and López Ortiz [7]
calculated the heat capacity for acoustic magnons with a finite
bandwidth, but neglected optical magnons that contribute to
the heat capacity at elevated temperatures. They found that Cm

saturates at 150 K, i.e., when the magnon occupation reaches
the upper band edge.

Here, we calculate the heat capacity including all
magnon modes and their interactions. We calculate Cm

from the energy fluctuations in the canonical ensemble
〈Um〉T = (1/Zm)

∑
kν h̄ωkν exp(−h̄ωkν/kBT ), where Zm =∑

kν exp(−h̄ωkν/kBT ) is the partition function. Then Cm =
(〈U 2

m〉T − 〈Um〉2
T )/(V kBT 2), where in a simulation 〈· · · 〉T is

an average over a large time interval at a constant temperature
and V is the volume of the system.

Figure 3 shows the low-temperature region where the
magnon dispersion is, to a good approximation, parabolic
and Cm ∝ T 3/2. Calculations using quantum statistics give an
excellent agreement with Bloch’s law. The experimental data
in Fig. 3 have been collected in the range T = 2–9 K [5],
high enough that dipolar field effects can be disregarded. The
measurements were made by freezing the magnons in a 7-T
field. Even this large field, however, does not completely re-
move the magnon contribution to the heat capacity, especially
at the higher end of the temperature range [7]. To make a
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FIG. 3. Low-temperature magnon heat capacity of YIG calcu-
lated with quantum statistics (red circles) compared to Bloch’s law
(red solid line). �Cm = Cm(H = 0 T) − Cm(H = 7 T) calculated
with quantum statistics (red open circles) is compared with exper-
imental data from Boona and Heremans [5] (orange open squares) as
well as a single magnon band model [7] (blue dashed line). The error
bars on simulated data represent three standard deviations across five
independent stochastic trajectories.

proper comparison we repeat the experimental procedure in
our simulation by computing the difference �Cm = Cm(H =
0 T) − Cm(H = 7 T). Our calculations agree well with the
observations as well as the single magnon-band model.

Figure 4 illustrates a pronounced difference between the
classical and semiquantum models: Classical statistics over-
estimate the heat capacity by five orders of magnitude at low
temperatures, and do not depend on temperature in contrast
to the quantum statistical result which approaches zero as
T 3/2. In spite of this spectacular (and rather obvious) failure,
classical statistics have traditionally been used (and still are)
in both Monte Carlo and atomistic spin dynamics.

At T > 30 K nonparabolicities begin and Cm ∝ T p with
power p > 3/2. At room temperatures Fig. 4 reveals differ-
ences between the approaches of two orders of magnitude.
The finite-width magnon-band model [7] (dashed line in
Fig. 4) saturates prematurely with increasing T because opti-
cal and higher acoustic modes become significantly occupied
when approaching room temperature [9]. The parabolic band
model without a high-momentum cutoff (Bloch’s law) also
strongly underestimates Cm because YIG’s magnon density of
states is strongly enhanced by the flat bands observed in Fig. 1.
The semiquantum calculation is an order of magnitude larger
than both of these heavily approximated approaches, benefit-

FIG. 4. YIG magnon heat capacity calculated over a larger tem-
perature range with the semiquantum model (red circles), classical
model (green squares), compared with Bloch’s law (solid red line)
and the single-band model [7] (dashed blue line).

ting from the complete description of the magnon spectrum
as well as magnon-magnon interactions, while the classical
statistics strongly overestimates the heat capacity up to the
Curie temperature. Since the magnon heat capacity cannot be
measured for T > 10 K, this is a critical test of the theories.

Conclusions. By enforcing Planck statistics for the
magnons in the complex ferrimagnet YIG, we obtain ex-
cellent agreement with available inelastic neutron scattering
and magnon heat capacity experiments. Our results prove
that fundamental thermodynamic equilibrium properties can
be predicted with confidence when experimental data are
not available, but only when quantum statistics and the full
spin-wave spectrum are taken into account. The method is not
limited to YIG or ordered magnets, but can be directly applied
to other complex materials with local magnetic moments such
as spin glasses or paramagnets. Our results are a necessary
step to compute nonequilibrium properties such as magnon
conductivities and spin Seebeck coefficients, which are essen-
tial parameters for future applications of magnonic devices.
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