
PHYSICAL REVIEW B 100, 140201(R) (2019)
Rapid Communications

Random network models with variable disorder of geometry
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Recently it was shown [I. A. Gruzberg, A. Klümper, W. Nuding and A. Sedrakyan, Phys. Rev. B 95, 125414
(2017)] that taking into account random positions of scattering nodes in the network model with U (1) phase
disorder yields a localization length exponent 2.37 ± 0.011 for plateau transitions in the integer quantum Hall
effect. This is in striking agreement with the experimental value of 2.38 ± 0.06. Randomness of the network was
modeled by replacing standard scattering nodes of a regular network by pure tunneling (respectively, reflection)
with probability p where the particular value p = 1/3 was chosen. Here we investigate the role played by the
strength of the geometric disorder, i.e., the value of p. We consider random networks with arbitrary probability
0 < p < 1/2 for extreme cases and show the presence of a line of critical points with varying localization length
indices having a minimum located at p = 1/3.
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Introduction. The physics of plateau transitions in the
integer quantum Hall effect (IQHE) poses a crucial condensed
matter problem potentially necessitating a new understanding
of quantum criticality. It relates not only to chiral systems
where time-reversal symmetry (TRS) is broken, but also to
topological insulators (TIs) with TRS. This transition is an
example of a metal-insulator transition in two dimensions
where TRS is broken due to the presence of a magnetic
field. In their seminal paper [1] Chalker and Coddington
suggested a phenomenological model (CC model) for edge
excitations in magnetic fields, where the disorder potential
creates a scattering network based on quantum tunneling be-
tween Fermi levels of neighbor Fermi “puddles” in the ground
state. For simplicity, the authors suggested that the scattering
nodes in the landscape of the random potential are disposed
regularly, while the information about randomness is coded in
random U (1) phases associated with the links of the network.
During the last 30 years there were huge activities [2–19] in
understanding the CC model, its continuum limit, and links to
conformal field theories [19–22]. A spin Hall analog of the
CC model was formulated [23] and investigated in [24]. It
appeared, however, that the position of scattering nodes on a
regular lattice loses an essential part of the randomness of the
potential. Numerical calculations of the Lyapunov exponent
in the CC model give a localization length index ν = 2.56 ±
0.011 [25–30], which is well separated from the experimental
value ν = 2.38 ± 0.06 [11,31,32]. Recently, alternatives to
the CC model approach give values ν � 2.58 in Ref. [33]
and ν = 2.48 ± 0.02 in [34] with only the latter being just
compatible with the experimental result.

The discrepancy between the experimental value of ν and
the CC model prediction may be due to the importance
of electron-electron interactions studied in papers [35–39].
However, another solution of this problem was proposed in

the paper [40], based on the observation that randomness of
the relative positions of nearest-neighbor scattering nodes has
to be taken into account. For a depiction of a disorder potential
with nonregular positioned saddle points, see Fig. 1. This ran-
domness of the network leads to the appearance of curvature
in 2D space and may be regarded as the induction of quenched
2D gravity, which changes the universality class of the prob-
lem. In order to generate disordered networks in the transfer-
matrix formalism, a new model was formulated, where the
regular scattering with S matrix S = ( r t

−t r) at the saddle
points is randomly replaced by two other extreme events.
Here, the S matrix takes the form of complete reflection,
(t, r) = (0, 1), with probability p1 or the form of complete
tunneling, (t, r) = (1, 0), with probability p2 as presented in
Fig. 2. The probability of regular scattering events is p3 = 1 −
p1 − p2. The two extreme scattering events eliminate links
in the scattering network. They perform a kind of “surgery”
to a flat network where n faces with n = 3, 5, 6, . . . appear
in the lattice. Examples of such surgery are presented in
Fig. 2. Following this procedure we can formulate a hopping
model of fermions on a random Manhattan lattice (ML), as is
presented in Fig. 3, which corresponds to the landscape of the
potential presented in Fig. 1.

The appearance of n faces in the ML means that our 2D
geometry is not flat anymore and contains local Gaussian
curvature Rn = π

2 (4 − n) for each n face with n �= 4. This is
the discrete analog of the Gaussian curvature integrated over
a face

∫
face R

√
gd2ξ . Hence, the average over randomness of

the saddle points leads to the average over all configurations
of the curved space [41,42], with yet to be determined func-
tional measure. The field, which is characterizing different
surfaces and by use of which one can ensure reparametrization
invariance of the model is the metric, while the corresponding
theory is 2D gravity. This indicates that we have a noncritical
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FIG. 1. Modified CC network with two “open” nodes, one in the
vertical and one in the horizontal direction.

string model, where all physical variables should be invariant
under arbitrary coordinate transformations. The appearance of
this new field and symmetry is the reason for the changes of
the critical indices of the flat problem. And, as it appeared
[40], by taking equal probability 1/3 for each of the three
nodes (complete reflection, complete transmission, regular
scattering), the localization length index becomes ν = 2.37 ±
0.011, very close to the experimental value. In passing, we like
to remark that recently the problem of the fractional quantum
Hall effect on arbitrary gravitational background has attracted
considerable interest [43–45].

In Refs. [33,34] the regular tight-binding lattice model in a
magnetic field with random site energies was numerically an-
alyzed. In [33] the authors considered the one-particle Green’s
function and got ν = 2.58(4) for the correlation length index,
while in [34] the density of states around zero energy was
analyzed yielding ν = 2.48 ± 0.02. The first paper confirms
the result for the standard CC model. Our modified CC
model differs essentially from this model because it contains
information about the geometry of filled Landau levels, which
form “lakes” in a random potential background. Assuming

FIG. 2. Top: Graphical illustration of the opening of a node.
Bottom: The resulting modifications of the medial lattice.
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FIG. 3. The modified medial lattice corresponding to the network
shown in Fig. 1. We see two hexagons (vertically and horizontally
oriented) appearing in neighborhood with two triangles each. Red
dotted lines here correspond to red dotted lines in Fig. 1.

that the numerical analysis of both models was done on
sufficiently large lattices we have to conclude that the models
with different critical indices belong to different universality
classes.

Another important question appearing here is the validity
of the Harris criterion [46,47]. According to it, for dν > 2
with d being the spatial dimension, any new disorder cannot
change the critical index ν of the system. For the CC model
we find ν ∼ 2.56 [25–30] so the above condition is fulfilled.
Therefore one naively may expect that disorder connected
with randomness of the network cannot change the CC model
localization length index.

The fundamental arguments leading to the Harris criterion
are based on the following observations (see, for instance,
[48]): We consider a system at some temperature T close to
the critical temperature Tc of the ordered bulk. We then divide
the space into correlated blocks of the size of the correlation
length ξ (T ). Each block i has its own realization of disorder
and has a corresponding transition temperature Tc,i. If the
deviation of the critical temperatures, thanks to the central
limit theorem of the order �Ti ∼ ξ−d/2, is smaller than the
distance of the actual temperature T from the critical point
T − Tc ∼ ξ−1/ν , then a uniform phase transition happens and
the disorder is irrelevant. In the other case, different blocks
may stay on different sides of the critical point Tc and far from
it which will change the critical behavior. This is the case of
geometric disorder involving a finite fraction of extreme nodes
with (t, r) = (0, 1) or (t, r) = (1, 0) deviating considerably
from the CC critical point rc = tc = 1/

√
2. In general, it

appears questionable if the RG perturbative reasoning applies
to strong disorder. Investigations concerning this issue are
available [47]. In summary, the presented arguments cannot
be considered as proof and the influence of geometric disorder
on the applicability of Harris’ criterion needs further investi-
gation.

A natural question that appears is, what is the meaning
of probabilities pi, i = 1, 2, 3 and do the critical indices of
the model depend on them? In this Rapid Communication
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we consider the model with singular blocks [see Figs. 2(b)
and 2(c)] appearing in the network with equal probabilities
p1 = p2 = p, while the regular scattering has the probability
1 − 2p. It is clear that p � 1/2.

Construction and simulation of random networks. For
the calculation of the correlation length index of our model
we used a variant of the transfer-matrix method formulated
in Refs. [49,50] and further developed in Refs. [1,26]. We
calculate the product

TL =
L∏

j=1

T1 jU1 jT2 jU2 j (1)

of layers of transfer matrices M1U1 jM2U2 j corresponding
to two columns T1 j and T2 j of vertical sequences of 2 × 2
scattering nodes,

(2)

and

(3)

Here the index αi = 1, 2, 3 should be randomly fixed; α = 1
with probability 1 − 2p for regular scatterings

T 1
1 =

(
1/t r/t
r/t 1/t

)
, T 2

1 =
(

1/r t/r
t/r 1/r

)
, (4)

or α = 2, 3 with probability p, for surgery operations, i.e.,
“extremal scatterings,”

T 1/2
2 =

(
1 0
0 1

)
, T 1/2

3 =
(

1/ε
√

1 − ε2/ε√
1 − ε2/ε 1/ε

)
.

(5)

The parameter ε here is a regularization parameter, which
ideally should be set to zero after the calculation of the
Lyapunov exponent.

This choice of the transfer matrices corresponds to peri-
odic boundary conditions in the transverse direction. In other
words, these transfer matrices describe the random network
model on a cylinder.

The U matrices have a simple diagonal form with inde-
pendent phase factors Unm = exp (iφn) δnm for U = U1 j and
U2 j . The parameters t and r of the regular scattering are the
transmission and reflection amplitudes at each node and we
parametrize them as in the previous paper [40]:

t = 1√
1 + e2x

and r = 1√
1 + e−2x

. (6)

The parameter x corresponds to the Fermi energy measured
from the Landau band center scaled by the Landau band
width. Following paper [40] we expect that the critical point
of the model of arbitrary p is still given by the value t2

c = 1/2
as for the regular nodes corresponding to x = 0. The phases
φn are random variables uniformly distributed in the range
[0, 2π ), reflecting that the phase of an electron approaching
a saddle point of the random potential is arbitrary.

To extract the exponent ν for random networks, we nu-
merically estimate the Lyapunov exponent γ defined as the
smallest positive eigenvalue of

1

2L
ln[TLT †

L ] (7)

in the limit L → ∞. In the standard transfer-matrix method
one multiplies many transfer matrices for a single realization
of disorder and relies on the self-averaging property of Lya-
punov exponents. This property in the limit of infinite length
of the sample is the subject of the central-limit-type theorem
for products of random matrices due to Oseledec [51]. The
modification of Ref. [26] that we use here, however, is based
on another central-limit-type theorem for products of random
matrices due to Tutubalin [52]. This theorem states that the
Lyapunov exponents of products of a finite number of random
matrices are random numbers whose distribution approaches
Gaussian for large sample lengths.

These theorems allow us to simulate ensembles of Nr =
624 strips of height M (the number of nodes per column,
varying from 20 to 200) in the case of q = 1/3 and length
L = 5 × 106. This is equivalent [26] to the standard transfer-
matrix simulation of a single sample of effective length Leff =
Nr × L > 3 × 109, exceeding the longest previously reported
sample lengths. Moreover, this method allows for an estimate
of the precision of the calculated Lyapunov exponents by
means of the standard deviation of those ensembles. The
range of the parameter x we have considered is x ∈ [0, 0.08]
which encodes deviations of t from tc. Then we fit all data
of the Lyapunov exponent for pairs of the parameters (M, x)
extracting the localization index ν. For each ensemble of the
random network we check that the histogram of the Lyapunov
exponents is close to a Gaussian.

We use the so-called LU decomposition of transfer matri-
ces [30], because it is faster than the standard QR decompo-
sition approach. Since t and r appear in the denominators

0.1 0.2 0.3 0.4
p

2.2

2.4

2.6

2.8

3.0

3.2

FIG. 4. Localization length index νp versus probability p of
singular blocks.
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FIG. 5. Subleading index versus probability p of singular blocks.

of the matrix elements of transfer matrices, making them
zero is a singular procedure, related to the disappearance of
two horizontal channels upon opening a node in the vertical
direction (see Fig. 2). To overcome this difficulty, following
[40] we take for every open node either t or r to be equal to
ε 	 1. It appears that the result for the Lyapunov exponent
is unchanged within our error 10−3 in a range from ε = 10−5

up to ε to 10−7. For even smaller ε the results start changing
again. This is to be expected because the large differences
of values in the entries of transfer matrices cause numerical
instabilities for the LU decomposition. Interestingly, we found
that the results for the Lyapunov exponents for longer chains
depend less on the value of ε than for shorter chains. We have
chosen ε = 10−6 for our calculations.

As usual, the Lyapunov exponent γ is expected to have the
following finite-size scaling behavior:

γ M = �[M1/νu0(x), Myu1(x)]. (8)

Here u0(x) is the relevant field and u1(x) is the leading
irrelevant field. The relevant field vanishes at the critical
point and y < 0. The fitting and the error analysis of our
numerical data are described in the Supplemental Material
[53]. We chose the fitting result by goodness of χ2 and the
Akaike information criterion [54]. The results of the analysis
as functions of the disorder parameter p are presented in Fig. 4
for the localization length exponent ν, in Fig. 5 for the expo-
nent y of the irrelevant field, and in Fig. 6 for the parameter
�c = π (α0 − 2) related to the multifractal exponent α0 [55].
In Table I we present these results as numbers.

0.1 0.2 0.3 0.4
p

0.6

0.7

0.8

0.9

0

FIG. 6. Coefficient �c = π (α0 − 2) related to the multifractal
exponent α0 versus probability p of singular blocks.

TABLE I. Numerical values for the exponents ν, y and the mul-
tifractal parameter �c and their uncertainties. Different cases of the
disorder parameter p ∈ [0, 1[ are considered.

p �c ��c ν �ν y �y

0 0.7823 0.05695 2.573 0.0145 −0.2078 0.3744
0.1 0.816 0.00595 2.523 0.0213 −0.4592 0.1089
0.25 0.8489 0.00295 2.444 0.017 −0.6598 0.0527
0.3 0.08974 0.07275 2.41 0.027 −0.2028 0.0588
1/3 0.864 0.0568 2.374 0.0175 −0.355 0.05
0.35 0.8728 0.04895 2.394 0.015 −0.5661 1.7
0.36 0.8859 0.04395 2.45 0.0395 −0.6562 1.9235
0.4 0.95 0.00465 3.276 0.082 −1.408 0.6487

Figure 4 shows an interesting behavior of ν versus the
probability p. We see that a minimum is achieved precisely
at p = 1/3 which may very likely correspond to the plateau
transitions in IQHE. The value p = 0 gives ν = 2.56 for the
Chalker-Coddington model, just as expected. At p = 1/2,
where we do not have regular scattering nodes at all the x
dependence of γ should disappear. Therefore, one can expect
ν = ∞, because precisely in this situation the critical behavior
of the Lyapunov exponent of the form xν will produce zero.
As we see from Fig. 4, the index sharply increases close to
p = 1/2.

Results and summary. In summary, we have considered the
possibility that a certain type of geometric disorder, previously
missing in the study of the integer QH transition, changes
its universality class. Our numerical simulations support this
idea. We see that the random occurrence of singular blocks
in the network with some probability p leads to a geometry
with curvature. The network model has a critical index νp that
apparently changes continuously with p, i.e., it realizes a line
of critical points with different universality classes at different
points. The p1-p2 phase diagram of the model is presented in
Fig. 7, where the diagonal line from zero to A is a line of
critical points.

The minimal value of ν at p = 1/3 corresponds to the value
expected for the exponent of the IQH transitions. The meaning
of the other models as well as the meaning of the parameter
p remains an open question at the moment. It would not be
surprising, if the approaches presented in papers [33] and [34]
were related to different pameters p in our model.

p
2

p
1

A

0 0.5

0.5

1

1

FIG. 7. The (p1, p2) phase diagram of the model (p1 + p2 � 1).
The segment [0, A] is a line of critical points.
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