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Phase-dependent spin polarization of Cooper pairs in magnetic Josephson junctions
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Superconductor-ferromagnet hybrid structures (SF) have attracted much interest in the past decades, due to a
variety of interesting phenomena predicted and observed in these structures. One of them is the so-called inverse
proximity effect. It is described by a spin polarization of Cooper pairs, which occurs not only in the ferromagnet
(F), but also in the superconductor (S), yielding a finite magnetic moment MS inside the superconductor. This
effect has been predicted and experimentally studied. However, interpretation of the experimental data is mostly
ambiguous. Here, we study theoretically the impact of the spin polarized Cooper pairs on the Josephson effect
in an SFS junction. We show that the induced magnetic moment MS does depend on the phase difference ϕ and,
therefore, will oscillate in time with the Josephson frequency 2eV/h̄ if the current exceeds a critical value. Most
importantly, the spin polarization in the superconductor causes a significant change in the Fraunhofer pattern,
which can be easily accessed experimentally.
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I. INTRODUCTION

In the past decades, the interest in studying proximity
effects in superconductor (S) -ferromagnet (F) heterostruc-
tures including the magnetic Josephson junctions has steadily
increased [1–6]. A number of interesting phenomena were
originally predicted and experimentally verified in various
systems. Perhaps the most known among them is the sign
change of the Josephson current IJ in SFS junctions (so-
called 0 − π shift), predicted theoretically in Refs. [7,8] and
consequently observed in several experiments [9–12]. The
sign change of the critical current Ic is related to the spatial
oscillations of the condensate function, induced in the F
layer by the proximity effect (PE). Another exciting effect
is related to the prediction [3–5,13] and observation [14–27]
of a long-range triplet component of the condensate wave
function in the SF bilayer structures in the presence of the
inhomogeneous magnetization MF in the ferromagnet F. Note
that the triplet even-parity component, which due to the Pauli
principle has to be odd in frequency, arises in SF systems
with both homogeneous and inhomogeneous magnetizations.
However, in the case of a homogeneous magnetization, the
total spin of the triplet Cooper pairs has zero projection on
the direction of magnetization, MF, and thus the condensate
wave function penetrates the ferromagnet over a short distance
ξs−r = ξF only, where in the diffusive case ξF

∼= √
DF/J . Here,

DF and J are the diffusion coefficient and the exchange field,
respectively. At the same time, a nonhomogeneous magneti-
zation leads to a finite projection of the total spin of the triplet
Cooper pair along MF. As a result, the condensate wave func-
tion penetrates over much longer distances ξl−r

∼= √
DF/2πT

[3–5,13]. The presence of the long-range triplet component
was confirmed in various experiments [14–27]. For example,
in SFmlS Josephson junctions with a multilayered ferromagnet
Fml it was found [16,24,25] that the Josephson current IJ is
only present if the magnetization vectors of the different F

layers were noncollinear, while for collinear MF magnetiza-
tion orientation the Josephson current was negligibly small.

In addition to the direct proximity effect in SF heterostruc-
tures, describing the penetration of Cooper pairs from S to
F, there exists also the so-called inverse proximity effect
[28–33]. The latter is characterized by an induced magnetic
moment MS in the superconductor S. The physics of the
induced magnetization was discussed in Refs. [3,29,30] in
detail. Observe that an electron with the spin along the ex-
change field can easily penetrate the F layer, while an electron
with the opposite spin tends to stay in the superconductor.
As a result, the opposite electron spins appear to be spatially
separated which gives rise to the spin polarization and sub-
sequent magnetization of the superconducting surface layer
with the width of the order of the Cooper pair size, i.e., the
superconducting coherence length. Since the total spins of the
Cooper pairs need to remain antiparallel, the condensate in
S acquires a magnetic moment opposite to MF. This induced
magnetization MS(z) decays inside the superconductor on a
distance z of the order of the superconducting coherence
length ξS, which for a diffusive superconductor is proportional
to ξS ∼ √

DS/�, where DS is the diffusion coefficient in
the superconductor and � is the superconducting gap. In
a diffusive superconductor, i.e., when the concentration of
nonmagnetic impurities in a system is sufficiently large, the
vector MS is aligned in the direction opposite to MF. Under
appropriate conditions and at low temperatures, a full spin
screening may take place in these superconductors, i.e., the
total magnetization MS induced in the superconductor S may
be equal to −2dFMF, where 2dF is the thickness of the F layer.
At the same time, in the ballistic case the magnetization MS(z)
was found to oscillate with z [34,35].

There were experimental attempts to observe the induced
magnetization in S [36,37] and, although a magnetic field in
the S film was detected in several experiments, the interpreta-
tion of these results was still ambiguous due to signal to noise
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FIG. 1. Schematic representation of the considered SFS Joseph-
son junction. The thickness of the F film is 2dF. The S films are
assumed to be much thicker than the London penetration depth, i.e.,
2dS � λS.

ratio and also by the fact that the induced magnetization (spin
polarization) was masked by a magnetic field Horb created by
spontaneous Meissner currents (orbital effects). Theoretically,
the interplay between spin polarization and orbital effects has
been analyzed in Ref. [30] and in more detail more recently
[38]. In addition the calculation of Horb without taking into
account the induced magnetization MS was carried out in
Refs. [39,40]. Further efforts are needed to unambiguously
prove the existence of the inverse proximity effect. One must
therefore look for clear manifestation of the induced magneti-
zations which are experimentally accessible.

In the present work, we study the mutual influence of the
spin polarization and the Josephson effect in SFS junctions as
illustrated in Fig. 1. In particular, we show that the magnetic
moment MS in the superconductor due to spin polarization
does depend on the phase difference ϕ such that, if the
bias current I exceeds the critical current Ic, the magnetic
moment MS(ϕ(t )) oscillates with the Josephson frequency
ωJ = 2eV/h̄. Most importantly, the spin polarization in the
S films affects the prominent Fraunhofer pattern for the
Josephson effect, which can be observed experimentally using
sensitive Josephson interferometry. Furthermore, we analyze
the situations for high and low interface transparencies.

The Josephson effect in SFS junctions was studied in a
number of previous works. Most attention was paid to the
junction with nonhomogeneous magnetization in ferromag-
netic layer(s), where a long-range triplet component arises
(see, for example, reviews [1–6] and references therein as well
as more recent Refs. [27,41–55]). The Fraunhofer pattern was
also analyzed in Ref. [43]. However, in all of these papers
the effect of induced magnetization in superconductors was
neglected.

This work is structured as follows. In Sec. I we investigate
the induced magnetization in the S for the case of a weak
and a strong PE. The expressions found here are the basis
for our study in Sec. II, where we determine the change of
magnetostatic quantities in SFS junctions due to the phase de-
pendent contribution of the induced magnetization. In Sec. III,
we consider the effect of the spin polarization in the S on the
standard Fraunhofer pattern in SFS junctions. We conclude
our work in Sec. IV.

II. INDUCED MAGNETIZATION
IN THE SUPERCONDUCTOR

In the following we derive a formula for the magnetization
MS in the SFS junction induced in the S regions. The deriva-
tion is similar to that presented in Refs. [30,38]. Detailed
calculations for the strong and weak proximity effect can be
found in Appendixes A and B.

In the case of SFS Josephson junctions, one has to take
into account the phase difference ϕ which affects the energy
spectrum and the density of states (DOS) in the F film.
We assume a dirty limit which is described by the Usadel
equations for the Green’s functions in the superconductor, ǧS,
and in the ferromagnet, ǧF, respectively,

−DS∂z(ǧS∂zǧS) + ω[X̌30, ǧS] + �[X̌10 cos(ϕ/2)

± X̌20 sin(ϕ/2), ǧS] = 0, ±S films, (1)

−DF∂z(ǧF∂ ǧF) + ω[X̌30, ǧF] + iJ[X̌33, ǧF] = 0, F film,

(2)

where � is the superconducting gap and ω is the frequency.
Here, X̌i j is defined as X̌i j = τ̂i ⊗ σ̂ j with the Pauli matrices
τ̂ and σ̂ operating in particle-hole (Nambu-Gor’kov) and in
spin space. The ±S films denote the superconducting right
(left) electrodes. Note that in Eq. (1) only ǧS depends on spin
indices. Therefore, it is the standard Usadel equation with
matrix order parameter �̂ = �0(τ̂1 cos(ϕ/2) + τ̂2 sin(ϕ/2)).

Equations (1) and (2) are complemented by the normaliza-
tion relation ǧS(F) · ǧS(F) = 1̌ and the boundary conditions [56]

ǧF∂zǧF = κbF[ǧF, ǧS], ǧS∂zǧS = κbS[ǧS, ǧF], (3)

where κbS(F) = �S(F)/Rb�, with �S(F) being the resistivity of
the S(F) film in the normal state and Rb� being a barrier
resistance per unit square.

As in Refs. [30,38], we assume that the Green’s functions
ǧS in the S films are only weakly affected by the proximity
effect. Thus they can be written as

ǧ(0)
S = GSX̌30 + FS{cos(ϕ/2)X̌10 ± sin(ϕ/2)X̌20}, (4)

where GS = ω/ζω and FS = �/ζω are the normal and
anomalous components of the Green’s function with ζω =√

ω2 + �2.
We assume that the F film is so thin such that the condition

dF � ξF = √
DF/J is fulfilled. Then Eq. (2) can be integrated

over z to obtain

ω̃F[X̌30, ǧF] + �̃F[X̌10, ǧF] + iJ[X̌33, ǧF] = 0, F film, (5)

where ω̃F = (ω + εbFGS), �̃F(ϕ) = εbFFS cos(ϕ/2), and
εbF = DFκbF/dF. At z = ±dF, the boundary conditions Eq. (3)
are assumed to be identical, but with opposite signs. The
Green’s functions are diagonal in spin space and the solution
to Eq. (5) is

ĝF,± = g(F)
± τ̂3 + f (F)

± τ̂1, (6)

where the coefficients are given by g(F)
± = ω̃±/ζ̃ω̃± (ϕ) and

f (F)± = �̃F(ϕ)/ζ̃ω̃± (ϕ), with ω̃± = ω̃F ± iJ and ζ̃ω̃± (ϕ) =√
ω̃2

± + �̃2
F(ϕ).

In order to find the induced magnetization in the supercon-
ductor S, we suppose that ǧS deviates weakly from its bulk
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value Eq. (4) and linearizes Eq. (1). Then we can determine a
small correction δǧS to ǧS,

−∂zzδǧS + κ2
S,ωδǧS = 2ωδ�

(
ωX̌11 − �X̌30

)
/DS, (7)

where κ2
S,ω = 2

√
ω2 + �2/DS and employed the relation

δǧS · ǧ(0)
S + ǧ(0)

S · δǧS = 0, which follows from the normaliza-
tion condition. The induced magnetization is determined by
the component δg(S)

33 = Tr(X̌33δǧS)/4 and is given by

MS(z) = 2π iT μBνS

∑
ω�0

δg(S)
33 (±dF) exp(−κS,ω|z ∓ dF|)

≡ −
∑
ω�0

mS(ϕ) exp(−κS,ω|z ∓ dF|). (8)

In the case of a strong PE, i.e., [Rb�/�F <
√

DF/(d2
FJ )]

(see also Appendix A), it is given by

mS(ϕ) = M0
dF

ξS

2πT

�

(ω̃2 + 1)1/4 cos2(ϕ/2)

(ω̃2 + cos2(ϕ/2))3/2
, (9)

where DF is the diffusion coefficient of the F film and ξ 2
S =

DS/2�, ω̃ = ω/� (see Appendix A). Here, the magnetic
moment in the F film M0 is given by M0 = μBνFJ , where
μB and νF are the effective Bohr magneton and the density
of states in the F film, respectively.

In the case of a weak PE [Rb�/�FdF >
√

DF/(d2
FJ )] the

calculations are analogous (see Appendix B for details) and
one finds

mS(ϕ) = 4μBνS2πT GSF 2
S κbSκbFλS

× Im

(
cos2(ϕ/2) + sin2(ϕ/2) tanh2(θF)

κF,ω tanh(θF)

)
, (10)

where θF = κF,ωdF, κ2
F,ω = (|ω| + iJω )/DF, Jω = J sgn(ω),

and λS is the London penetration depth. Note that in the
case of a strong PE the function mS(ϕ) does not contain the
interface resistance Rb�, while in the case of a weak PE it is
proportional to R−2

b�.
In both cases, the induced magnetization in S depends on

the phase difference ϕ. The total magnetic moment induced
in the two superconductors MS is determined by integration
over z. At zero temperature the summation over the Matsubara
frequencies can be replaced by an integral [2πT

∑
ω(. . .) ⇒∫ ∞

0 dω(. . .)]. In particular, we find the following expression
for the case of a strong proximity effect:

MS = −2dFM0 for ϕ �= π. (11)

The magnetic moment induced in the superconductors
does not depend on the phase difference ϕ at any ϕ except
the points ϕn = π (2n + 1). It compensates exactly the total
magnetic moment of the ferromagnetic film MF = 2dFM0.
The overall dependence MS(ϕ) as a function of ϕ is shown
in Fig. 2 for different temperatures T . At temperatures close
to the critical temperature Tc the dependence of MS (ϕ) is
almost sinusoidal. In the case of a weak PE, the total induced
magnetization is much less than 2dFM0. It should be noted
that it seems contradictory at first glance to consider a strong
PE in the F film, while assuming a weak PE in the SC
regions. However, both cases are compatible if the following

FIG. 2. Phase dependence of the total induced magnetization
MS(ϕ) for the strong proximity effect in the S film normalized by
2dFM0 for various temperatures T̃ = T/Tc with T̃ = 0.1 (solid blue
curve), T̃ = 0.5 (orange dashed curve), and T̃ = 0.9 (green dotted
curve).

conditions are fulfilled:

ρSξS � Rb�, Rb� � ρFξF
DF

d2
F�

, J <
DF

d2
F

, (12)

where the first inequality is the requirement for the weak PE
in the SC regions and the second condition is required for a
strong PE in the F film. The latter condition allows one to
calculate the Green’s functions in ferromagnetic region in an
analytical form. The first two inequalities are then equival-
ent to

νF

νS
�

(
ξS

dF

)2

, (13)

where νF,S are the density of states in F and S regions,
respectively. This condition can be easily fulfilled if the ratio
at the right-hand side (RHS) is large.

Since the vectors MS and MF are aligned in the opposite
directions, two identical magnetic granules embedded in a su-
perconductor would interact antiferromagnetically with each
other. Indeed, the magnetic moment MS = −MF1, produced
by one granule with the magnetic moment MF1 will tend to
orient the magnetic moment MF2 of another granule in the
direction opposite to MF1. The characteristic length of this
interaction is of the order of ξS [30]. There is a similarity
between this case and the case considered in Ref. [57], where
it was found that at large distances the interaction between
two magnetic impurities in a superconductor is an antifer-
romagnetic one. However, the statement about antiparallel
orientation of MS and MF is valid only for a diffusive su-
perconductor. In the ballistic case the magnetization MS(z)
oscillates in space [34,35].

The dependence of the induced magnetization on the phase
difference leads to interesting phenomena. For example, if the
current I through the junction exceeds the critical value Ic,
the phase difference increases in time: ϕ(t ) = 2eV t/h̄. This
means that the induced magnetization MS(t ) will oscillate
in time with the Josephson frequency ω = 2eV/h̄. Another
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interesting feature of spin polarization in SF systems is that in
the case of a nonuniform magnetization MF(r⊥), the magneti-
zation vector MS(r⊥) is an inverse mirror image of the vector
MF(r⊥): MS(r⊥) = −MF(r⊥). This relation is true if the
characteristic length of the magnetization variation is much
greater than the coherence length in S. For example, in the
case of magnetic skyrmions, which can occur as topological
structures in the magnetization profile of chiral ferromagnets,
a skyrmion with opposite polarity arises in the S film. Since
a Josephson junction is one of the most sensitive devices for
probing the magnetic field, careful study of the influence of
the magnetic field in SFS junctions can lead to the detection
of the spin polarization in superconductors S.

III. MAGNETOSTATICS IN SFS JUNCTION

In the following we proceed by considering the magneto-
statics of a planar SFS Josephson junction with two identical
SF interfaces. The z axis is normal to the interface (see
Fig. 1) and the thickness of the F film is equal to 2dF. The
magnetic properties of the considered system are described by
the magnetic induction B = ∇×A and the magnetic field H,
which are related by the standard relation B = H + 4πM. The
magnetization M exists not only in the F film (MF), but also
in the superconducting region (as the induced magnetization
MS). The magnetic field H obeys

∇×H = 4π

c
j, (14)

where j is the density of the Meissner current. It is connected
to the vector potential A and the phase χ of the order param-
eter via the standard gauge invariant expression

jS(F) = − c

4π

{
λ−2

S(F)

(
A − �0

2π
∇χ

)}
. (15)

Here, λS(F) is the London penetration depths in S and F,
respectively, and �0 = hc/2e is the magnetic flux quantum.

Our goal is to find the relation between an applied magnetic
field H and the in-plane gradient ∇ϕ of the phase difference
ϕ. We consider an in-plane magnetic field H = (0, H, 0) and
the in-plane magnetization M = (0, M(z), 0) and we further
set A = (A, 0, 0) and j = ( j, 0, 0). Assuming that the x de-
pendence of all quantities of interest (H, etc.) is weak on
the length scale of the London penetration depth λS(F) we
apply ∇× to the Maxwell equation, Eq. (14), and obtain the
following equation for HS in the S regions:

∂2
zzHS(x, z) − λ−2

S HS(x, z) = 4πλ−2
S MS(z), (16)

with the induced magnetization MS(z) given by Eqs. (8) and
(9). Here, we employ the gauge ∇H = 0 and use Eq. (15) for
the current density jS. Equation (16) is complemented by the
boundary condition (see Appendix C for details)

[∂HS(x)] = λ−2
S

(
[AS(x)] − �0

2π
∂xϕ(x)

)
, (17)

where [∂HS(x)] = ∂zHS(x, z)|z=dF − ∂zHS(x, z)|z=−dF ,
[AS(x)] = AS(x, dF) − AS(x,−dF), and ϕ(x) = χ (x, dF) −
χ (x,−dF) is the phase difference across the junction. The
difference [AS(x)] can be found by taking the continuity of

the vector potential at the SF interfaces into account:

[AS(x)] = [AF(x)] = 2dF(H0(x) + 4πMF). (18)

Here, H0 is an integration constant which approximately
coincides with the magnetic field in F. The solution of Eq. (16)
satisfying the boundary condition has the form

HS(x, z) = Horb(x) exp(−λ−1
S |z ∓ dF|)

− 4π
∑
ω�0

mS(ϕ)

(λSκS,ω )2
exp(−κS,ω|z ∓ dF|), (19)

with

Horb(x) = 4π
∑
ω�0

mS(ϕ)

(λSκS,ω )
− dF

λS
(H0(x)

+ 4πM0) + �0

4πλS
∂xϕ. (20)

The short-ranged component, which decreases over the su-
perconducting coherence length ξS, is a direct consequence
of the inverse proximity effect. In addition, the spin polar-
ization in the S results in a modification of the long-ranged
component of the magnetic field [see Eq. (19)], which decays
over the London penetration depth λS. Its amplitude Horb

determines the magnetic field caused by orbital motion of the
condensate (Meissner currents). The quantity κS,ω is defined
in Eq. (7). Note that the field H0(x) and the phase difference
ϕ are smoothly varying functions of x. In the following, we
assume that ξS � λS, i.e., neglecting the terms of the order
of O(ξS/λS), so that HS(x, z) is dominated by the orbital
contribution.

Next, we use the continuity condition for the field HS(F)

at the interfaces z = ±dF, i.e., HS(x,±dF) = HF(x,±dF) with
HF(x, z) = H0(x) + (H0(x) + 4πM0)λ−2

F z2/2, and arrive at
the following equation for ϕ:

∂x̃ϕ(x̃) = 2π [�̃m(x̃) − pϕ], (21)

where x̃ = x/L.
�̃m(x̃) and pϕ are defined as

�̃m(x̃) = {H0(x̃)L(2λS + 2dF) + 4πM0L2dF}/�0, (22)

pϕ = 2γϕ{4πM0L2dF}/�0. (23)

In simple words, �̃m and pϕ are the normalized magnetic flux
in the junction and a normalized ϕ-dependent contribution
caused by spin polarization in S, respectively. The coefficient
γϕ is given by

γϕ = ξS

2dFM0

∑
ω�0

mS(ϕ)

(ω̃2 + 1)1/4
, (24)

with ξS = √
DS/2�. The function γϕ is a periodic function of

ϕ and has a different form in the limit of a strong and weak
PE; see Appendixes A and B for details. For temperatures,
T , close to Tc, we get γϕ

∼= γ0 cos2(ϕ/2), with γ0 being a
constant. If one considers γ0,ϕ = 0, i.e., no spin polarization,
Eq. (21) coincides with the well known equation derived by
Ferrel and Prange [58] (see also [59–61]). Then, the right-
hand side of Eq. (21) is the normalized magnetic flux in the
junction �̃m, i.e., the flux related to the magnetic inductance
B(x). It consists of an external field Hext, the magnetic field
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created by the Josephson current IJ , and the total magnetic
moment of the F and the S. In the case of low barrier resistance
and low temperatures γ0 = 1, i.e., the flux coincides with the
magnetic flux in the junction caused by an external magnetic
field Hext as the magnetic flux in the F given by 4πM02dFL
is compensated by the magnetic flux in the S. Another useful
relation between �̃m and ϕ can be obtained from the Maxwell
equation

∂H0(x)

∂x
= 4π

c
jc sin(ϕ), (25)

which after some straightforward algebra can be written as

∂�̃m(x̃)

∂ x̃
= r sin(ϕ), (26)

with r = (4πL2 jc/c)(2λS + 2dF)/�0. One can easily find the
critical current jc in the case of a strong and a weak PE, which
is given in Appendix C in terms of microscopic parameters.

Finally, Eqs. (21)–(26) determine the relation between the
“magnetic” flux �̃m and the phase difference ϕ(x) in the pres-
ence of an induced magnetization MS(x). In principle, the
nonlinear Eqs. (21) and (26) can only be solved numerically.
But we can still obtain analytic formulas assuming that the
temperatures T are close to Tc. The obtained results remain
qualitatively unchanged for any T � Tc. Near Tc Eq. (21)
acquires the form

∂ϕ(x̃)

∂ x̃
= 2π [�̃m(x̃) − p cos2(ϕ/2)]. (27)

Here, the coefficient p = 2γ0{4πM0L2dF}/�0 is directly
reflecting the strength of induced magnetic polarization effect
in the S and can be easily expressed using Eq. (23) and
Eq. (24) with the function γ0 given in Eqs. (A7)–(B13)
via γ0 = γϕ/ cos2(ϕ/2) (see Appendix C). The coefficient r,
defined above, depends on the critical current jc and its form
is given explicitly in Appendix C as well. The magnetic flux
in Eqs. (21), (26), and (27) consists of the flux related to the
magnetization M0 in F and the flux of external magnetic field,
as well as the flux created by the flowing Josephson current.
The main difference between these equations and the usual
ones is the appearance of the term pϕ in Eq. (21), which is
caused by spin-polarized Cooper pairs. As we noted above,
Eqs. (26) and (27) can be solved numerically yet analytical
expression in the limiting cases of p � r and p � r can also
be obtained. Most importantly, to estimate how small p is
with respect to r, we rescale the quantities p, pϕ , �̃m, and x:
pr = p/

√
r, �̃m,r (x) = �̃m/

√
r, and X = (x/L)

√
r, yielding

�̃m,r (X ) = ∂X ϕ(X ) + pr cos2(ϕ(X )/2), (28)

∂X �̃m,r (X ) = sin(ϕ(X )). (29)

One can see that if pr � 1, that is, p � √
r, the spin polar-

ization in the S can be considered as a small correction. In
the opposite limit, p � √

r, the spin polarization of Cooper
pairs leads to drastic changes, for example, in the Fraunhofer
pattern as we show below.

In the following we estimate parameters of the Josephson
Nb/Cu0.47Ni0.53/Nb junctions studied experimentally [10].
These parameters can be readily evaluated for this sys-
tem as 2dF = 15–25 nm, jc = 2 × 104–2 × 103 A/cm2, the

total interface resistance Rb = 30 μ� for dimensions Lx ×
Ly = 10 × 10 μm2, Rb� = 3 × 10−11 � cm2, DF = 5 cm2/s,
�F = 60 μ� cm, and J = Eex = 850 K. Thus one finds �F ·
dF = 6 × 10−11 � cm2 � Rb� and the coherence length is
ξF = 2.16 nm. For these parameters the factor p appears to
be small compared to r, so that the induced magnetization
MS leads to rather small changes in the Josephson effect. For
example, p ∼ 30

√
Iθ ≈ 0.3 for Iθ ≈ 10−4 and p ∼ 30

√
Iθ ≈

3 for Iθ ≈ 10−2; here Iθ = exp(−2θF)/θF. Nevertheless, it is
instructive to investigate the Fraunhofer pattern for both small
and large values of p/r having in mind that in some other
experimental realization of the SFS junction, the coefficient p
can be potentially larger.

IV. FRAUNHOFER PATTERN

In this section, we begin with a brief discussion of the case
where spin polarization in S leads to small corrections to the
standard Fraunhofer pattern. Most of the remaining section is
devoted towards the opposite case where the spin polarization
plays a dominate role, resulting in a drastic change in the
Fraunhofer pattern.

A. Weak influence of spin polarization: p � √
r

Here, the phase difference ϕ(x̃) can be represented by
ϕ(x̃) = ϕ0(x̃) + ϕ1(x̃) + ϕ2(x̃), where ϕ0(x̃) = �̃mx̃ + c is an
arbitrary constant determined by the requirement to maxi-
mize the current IJ . The normalized flux is given by �̃m =
�̃m,0 + �̃m,1 + �̃m,2. In zero-order approximation the mag-
netic flux created by the current IJ can be neglected and
therefore �̃(x̃) = �̃ext + �̃F + �̃S. The constant �̃ext, �̃F,
and �̃S are defined as �̃ext = 2πHextL(2dF + 2λS), �̃F =
2π (4πM0L2dF)/�0, and �̃S = 2π (4πM0L2dF2γ0)/�0. Ex-
panding ϕ(x̃) and �̃(x̃) we find the current

Ĩmax = sin(π�̃m)

π�̃m
+ δĨ. (30)

Here the correction δĨ contains small terms of the order
p̃2/(2�3

m,0) as well as sin(2π�̃m), sin(3π�̃m), etc., where
p̃ ≡ (p + r/�̃m,0) (see Appendix D for further details). At
large Hext, i.e., at large �̃m, the contribution from the spin
polarization p will dominate in p̃.

B. Strong influence of spin polarization: p � √
r

In this case, our main approximation is a vanishing r, such
that Eq. (27) is described by a constant effective flux �̃m(x) =
�̃m. Now, we can write the normalized current ĨJ = I/L jc as

ĨJ = 1

L

∫ L

0
dx sin(ϕ(x)) =

∫ ϕL

ϕ0

dϕ

2π

sin(ϕ)

�̃m − p cos2(ϕ/2)
,

(31)

with ϕL = ϕ(L) and ϕ0 = ϕ(0).
After integration, we obtain

ĨJ = 1

π p
ln

(
p − 2�̃m + p cos(ϕL )

p − 2�̃m + p cos(ϕ0)

)

= 1

π p
ln

(
a2 + T 2

L

a2 + T0

1 + T 2
0

1 + T 2
L

)
, (32)
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FIG. 3. (a) Dependence of the critical current |ĨJ (�̃m )| for p = 2 (solid blue curve). The dashed (orange) line refers to the Fraunhofer
pattern |ĨFr (�̃m )| in the absence of the spin polarization (SP). Panel (b) shows the same curves as in (a) but for larger values of �m/�0. One
can see that the deviations from the standard Fraunhofer pattern become smaller with increasing �m/�0.

where TL = tan(ϕL/2), T0 = tan(ϕ0/2), and a2 = (�̃m −
p)/�̃m. The quantities TL and T0 are coupled via

L =
∫ L

0
dx = L

∫ ϕL

ϕ0

dϕ

2π

1

�̃m − p cos2(ϕ/2)
. (33)

Calculating the integral, we obtain the relation

TL = T0 + ba2

1 + bT0
, (34)

with b = a−1 tan(πa�̃m). So far, Eqs. (32) and (34) determine
the critical current ĨJ as a function of an arbitrary constant
T0 ≡ tan(ϕ0/2). In order to find the maximum of the current
ĨJ , we need to determine the value of T0 which maximizes the
current. The roots of the equation ∂ ĨJ/∂T0 = 0 are given by

Tm = 1

2a
(−(1 + a2) tan(πa�̃m)

±
√

4a2 + (1 + a2)2 tan2(πa�̃m)). (35)

Substituting Tm into Eq. (32) and using Eq. (34), we can
extract the solution for the maximal current ĨJ (�̃m). The result
is shown in Fig. 3 for p = 2 characterizing a finite contri-
bution from the spin polarization. The dependence ĨJ (�̃m) is
compared with the standard Fraunhofer pattern in the absence
of the spin polarization

IFr (�m/�0) =
∣∣∣∣ sin(π�m/�0)

π�m/�0

∣∣∣∣, (36)

where �m = L{H0(2λS + 2dF) + 4πM02λS}.
One can see that, for small values of p, the behavior of the

critical current |IJ (�̃m)| resembles the shape of the classical
Fraunhofer pattern, whereas, for increasing p, the difference
becomes more pronounced (see also Fig. 4). In particular,
the induced spin polarization causes a shift of the global
maximum of the critical current by an amount of p/2. This
shift occurs in addition to the displacement of the global
maximum caused by the magnetization in the ferromagnet
(see Refs. [62–64]), so that its position is effectively changed

by the amount 4πM0L2dF[1 − γ0]. Notice that, for γ0 = 1,
both displacements cancel each other, so there is no shift.

Most importantly, the spin polarization causes a broad-
ening of the peaks of the Fraunhofer pattern. This effect is
most pronounced for the main maximum (see Fig. 3). In
contrast to the shift, the broadening is only determined by the
strength of the induced spin polarization and is as such a direct
consequence of the inverse proximity effect. The broadening
is stronger for larger p (see Fig. 5).

If one compares the changes of the Fraunhofer pattern for
large values �m/�0 [see Fig. 3(b)], one recognizes that the
differences to the standard pattern disappear.

It should be noted that, for �̃m � p, one can obtain another
solution for Eq. (27) with a space-independent phase differ-
ence ϕad

cos(ϕad ) = (2�̃m − p)/p. (37)

However, the current ĨJ,ad =
√

1 − (2�̃m − p)2/p2 corre-
sponding to this solution is less than the current ĨJ given by

FIG. 4. Comparison of the dependence of the critical current
|ĨJ (�̃m )| for p = 1 (blue solid line), p = 2 (orange dashed line), and
p = 4 (green dotted line).
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FIG. 5. Comparison of the solution of the critical current
|ĨJ (�̃m )| in Eq. (32) (solid lines) and ĨJ,ad =

√
1 − (2�̃m − p)2/p2

(dashed lines) for p = 0.5 (blue line) and p = 1 (orange line).

Eq. (32) (see Fig. 5). Thus the Josephson energy EJ,ad ∼
IJ,ad (1 − cos(ϕad )) is somewhat higher than the Josephson
energy related to the current ĨJ . Since the difference between
these currents is small, transitions between two different so-
lutions for the current ĨJ are possible at small �̃m. Note that
some instabilities in the dependence of IJ (Hext ) are observed
in the experiment [62–64].

One can easily show that, for p → 0, the dependence
|ĨJ (�̃m)| is reduced to |ĨFr(�̃m)|. In this limit we have a ∼=
1 − 2p/�̃ and Eq. (32) takes the form

ĨJ (�̃m) ≈ 1

π�̃m

[
1

1 + T 2
0

− 1

1 + T 2
L

]
. (38)

Substituting Eqs. (34) and (35) with a = 1, we obtain Eq. (36).
We also provide an expression for the coordinate depen-

dence for the phase difference ϕ, which can be obtained from
Eq. (27)

∂ϕ

∂ x̃
= �̃2

m − p2

�̃m + p cos(κ (x̃ − x̃0))
, (39)

where κ =
√

�̃2
m − p2 . This dependence describes a fluxon in

a long SFS Josephson junction, i.e., L � λJ , with the Joseph-
son length λJ (see Fig. 6). One can see that, at �̃m close to p,
the fluxons have the form of narrow spikes. At �̃m � p, this
dependence has the form of a sinusoidal function. Note that
the dependence ∂ϕ(x̃)/∂ x̃ given by this equation coincides
with the temporal dependence of the voltage V (t ) at different
currents I in a point superconducting contact if the following
replacements are made: V → ∂ϕ(x̃)/∂ x̃; I/Ic → �̃m; t → x̃;
p = 1 (Ic is the critical current) [65].

V. CONCLUSION

In this manuscript, we studied the influence of the spin po-
larization of Cooper pairs in superconductors on the Joseph-
son effect in SFS junctions. The expression for the induced
magnetization MS was obtained in the cases of low and
large SF interface resistances Rb�. We have shown that the
magnetization MS depends on the phase difference ϕ so that

FIG. 6. Coordinate dependence of the phase gradient ∂ϕ(x̃)/∂ x̃
for different �̃m but fixed p = 0.4: �̃m = 0.6 (blue line), �̃m = 1.5
(orange line), and �̃m = 3 (green line).

for I > Ic it oscillates in time with the Josephson frequency
ω = 2eV/h̄. The induced spin polarization in the S contributes
to the orbital motion of the condensate (Meissner currents),
resulting in a long-ranged magnetic field contribution pene-
trating the superconductor over the length scale of the London
penetration depth λS. Since the magnetic flux in the junction
is not only determined by an applied external magnetic field
Hext but also by the total magnetic moment Mtot = MF + MS,
the Fraunhofer pattern depends on the induced magnetization
MS. In particular, at low Rb� and low temperatures T , the
total magnetization may turn to zero: MF + MS = 0 (full
magnetic screening). With a suitable choice of parameters the
Fraunhofer pattern modifies drastically. For example, the spin
polarization in the S causes a shift of the Fraunhofer pattern,
which is opposite to the displacement by the magnetization in
the F. However, even more significant is a broadening of the
Fraunhofer peaks, which is particularly pronounced for the
peak corresponding to the global maximum. These changes
are most notable for a small magnetic flux, such that one
should look for features of the spin polarization in the first
series of peaks. Thus we conclude that a careful analysis of
the Josephson effect in SFS structures [for example, of the
dependence of IJ (Hext )] may reveal the presence of the spin
polarization in superconductors.
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APPENDIX A: STRONG PROXIMITY EFFECT

In the following we present several limiting cases for the
magnetization in the superconductor for a strong proximity
effect. We start by multiplying Eq. (7) by X̌33 and calculate
the trace. Then, the right-hand side of Eq. (7) is zero and we

134513-7



DAHIR, VOLKOV, AND EREMIN PHYSICAL REVIEW B 100, 134513 (2019)

find a solution

δg(S)
33 (z) = δg(S)

33 (±dF) exp(−κS,ω|z ∓ dF|). (A1)

The integration constant is found from the boundary condition
Eq. (3) that yields

∂zδg(S)
33 (z)|z=±dF = ∓2κbSFS

(
FSg(F)

33 − GSg(F)
13 cos(ϕ/2)

)
,

(A2)

where g(F)
13 = εbFi Im(1/ζ̃ω̃+ (ϕ)) and g(F)

33 = i Imω̃+/ζ̃ω̃+ (ϕ).
The function ζ̃ω̃± (ϕ) is ζ̃ω̃± (ϕ) =

√
ω̃2

± + �̃2
F(ϕ).

We obtain for δg(S)
33 (z)

δg(S)
33 (z) = 2κbS

κS,ω

FS
(
FSg(F )

33 − GSg(F )
13 cos(ϕ/2)

)
× exp(−κS,ω|z ∓ dF|)

= δg(S)
33 (±dF) exp(−κS,ω|z ∓ dF|). (A3)

One can see that this correction δǧS is small if the condition
κbSξS � 1 is fulfilled, that is, Rb� � �SξS.

Consider the case where � � J � εbF. In this limit ω̃+ ≈
εbF(GS + iJ ) and ζ̃ω̃+ (ϕ) = εbFζϕ (1 + iJ̃GS/ζ

2
ϕ ). The func-

tions g(F)
13 and g(F)

33 are equal to

g(F)
13 = − iJ̃

ζϕ

GSFS cos(ϕ/2)

ζ 2
ϕ

, (A4)

g(F)
33 = iJ̃

ζϕ

F 2
S cos2(ϕ/2)

ζ 2
ϕ

, (A5)

with J̃ = J/εbF and ζϕ =
√

G2
S + FS cos2(ϕ/2). By using

Eq. (A3), we obtain for δg(S)
33 (±dF)

δg(S)
33 (±dF) = iJ̃κbS

κS,ω

2F 2
S cos2(ϕ/2)

ζϕ

. (A6)

The magnetization MS(z) in Eq. (8) is expressed through
the function mS(ϕ) that is given in Eq. (9). Near Tc we obtain
for γϕ [see Eq. (24)]

γϕ =
(

�

πT

)2

2 cos2(ϕ/2)
∑
n�0

(2n + 1)−3. (A7)

APPENDIX B: WEAK PROXIMITY EFFECT

Consider an SFS junction with a high interface resistance
so that only a weak PE occurs. Then the condensate wave
function f̌ is small and we can linearize Eq. (1). In the F film,
the function f̌F obeys the equation

∂2
zz f̂F± − κ2

F± f̂F± = 0, F film, (B1)

where κ2
F± = 2(|ω| ± iJω )/DF with Jω = J sgn(ω). In zeroth

order approximation, the Green’s functions in the S films have
the form

ĝ(0)
S (±dF) = GSτ̂3 + FS{cos(ϕ/2)τ̂1 ± sin(ϕ/2)τ̂2}. (B2)

The solution of Eq. (B1) is

f̂F±(z) = Ĉ± cosh(κF±z) + Ŝ± sinh(κF±z). (B3)

Integration constants are found from the BCs [56]

∂z f̂F,±(±dF) = ±2κbFFS{cos(ϕ/2)τ̂1 ± sin(ϕ/2)τ̂2}. (B4)

We find

Ĉ± = 2κbF

κF±

FS cos(ϕ/2)

sinh(κF±dF)
τ̂1, (B5)

Ŝ± = 2κbF

κF±

FS sin(ϕ/2)

cosh(κF±dF)
τ̂2. (B6)

One can write for f̌ (±dF)

f̌ (±dF) = 2κbFFS

(
cos(ϕ/2)

{
(X̌10Re ± iX̌13Im)

1

κF,ω tanh(κF,ωdF)

}
+ sin(ϕ/2)

{
(X̌20Re ± iX̌23Im)

tanh(κF,ωdF)

κF,ω

})
, (B7)

where κ2
F,ω = 2(|ω| + iJω )/DF.

The linearized Eq. (7) can be written as follows:

−∂2
zzδg(S)

33 + κ2
S,ωδg(S)

33 = 0. (B8)

The BC to Eq. (B8) is

∂zδg(S)
33 (±dF) = −κbS(ǧF − ǦSǧFǦS)33 (B9)

or

∂zδg(S)
33 (±dF) = 4κbSκbFGSF 2

S i Im

(
cos2(ϕ/2) + sin2(ϕ/2) tanh2(κF,ωdF)

κF,ω tanh2(κF,ωdF)

)
. (B10)

Here, we have taken into account that the correction g(F)
33 ∼ f 2

13 is small. The solution for Eq. (B8) is

δg(S)
33 (z) = δg(S)

33 (±dF) exp(−κF,ω|z − dF|), (B11)

with

δg(S)
33 (±dF) = 4GSF 2

S i
κbSκbF

κS,ω

Im

(
cos2(ϕ/2) + sin2(ϕ/2) tanh2(θF)

κF,ω tanh2(θF)

)
, (B12)

where we defined θF = κF,ωdF. Using this expression we obtain Eq. (10) for the spin polarization in superconductors S.
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Close to Tc the coefficient γϕ is equal to

γϕ = 4
√

2
ξS

dF

κbSκbF

κS,ωκFc

2T

J
Im

(
cos2(ϕ/2) + sin2(ϕ/2) tanh2(θFc)

(1 + i) tanh(θFc)

�2

πT

)∑
ω�0

(2n + 1)−3, (B13)

where θFc = κFcdF(1 + i)/
√

2, κFc = √
J/DF, and

∑
n(2n +

1)−3 = 8ζ (3)/8 with the Riemann zeta function ζ (x).

APPENDIX C: MAGNETOSTATICS

The boundary conditions for Eq. (18) can be easily ob-
tained from

∂zHS(x, z)|z=±dF = λ−2
S

[
AS(x, z) − �0

2π
∂xχ (x, z)

]
z=±dS

.

(C1)

Subtracting the expression for Eq. (15) at the interfaces z = dF

and z = −dF, we obtain Eq. (17) with [AS(x)] = AS(x, dF) −
AS(x,−dF) and ϕ(x) = χ (x, dF) − χ (x,−dF). The difference
[AS (x)] can be found by taking into account the variation of
the vector potential in the F film. The latter can be easily found
in the limit λF � dF (see Ref. [38])

AF(x, z) ∼= (H0(x) + 4πM0)

(
1 + κ2

Fz2

2

)
z, (C2)

BF(x, z) ∼= (H0(x) + 4πM0)

(
1 + κ2

Fz2

2

)
, (C3)

HF(x, z) ∼= H0(x)

(
1 + κ2

Fz2

2

)
+ 4πM0

κ2
Fz2

2
, (C4)

where we set MF ≈ M0 since corrections to M0 in the F film
due to the proximity effect are small and do not significantly
change the final results. For completeness, we also write down
the formulas for the fields BF(x, z) and HF(x, z).

APPENDIX D: CRITICAL CURRENT

The Josephson current density across the junction can be
be obtained using

jJ (ϕ) = −iσF
2πT

e

∑
ω�0

1

4
TrX̌30ǧF(z)∂zǧF(z) (D1)

= −iσF
2πT

e
κbF

∑
ω�0

1

4
TrX̌30[ǧF(dF), ǧS], (D2)

where σF is the conductivity of the F.
In the second line, we used the boundary condition Eq. (3).

At temperatures close to Tc, the Josephson current jJ (ϕ) can
be written as follows:

jJ (ϕ) = jc sin(ϕ). (D3)

One can find the critical current density jc in the limit of a
strong and a weak PE by using Eqs. (6) and (B3). In the case
of a strong PE

jc = πT

eRb�

∑
ω�0

F 2
S

∼= π�2

8eRb�T
, (D4)

In the case of a weak PE

jc = σF
2πT

e
4κ2

bFRe

(∑
ω�0

F 2
S

κF,ω sinh(2θF)

)
(D5)

Small contribution of the spin polarization

We expand the phase difference ϕ(x̃) up to the second order
and write the integral in Eq. (31) in the form

IJ = jc

∫ 1

0
sin(ϕ(x̃))dx̃ (D6)

∼= jc

∫ −1/2

1/2

[
sin(ϕ0) + ϕ1 cos(ϕ0) − ϕ2 sin(ϕ0)

+ ϕ1

2
cos(ϕ0)

]
dx̃. (D7)

We need to find ϕi and �̃m. In the zeroth order approximation
we obtain

ϕ0 = �̃m,0x̃ + c, (D8)

where �̃m,0 = 2π (Hext (2dF + 2λS) + 4πM02dF)/�0. In the
first approximation, we get from Eqs. (26) and (27)

�̃m,1 = − r

�̃m,0
cos(ϕ0), ϕ1 = − p̃

�̃m,0
sin(ϕ0), (D9)

where p̃ = p + r/�̃m,0. For the second order contribution we
obtain

�̃m,2 = r p̃

(2�̃m,0)2
cos(2ϕ0), (D10)

ϕ2 = − pp̃

2�̃m,0
x̃ + p̃

(2�̃m,0)2

(
p + r

2�̃m,0

)
sin(2ϕ0). (D11)

The current ĨJ ≡ IJ/ j can be written as

ĨJ = ĨFr + δĨ0 + δĨ2 + δĨ3, (D12)

where

ĨFr =
∫ −1/2

1/2
sin(ϕ0)dx̃, (D13)

δI0 = δa sin(c), (D14)

δI2 =
∫ −1/2

1/2

[
ϕ2 cos(ϕ0) − ϕ2

1

2
sin(ϕ0)

]
dx̃. (D15)

By using Eqs. (D7)–(D15), we find

Ĩ0 = aFr sin(c), (D16)

δĨ0 = δa sin(c), (D17)

134513-9



DAHIR, VOLKOV, AND EREMIN PHYSICAL REVIEW B 100, 134513 (2019)

δĨ2 = −λ2 sin(2c), (D18)

δĨ3 = δaĨ0 + λ3 sin(3c), (D19)

where a = aFr + δa, aFr = (2/�̃m,0) sin(�̃m,0/2), δa =
{−p̃2/2�̃3

m,0 + p̃r/(2�̃m,0)4} sin(�̃m,0/2), λ2 = −2 p̃/
(2�̃m,0)2 sin(�̃m,0), and λ3 = {(2p + 3r/2�̃m,0) p̃/(12�̃3

m,0)}
sin(3�̃m,0/2). The quantities λ are assumed to be small:
λ << 1. We have to find the maximum of ĨJ as a function
of the constant c by expanding the current in powers of
λ: c = c0 + c1 + c2. Calculating the derivative ∂ ĨJ/∂c,
we find

c0 = π

2
, c1 = −2

λ1

a
, c2 = 0. (D20)

Thus the maximal current is equal to

ĨJ = 2

�̃m,0
sin(�̃m,0/2) + δĨJ . (D21)

The first term is the standard Fraunhofer pattern and the
second term is a correction due to spin polarization (∼p) and
due to the finite length L compared to the Josephson length
λJ . This correction is

δĨJ = sin(�̃m,0/2)

[
− 2 p̃

(�̃m,0)3
+ pr

(2�̃m,0)4

]

+ p̃

2�̃3
m,0

sin(�̃m,0) cos(�̃m,0/2)

− p̃( p̃ + (p + r/2�̃m,0))

24�̃3
m,0

sin(3�̃m,0/2). (D22)
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