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Optical control of the current-voltage relation in stacked superconductors
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We simulate the current-voltage relation of short layered superconductors, which we model as stacks of capac-
itively coupled Josephson junctions. The system is driven by external laser fields, in order to optically control the
voltage drop across the junction. We identify parameter regimes in which supercurrents can be stabilized against
thermally induced phase slips, thus reducing the effective voltage across the superconductor. Furthermore,
single driven Josephson junctions are known to exhibit phase-locked states, where the superconducting phase
is locked to the driving field. We numerically observe their persistence in the presence of thermal fluctuations
and capacitive coupling between adjacent Josephson junctions. Our results indicate how macroscopic material
properties can be manipulated by exploiting the large optical nonlinearities of Josephson plasmons.
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I. INTRODUCTION

Recent years have seen tremendous progress in the optical
control of solid state systems due to the advent of strong
terahertz sources [1-3]. Notable examples include the nonlin-
ear driving of specific phonon modes in strongly correlated
materials, aiming to control the electronic dynamics [4-8],
in order to create phases of matter which are suppressed in
the equilibrium. Such driving can be used to induce metal-
insulator transitions [9,10], excite synthetic magnetic fields
[11], and melt striped phases [12] or charge density waves
[13—15]. It can even give rise to transient superconductinglike
phases [16—18]. All of these experiments triggered great in-
terest in the emergent dynamics of driven many-body systems
[19], which had previously been considered predominantly
in the field of ultracold atoms [20]. They also raised the
question to what extent electronic properties of materials can
be controlled by strong laser pulses.

In this endeavour, cuprate superconductors, and in particu-
lar the Josephson plasmon coupling between superconducting
layers, have emerged as a particularly interesting platform.
The Josephson coupling can be manipulated either by driving
specific phonon modes to large amplitude, thus transiently
distorting the lattice structure [17,21-23], or by directly ex-
ploiting the large optical nonlinearity of the Josephson plas-
mon [24-27]. Recent theoretical proposals also investigated
the possibility of laser cooling phase fluctuations in the system
[28], and the optical control of currents in the system [29].

The full description of phase fluctuations and Josephson
plasma waves in these systems requires solving nonlinear
coupled sine-Gordon equations [30,31], which poses a highly
challenging numerical problem. However, in many cases of
interest, e.g., when the junctions are sufficiently short, the
in-plane stiffness of the superconducting phase suppresses
spatial variations and hence enables one to treat the phase
as homogeneous across the junction [21-23,28]. This key
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simplification reduces the equations of motion to a set of
ordinary differential equations. For a single junction, these
are formally identical to a forced pendulum or a sliding
charge density wave, both of which are well studied systems
in classical chaos theory. Consequently, the nonequilibrium
dynamics of single Josephson junctions were studied starting
already in the 1970s [32,33]. The inherently strong nonlinear-
ities give rise to period-doubling routes to chaos or strange
attractors [34—39]. More recently, synchronization of multiple
Josephson junctions was studied in [40] with the goal of
producing coherent terahertz radiation.

Here we investigate the dynamics of a stack of short,
capacitively coupled Josephson junctions under the influence
of strong driving by external laser pulses. In a recent paper
[29], we investigated the switching between different macro-
scopic states using ultrashort terahertz pulses. In particular,
we showed that the switching mechanism can be explained by
the destabilization of the uniform plasma mode. This mode
can be excited by frequencies below the Josephson plasma
edge, i.e., the frequency at which linear plasma waves can
propagate in the system. Strong driving beyond the linear
regime allows nonlinear low-frequency waves to penetrate the
material and affect currents inside. We further showed that this
low-frequency driving can destabilize quasiparticle currents,
and thus drive the system into the superconducting state. We
had speculated that this might be a new surprising approach
to effectively “laser cool” the system. In this paper, we further
test this hypothesis by simulating short junctions, where a
long-time evolution is numerically stable. We analyze how the
current-voltage relation can be manipulated by driving these
short junctions. In contrast to earlier studies, our main focus
lies on the interaction of the driving with thermally activated
fluctuations. By appropriate choice of the driving frequency
and amplitude, we find that it is possible to either enhance or
reduce the average voltage drop across the system in a large
range of parameters.

The paper is structured as follows. In Sec. II, we introduce
the model and provide a brief overview of the phase dynamics
of a single Josephson junction. In Sec. III, we then simulate
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a stack of Josephson junctions driven by a single-frequency
external laser and analyze under which conditions the optical
control of the voltage drop is feasible. Finally, we conclude in
Sec. IV.

II. MODEL: STACKS OF SHORT JOSEPHSON JUNCTIONS

We consider the evolution of short, capacitively cou-
pled Josephson junctions. Each junction is characterized by
the gauge-invariant phase difference ¢, (7). In dimensionless
units, the equations of motion are given by [21-23,28,41,42]

912 T

= jext"‘gn(f)"‘vdr(f)a e
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where v, describes damping due to incoherent quasiparticle
currents, jex the external current flowing through the system
measured in units of the maximal Josephson current, and o
the capacitive coupling strength [31]. The discrete difference
operator is defined as V,%q&n =2¢, — ¢nt1 — Pu—1. Time is
measured in units of the Josephson plasma frequency w,, i.e.,
T = wpt. Likewise, frequencies will be measured in units of
the plasma frequency in the remainder of this paper. Typical
Josephson plasma frequencies are in the low terahertz range,
e.g., w, = 0.5 THz in BSCCO [31]. The plasma frequency
can be used to calculate v, = 4mo./(e.wp), where o, denotes
the material’s c-axis quasiparticle conductivity and €. the
c-axis relative permittivity. For BSCCO, these are given by
o, ~ 1073 Q 'em~! and €, = 12 [43]. The absolute critical
current will depend on the sample geometry, with a critical
current density in BSCCO J, = 1700 A/cm? [43]. In the
following, we set the parameters to o = 0.1, v, = 0.1 [30,31],
and jex, = 0.25, unless specified otherwise.

In Eq. (1), we also added a driving term, which we
parametrize as

Var(t) = A sin(wy, 1), @

to describe phenomenologically the external driving of the
Josephson phase by terahertz pulses with a driving frequency
gy and amplitude A. Similar models were recently used in
[21-23] to describe the physics of high-temperature supercon-
ductors under the strong driving of phonons.

Additionally, we added a stochastic noise term &,(t) mod-
eling thermal phase fluctuations. In the following, we consider
white noise with (£,(7)) = 0 and

(En(T)En (T)) = X768, w8(z — '), 3)

where the intensity X2 o kgT is proportional to the thermal
energy in the system, kg7 . In the end, the exact temperature
scale is set by the material, and in this paper we vary it
between X = 0.05, where thermal phase slips are very rare,
and X = 0.25, where they take place very frequently. The
temperature scale can then be determined by their switching
distribution [28]. We neglect the material-dependent influence
of the temperature on other system parameters, such as the
quasiparticle damping v., as a change of their numerical
values is not expected to qualitatively change the physics
investigated in this paper.

(a)

Voltage ¢ /0T

Phase ¢(7)

Phase ¢(7)

FIG. 1. Phase space structure of Eq. (1) for a single junction with
Jext = 0.25. Blue arrows denote the local flux of the vector field,
i.e., the right-hand side of Eq. (4). The red lines indicate trajectories
starting or ending at the unstable equilibria with (a) no quasiparticle
damping, v. = 0, and (b) v. = 0.1.

A. Dynamics of a single undriven junction

We first consider the dynamics of a single junction. In
the presence of an external current jex, Eq. (1) for a sin-
gle junction reduces to the equation of motion of a virtual
particle in a tilted washboard potential of the form U(¢) =
—cos(¢) — jext®, which we can write as a vector equation,

d (o) _ p
E(p) = <—vcp — sin() — ]) “®

It has a single steady state solution,

Py = arcsin Jeyq, 5)

which we refer to as the superconducting state, since the volt-
age across the junction, V = d¢/dt, vanishes at all times. The
virtual particle remains in a local minimum of the potential
U (¢), and the external current is transmitted as a supercurrent.

In addition, when there is a finite damping due to quasipar-
ticles and the current is sufficiently large, such that jey /v, >
1, there also exists a stable limit cycle, the McCumber state
[44]. Tt is an approximate solution of Eq. (1),

iwyT
Bres(T) = 09T + Im{f—.}, ©)
wg — iwoVe

where wy = Jjext/Ve. Here, the energy loss due to the friction
is exactly canceled by the potential energy gain, such that
the virtual particle keeps sliding down the tilted potential
landscape at an approximately constant speed, given by the
first term in Eq. (6). The underlying washboard potential is
reflected in the oscillations described by the second term,
which form a small correction to the dominant first term.
The external current is transmitted as a quasiparticle current,
and the system obeys the Ohmic law 0¢ /3T 2 jex/v.. Con-
sequently, we will refer to the McCumber state (6) as the
resistive state in the following.

The phase space corresponding to a single junction is
shown in Fig. 1. The left panel shows the case of negligible
damping, v, = 0. We find a small area around the supercon-
ducting state (5), where harmonic oscillations take place, and
the particle remains trapped within a local minimum of the
tilted washboard potential. Upon crossing the red separatrix,
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FIG. 2. Time evolution of a single phase according to Eq. (1).
The noise is picked from a Gaussian ensemble with zero mean and
standard deviation X = 0.3.

the trajectories become unbounded. The particle can escape
the local minima and travel indefinitely. Due to the presence
of the external current j., the unstable equilibrium point
moved away from the unstable equilibrium of the pendulum
at ¢ = m, just like the stable superconducting state (5) moves
away from zero. In the right panel, we add the damping.
Consequently, the limit cycle (6) emerges at d¢/dt = 2.5.
Additional noise £(t) stochastically drives transitions be-
tween the two steady states. Figure 2 shows the time evolution
of a single phase according to Eq. (1). The fluctuations (too
fast to be resolved in the plot) randomly switch the system
between the superconducting and the resistive state. As a
consequence, an experiment at finite temperature will yield an
average voltage, which is determined by the relative amount of
time the system spends in each of the two steady states. Note
that the fluctuation strength in Fig. 2 is larger than in the rest
of the paper, since the capacitive coupling between junctions
strongly affects their propensity to undergo phase slips. Hence
the single junction cannot be compared directly to the stack.

B. Single driven junction

We now consider the impact of periodic driving V;,.(7) on
the dynamics of a single junction. To simplify this discus-
sion, we neglect the noise at first. The driving (2) increases
the dimension of the dynamical system by one. Hence we
construct Poincaré sections of the trajectories to visualize the
driven dynamics. The driving introduces a new time scale @y,
so we mark the state space position (¢, d¢/dt) whenever
wgqrT = n x 2 for n € N in Fig. 3.

In Fig. 3(a), the blue points map the trajectory of the
undriven dynamics, when starting in the resistive state. As
expected, these points lie on the red limit cycle of the resistive
state shown in Fig. 1(b). The orange dots are created by tra-
jectories which are also initialized in the resistive state of the
undriven system, but then evolve under the influence of a driv-
ing field with increasing amplitude. Small driving amplitudes
shift the trajectories along the vertical axis towards smaller
values. They form trajectories which follow the undriven case,
but at reduced average voltages. With increasing amplitude,
the trajectories approach and eventually cross the separatrix
in Fig. 3(b), which separates the unbounded, resistive trajec-
tories from localized, superconducting ones. Consequently,

(@ 3 (b)3
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FIG. 3. (a) Poincaré section of a single junction (1) driven by
Eq. (2) with w,;, = 0.3. (b) The same for w,, = 0.5, (c) the same
for wg, = 0.3 and jo,, = 0.5, and (d) the same for w,;, = 0.5 and
Jexe = 0.5. In the upper panels, we start in the resistive state (blue dots
indicate a trajectory in the undriven system), and in the lower panels
in the superconducting state. We increase the driving amplitude A
from 0.1 to 0.8 in steps of 0.05.

in Fig. 3(a), the system spirals down towards the sc state,
which in phase space forms an attractor at ¢ = arcsin(jex)
[see Eq. (5)]. This decay towards the superconducting state (5)
happens very fast, such that the dynamics appears discontin-
uous in the Poincaré section. In panel Fig. 3(b), when driving
at a higher frequency, the average voltage is also reduced until
the resistive state becomes unstable. However, the system no
longer relaxes towards the sc state, but instead converges to a
strange attractor. This attractor, whose shape depends on the
driving frequency as well as the other system parameters, has
been described elsewhere [34], and is sometimes referred to
as a phase-locked state, as the phase across the junction is
synchronized with the driving field. For our purposes, it is
important to note that the average voltage recorded in this
state is determined by both the frequency and the amplitude of
the driving field. When we increase the driving frequency, we
find that the attractor is pushed away from the sc equilibrium
point. Once it merges with the separatrix, the attractor disap-
pears and only resistive dynamics remain stable. Finally, in
Figs. 3(c) and 3(d) we present simulations, where the system
is initially in the sc state. We increase the external current in
comparison to Figs. 3(a) and 3(b), such that it becomes easier
to switch the system into the resistive state. We find that a
few trajectories with weak driving amplitudes remain trapped
in the vicinity of the sc state. But once the driving becomes
too strong, the system is driven rapidly out of this region and
settles into the limit cycles of the resistive state.

This discussion shows that—at least in principle—it should
be possible in a large parameter regime to reduce the voltage
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FIG. 4. Current-voltage relation in a stack of 100 junctions with
fluctuations set to X = 0.05 (blue crosses), 0.15 (red triangles), and
0.25 (gray squares). We initialize the system such that each junction
is chosen to be in a resistive state, if a random number is smaller
than the noise amplitude X, and in a superconducting state otherwise.
After an initial propagation period to reach a steady state, the voltage
is recorded.

of the system in the resistive state. Conversely, when the
system is initialized in the superconducting state, adequate
driving may force it into the resistive or the phase-locked state.
At larger driving amplitudes, one might either destroy the
resistive state and switch the system into the superconducting
state or reduce the voltage by forcing the system into a
synchronized state, where the voltage is set by the driving
frequency. In the following, we will investigate how this
control can be achieved in the presence of thermal fluctuations
and capacitive coupling between the junctions.

III. RESULTS

In the following, we extract quantities such as the average
voltage by numerically propagating Eq. (1) with a time step
size 8t = 0.005 for a total of 500 000 steps in each run,

0\ _ 1 g [™ d¢u(T)
<¥>:ﬁ;fo dr == (7

Each trajectory is of the form shown in Fig. 2, and only
the average (7) over sufficiently long times yields convergent
results.

A. Current-voltage relations of the undriven system

In Fig. 4, we show simulations of the current-voltage
relation of a stack of capacitively coupled Josephson junctions
under the influence of noise. As the current increases, the
potential barrier between the superconducting state (5) and the
unstable equilibrium (see Fig. 3), which thermal noise has to
supply in order to switch the system from the superconducting
to the resistive state, decreases. In contrast, the amount of
energy needed to drive the system from the resistive state back
to the superconducting state increases. As a consequence, the
system will be more and more likely to find itself trapped
in the resistive state. At low noise levels (low temperatures)
with X = 0.05, the system remains superconducting, i.e., at
zero voltage, until jex, =~ 0.65. It then quickly switches to

—
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FIG. 5. (a) Current-voltage relation in a stack of 100 junctions
with weak thermal fluctuations, X = 0.05 (blue crosses), and in the
presence of an external drive with amplitude A = 0.3 and frequency
wgqr = 0.95 (cyan triangles). (b) The same as (a), but with stronger
thermal fluctuations, X = 0.15 (red triangles), and in the presence
of an external drive with A = 0.3 and w,, = 0.05 (cyan crosses) or
wqr = 0.5 (cyan squares). (c) The same as (b), but with even stronger
thermal fluctuations with X = 0.25 (gray squares). Note that, in each
plot, the undriven case is plotted in the same style as in Fig. 4.

the resistive state, where it remains for jo = 0.7. At large
noise levels corresponding to high temperatures with X =
0.25, this switch already occurs above jey =~ 0.2, i.e., almost
as soon as the resistive state (6) becomes a stable solution
of Eq. (1). Finally, at intermediate temperatures, there is an
extended range of currents, jex = 0.2...0.5, during which
the system shows a gradual shift from the superconducting
to the resistive voltage. In this regime, we observe dynamics
akin to those shown in Fig. 2 for a single junction, where
thermal fluctuations frequently switch the system between
superconducting and resistive states. As a consequence, the
average voltage reaches a level somewhere in between the
two extrema, and we observe large fluctuations around this
mean. It is in this regime where one would expect that even
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even stronger thermal fluctuations with X = 0.25. Note that the color code is adjusted in each plot such that no changes to the undriven voltage

correspond to white color.

weak driving can strongly influence the dynamics, as we will
investigate in the following.

B. Current-voltage relations of the weakly driven system

In Fig. 5, we investigate how driving can influence the
dynamics for each of the three temperature regimes shown
in Fig. 4. In the low-temperature regime in Fig. 5(a), the
undriven system remains in the superconducting state up to
fairly large currents. Consequently, the only thing driving at
moderate amplitudes can achieve in this regime is to increase
the voltage by driving the system into the resistive state. This
effect turns out to be most pronounced at larger frequencies
close to the plasma edge. At intermediate temperatures shown
in Fig. 5(b), it is possible to both enhance or reduce the voltage
in the transition regime. Low frequency driving (circular
points) reduces the average voltage between jey >~ 0.2...0.5,
while higher-frequency driving tends to increase it. Driving
at even higher frequencies can enhance the voltage further
(not shown), stabilizing the resistive state until the current
drops below je =~ 0.2. Similar physics is found to be at
work at high temperatures in Fig. 5(c), where low-frequency
driving can reduce the voltage at currents below je =~ 0.5.
Interestingly though, at very low currents, where the undriven
system tends to remain predominantly superconducting, the
driving enhances the voltage. The high-frequency driving has
very little impact on the voltage in this regime.

C. Parameter space at constant current jey

To understand in more detail how the driving affects the
system dynamics, we depict the change of the voltage relative
to the undriven state as a function of both driving frequency
and amplitude in Fig. 6. The external current j.y, is kept fixed.
We again consider the three temperatures of previous plots in
panels (a)—(c).

At low temperatures, in Fig. 6(a), an intricate structure
can be seen most clearly, as it is not strongly blurred by
fluctuations. We note in passing that the form of this structure
is very similar to our simulations in a previous publication
[29], where the full spatially dependent phase difference at
zero temperature was simulated in synchronized stacks of

junctions. This further demonstrates the applicability of our
model to the problem at hand. In Fig. 6(a), we find a narrow
strip (the white region) at very weak driving amplitudes below
A ~ 0.1, where the voltage is not affected by the driving. Then
we find an extended region between A >~ 0.2 ... 0.6, where at
low driving frequencies wy, < 0.6 the driving actually sup-
presses the weak thermal fluctuations and slightly reduces the
resulting voltage. At frequencies w,, 2 0.6, there is a sharp
transition to a strong enhancement of the voltage. This region
corresponds to the driven case in Fig. 5(a) that forces the
system into the resistive state. Energy is pumped resonantly
into the system, until the superconducting state becomes
unstable [35]. The same voltage can be reached also with
low driving frequencies wy, < 0.4 and large amplitudes A 2,
0.6. These two regions with maximal voltage are separated
by a pronounced intermediate minimum stretching roughly
between wy, = 0.5 and A = 0.6 to wy, = 0.8 and A = 1.2.
This region is dominated by synchronized states [compare the
parameters in Fig. 3(b)] and corresponds to an emergent state
due to the driving that cannot be found in the equilibrium
material.

At higher temperatures, this structure of the parameter
space persists, even though it is blurred more strongly by
thermal fluctuations, and fine features at the boundary of
distinct regions are washed out. The size of thermal fluctua-
tions is increased in panels (b) and (c), and consequently so
is the thermally induced voltage. This means that at higher
temperatures in principle it is possible to decrease the voltage
more strongly through adequate driving. Generally, we find
an extended region at low frequencies and moderate driving
amplitudes that suppresses the voltage. Hence superconduct-
ing currents can be stabilized in this parameter regime by
destabilizing the competing resistive channel. Furthermore,
the region dominated by phase-locked states also remains
visible at higher temperatures. Since the voltage in the phase-
locked state becomes comparable to the thermal one, these
will, however, become more difficult to detect experimentally.

D. Dependence on the driving amplitude

Finally, in Fig. 7 we investigate how the driving field
amplitude A influences the current-voltage relation at high
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FIG. 7. Current-voltage relation in a stack of 100 junctions with
strong thermal fluctuations, X = 0.25 (gray squares), and in the
presence of an external drive with amplitudes A = 0.4, 0.6, and
0.8 and frequency w,, = 0.1 (cyan crosses with increasingly darker
shade), respectively.

temperature. The driving frequency is fixed. At small ampli-
tudes, the voltage can be reduced most strongly. However, the
impact is restricted to rather small currents close to the critical
current, where the undriven system switches to the resistive
state naturally. To increase the maximal currents, where the
voltage can be manipulated by driving, one has to increase
the driving amplitude. Clearly, this comes at the expense of
the maximal possible reduction. While the weakest amplitude
in Fig. 7 can achieve a maximal voltage reduction of around
50% for jex: =~ 0.3, this value drops steadily and the maximal
reduction induced by the largest driving amplitude is ~10%.
However, this reduction takes place at much larger currents:
Jext = 0.6. Hence there appears to be a clear trade-off between
how strongly the voltage can be reduced and the strength of

the current at which this reduction is to be achieved—and
hence the necessary driving amplitude.

IV. CONCLUSIONS

To conclude, we have investigated systematically the
strong driving of interlayer plasma oscillations by laser fields
in short stacked superconductors. In particular, we focused on
how the driving can manipulate the thermally induced voltage
drop in the presence of currents. The key ingredient enabling
this control is the strong nonlinearity of the Josephson plas-
mon, and its interaction with currents flowing through the
system. At transient temperatures, we found that a substantial
reduction of the thermally induced voltage drop to almost zero
is possible. Thermal fluctuations can be effectively cooled by
appropriate driving in this regime. At large driving ampli-
tudes, phase-locked states can be induced, where the phase
difference follows the laser pulse. This allows the reduction of
the voltage to a finite but appreciably smaller value even in the
presence of very large currents. However, we found a trade-off
between the amount of voltage reduction that is feasible and
the strength of the currents.

In future research, it will be interesting to investigate
whether the coupling to the quantum-optical fields in cavities
could yield additional control over the electronic phase of the
material [45-51].
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