
PHYSICAL REVIEW B 100, 134508 (2019)

Signatures of nematic superconductivity in doped Bi2Se3 under applied stress
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The MxBi2Se3 family are candidates for topological superconductors, where M could be Cu, Sr, or Nb.
Twofold anisotropy has been observed in various experiments, prompting the interpretation that the super-
conducting state is nematic. However, it has since been recognized in the literature that a twofold anisotropy
in the upper critical field Hc2 is incompatible with the naive nematic hypothesis. In this paper we study the
Ginzburg-Landau theory of a nematic order parameter coupled with an applied stress, and classify possible
phase diagrams. Assuming that the Hc2 puzzle is explained by a preexisting “pinning field,” we indicate how
a stress can be applied to probe an extended region of the phase diagram, and verify if the superconducting
order parameter is indeed nematic. We also explore the Josephson tunneling between the proposed nematic
superconducting state and an s-wave superconductor. The externally applied stress is predicted to serve as an
on/off switch to the tunneling current, and in a certain regime the temperature dependence of the critical current
can be markedly different from that between two conventional s-wave superconductors.
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I. INTRODUCTION

Bi2Se3 is a topological insulator [1–3]. When intercalated
with electron-donating atoms such as Cu [4,5], Sr [6], or Nb
[7,8], it becomes superconducting at low temperature. Follow-
ing their identification as candidates of topological supercon-
ductors [9–11], the family of materials has recently garnered a
lot of interest [12]. Experimentally, twofold anisotropy in the
superconducting phase has been observed in NMR Knight’s
shift [13], specific heat [14–16], magnetic torque [8], magne-
totransport, and upper critical field [14,17–19]. This is incom-
patible with the crystal lattice symmetry, and has led to the
hypothesis that the superconducting state is nematic in nature,
i.e., it spontaneously breaks both lattice rotational and gauge
symmetries. While the superconductivity is suppressed by an
applied hydrostatic pressure [20,21], the twofold anisotropy is
observed as far as superconductivity holds [21].

The parent material Bi2Se3 forms a rhombohedral crystal,
with a lattice point group D3d ; see Fig. 1. According to
the nematic hypothesis, the complex superconducting order
parameter �η is believed to transform under the irreducible
representation Eu [10], which is parity odd and two dimen-
sional, and, in the absence of other symmetry breaking effect,
spontaneously breaks the crystal rotation symmetry together
with the U (1) symmetry. It can be thought of as a nematic
director in the basal plane, since �η and −�η can be identified up
to a global U (1) phase shift of π . Experiments that detect the
anisotropy in the basal plane all reported a twofold symmetry,
consistent with the presence of a nematic superconducting
order parameter. This naive picture, however, is contradicted
by several pieces of experimental facts.

First of all, the upper critical field Hc2 is experimentally ob-
served to be twofold anisotropic [14,16–19] with the applied
field parallel to the basal plane, seemingly inline with other
measurements. However, this result is actually incompatible
with the naive nematic hypothesis, which indicates a sixfold
anisotropy for Hc2 [22–24].

To understand this, one considers the onset of supercon-
ductivity in high field. Instead of a finite �η providing a pre-
ferred orientation, the magnetic field and the lattice anisotropy
together determine the orientation of the infinitesimal �η when
it first emerges. This consideration leads to the prediction
of a sixfold anisotropy associated with the sixfold improper
rotation symmetry of D3d .

The robustness of the twofold nematic direction observed
in experiments is another puzzle unexplained by the naive
nematic scenario. It was noted that the twofold anisotropy
for a given sample is always pinned at the same direction. In
Pan et al. [17] part of the experiment was performed with the
sample repeatedly cycled up to 5 K (about 1.6Tc) and cooled
back down to superconducting phase again before every field
sweep [25]. In a separate account [26], the same twofold
direction for any given sample persists as it was cycled in
and out of the superconducting phase repeatedly, sometimes
all the way to room temperature and back, with or without a
background magnetic field. To account for this behavior, the
rotational symmetry must have been already broken in some
way at room temperature.

Indeed, for the case of Sr, evidence of normal-state nematic
response was reported by Kuntsevich et al. [27] and Sun et al.
[16]. On the other hand, the Argonne group [15,19] reported
an isotropic normal-state response for Sr. This is in contrast
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FIG. 1. The positions of the selenium atoms within a quintuple
layer of Bi2Se3. The superconducting order parameter �η is shown
here pointing in an arbitrary direction.

with the case of Cu, where no nematicity was ever observed
above Tc [13,14] to our knowledge.

To reconcile the Eu pairing scenario and the observed
robust pinning effect, some nematic symmetry-breaking field
(SBF) must already be present in the sample [15]. The precise
nature of this SBF is yet unknown, though mechanical stress
or strain were named as possible candidates [10]. This SBF
pins all the twofold nematic responses (including Hc2) in the
same direction for a given sample.

We emphasize that any scenario that solely relies on
spontaneous symmetry breaking at low temperature to supply
the nematic direction is incompatible with experiments. The
naive nematic scenario does not work, nor does any scenario
where the rotational symmetry is broken independent of the
U (1) symmetry, for example [28]. A preexisting SBF (“pining
field”) is necessary.

A conceptual difficulty then arises: in the presence of a
pinning field, an otherwise isotropic s-wave superconductor
can in principle also appear twofold anisotropic. Can we
tell this so-called anisotropic s-wave scenario apart from the
true nematic scenario? This distinction is more than merely
academic, because the nematic superconductor is topological
[10,11], while the s-wave case is not.

In light of these recent developments, a better understand-
ing of how the proposed nematic superconductivity interacts
with an explicit SBF is clearly desirable. In this work we
consider mechanical stress or strain as the prototypical SBF,
although an SBF with a different microscopic nature will have
exactly the same phenomenology. We further consider the
application of stress in addition to the existing, unknown SBF,
as an experimental probe of the nature of the superconducting
phase.

Historically, much of the phenomenology of a supercon-
ducting order parameter with nontrivial symmetry has been
known as part of the lore of the unconventional superconduc-
tors (see Refs. [29,30] and references therein.) Pertinent to
the present discussion is the fact that, due to the competition
of the SBF and the crystal field, the superconducting transition
may be split into two if the order parameter is multicomponent
[31,32]. In the heavy fermion compound UPt3, the double

transition is due to the antiferromagnetic order in the normal
state, and has been experimentally observed [33]. The idea
of a stress causing a similar split has been put forward
for Sr2RuO4 [34,35], but to our knowledge has never been
observed [36,37].

In this paper we formulate the Ginzburg-Landau (GL)
theory of a nematic superconducting order parameter coupled
to an external SBF, and explore the phenomenology as a
guide to future experiments. In particularly, following the
suggestion of [10], we consider stress as the prototypical SBF.
The GL theory is written down in Sec. II, and then in Secs.
III, IV, and V we identify the splitting of the superconducting
transition, as well as another possible transition at a lower
temperature, and classify possible phase diagrams as function
of stress and temperature. In Sec. VI we further explore
the phenomenology when the system is subjected to two
SBFS: a preexisting pinning field and a stress applied as an
experimental probe, and propose experimental signatures that
may help distinguish a truly nematic superconducting order
parameter from a single-component one.

In addition, in Sec. VII we consider the critical tunnel
current in the Josephson junction between the proposed ne-
matic superconducting state and another s-wave superconduc-
tor. The idea of using the Josephson effect as a probe for
unconventional pairing symmetry has long been considered
[38–42]. The Ginzburg-Landau approach is also applicable
to describe the Josephson tunneling [43]. If the nematic
hypothesis does hold, the critical current shows a nontrivial
anisotropic dependence on the SBF, as well as a temperature
dependence that differs from the s-wave-to-s-wave scenario.
This provides another experimental test for the nematicity.

II. GINZBURG-LANDAU FREE ENERGY

We will formulate the GL theory by treating the system
as “almost D3d invariant.” That is, we consider the nematic
superconducting order parameter living in the Eu representa-
tion of D3d , and write down a D3d -invariant free energy. The
pinning effect is introduced via coupling to a (possibly weak)
explicit SBF.

This scenario is similar to the nematic pseudogap phase
of YBCO [44–47], where the order parameter would have
broken the fourfold rotation symmetry of the CuO2 plane,
except that this “symmetry” is already weakly broken by
the orthorhombic lattice. Nonetheless, the nematic response is
greatly enhanced by the nematic pseudogap order parameter.

A. Free energy without SBF

Let us first give a brief recap of the GL free energy for a
nematic superconductor in the absence of any SBF.

We define the coordinate axes as follows: the z axis
is aligned with the principal C3 axis of the lattice, the x
axis is along one of the C2 axes in the basal plane, and the
y axis is chosen to form a right-handed set of a coordinate
system.

We assume that the superconducting order parameter is a
complex two-component quantity �η. It will be parametrized as

�η =
(

ηx

ηy

)
=

√
D

(
cos θ

eiφ sin θ

)
. (1)
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Here ηx is kept real by a suitable global U (1) phase rotation.
See Fig. 1 for illustration.

The point group D3d can be built from three operations:
2π/3 rotation about the z axis (denoted C3), π rotation about
the x axis (denoted C2

′), and mirror reflection about the yz
plane (denoted M). The odd-parity proposal [10] would have
�η transforming in the Eu representation, similar to (x, y).

However, we may equally well consider the possibility
where �η transforms in the Eg representation instead, similar
to the pair (yz,−xz). Gauge invariance requires �η and �η∗
to always come in pairs in the GL expansion, and the sign
of parity is irrelevant. The GL free energy and most of the
subsequent analysis remain unchanged for the Eg scenario,
except that a minor modification is needed for the Josephson
tunneling, which does not affect our qualitative conclusion.
For either case, one can consistently define ηx to be the
component invariant under C2

′.
The quantity �η is to be considered as a headless vector,

since a sign in ±�η can be regarded as a U (1) phase factor.
Therefore one may restrict θ to the interval (−π/2, π/2],
keeping in mind that θ and θ + π are always degenerate.

The GL expansion of free energy is obtained by writing
down all the terms that are invariant under D3d , global phase
shift of �η, and time reversal. Up to O(η6), the most generic
form is

F0 = α|η|2 + [β ′
1|η|4 + β ′

2(�η · �η)(�η ∗ · �η ∗)]

+{γ ′
1|η|6 + γ ′

2[(η1 + iηy)3(η ∗
x + iη ∗

y )3

+ (ηx − iηy)3(η ∗
x − iη ∗

y )3] + γ ′
3|η|2(�η · �η)(�η ∗ · �η ∗)}.

(2)

Here α is taken to be

α = κ

(
T − T0

T0

)
, (3)

where T0 is the superconducting transition temperature with-
out external field. We ignore the temperature dependence of
all other coefficients.

Let us first consider the free energy up to O(η4). To this
order F0 is in fact invariant under arbitrary rotations in the xy
plane. Two solutions for �η are possible: the complex chiral
state that is rotationally invariant but spontaneously breaks
time-reversal symmetry, and the real nematic state which
breaks the rotational symmetry but is time-reversal invariant.
The sign of β ′

2 decides which phase is favored [48,49].
Since the nematic state is by assumption the true solution,

we take the appropriate sign β ′
2 < 0. The minimum of F

now lies along φ = 0, and in effect (�η · �η)(�η ∗ · �η ∗) = |η|4.
Therefore we define β ≡ β ′

1 + β ′
2, and require β > 0 for

stability.
Now let us move on to include terms of O(η6). The γ ′

3
term essentially has the same θ and φ dependence as the β ′

2
term. Since a transition from nematic to chiral state at a lower
temperature is never observed, we explicitly require γ ′

3 < 0.
On the other hand, it can be shown that all extrema of the γ ′

2
term correspond to real values of �η. Consequently, one may
assume �η is real and simply set φ = 0. In terms of θ and D,
the free energy reads

F0 = αD + βD2 + [γ1 + γ2 cos (6θ )]D3, (4)

where γ1 ≡ γ ′
1 + γ ′

3 and γ2 = 2γ ′
2. For stability we require

γ1 > 0 and γ1 > |γ2|.
The γ2 term breaks the full rotational symmetry down to a

discrete sixfold symmetry. This is the lowest order at which
the crystal anisotropy enters the GL expansion [49].

B. Stress as an SBF

Stress serves as our prototypical SBF. We will focus on
stress in the xy plane. Generally, planar stress is a rank-two
symmetric tensor ε̂ with three independent real parameters.
Under D3d , this tensor decomposes into two parts: the scalar
Tr ε̂, and the traceless part which is organized to form the two-
component quantity

�ε =
(

εxx − εyy

−2εxy

)
≡

(
ε1

ε2

)
= ε

(
cos [2(−� + �0)]

sin [2(−� + �0)]

)
, (5)

which transforms in the Eg representation under D3d .
Gauge invariance of the free energy requires that �η and

�η ∗ pair up, and all allowed combinations are parity even.
Therefore to couple to the nematic superconductor at all, an
SBF must transform under the even-parity Eg representation.
It therefore shares the same phenomenology with stress (5).
One can simply replace the stress with any preexisting SBF
of an arbitrary origin, and the resulting GL free energy is
formally identical. In particular, we note that for externally
applied strain, the form of GL free energy (14) remains
exactly identical. The result in this paper equally applies to
experiments which uses strain instead of stress.

We choose to parametrize �ε as (5) because � would corre-
spond to the physical rotation angle about the z axis. When
the stress is rotated by an arbitrary angle δ, �ε changes via
� → � + δ. The angle �0 defines the direction relative to the
x axis that corresponds to � = 0, and we leave it unspecified
for now, to be chosen for convenience later. The angle �

defines a special direction in the basal plane, and subsequently
we may refer to it as the “orientation” of the stress. This breaks
the point group rotation symmetry.

For the sake of completeness, we state that one can form
another Eg pair using out-of-plane stress components: the
pair (εyz,−εxz ) can be used in place of (5). Note that this is
possible only for the trigonal D3d group. If B and C sites in
Fig. 1 were to be identified, the resultant hexagonal D6h point
group would not have allowed the replacement.

For the remainder of this paper, we will always assume that
Tr ε̂ is kept constant. The dependence of GL coefficients on
Tr ε̂ can therefore be entirely disregarded.

We will only consider coupling to �ε at linear order. As
discussed above, gauge invariance requires �η and �η∗ to comes
in pairs that transform under the Eg representation. Up to
order O(η4), the following is the exhaustive list of possible
combinations:

�S =
(

|ηx|2 − |ηy|2
−ηxη

∗
y − ηyη

∗
x

)
≡

(
S1

S2

)
, (6)

�T = |η|2 �S, (7)

�U =
(

(|ηx|2 − |ηy|2)2 − (ηxη
∗
y + ηyη

∗
x )2

2(ηxη
∗
y + ηyη

∗
x )(|ηx|2 − |ηy|2)

)
. (8)
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The additional terms entering the free energy are

Fε = −g′
0 �ε · �S − g′

1 �ε · �T + g′
2 �ε · �U . (9)

The leading �ε · �S term was considered in the literature [15,24].
We go beyond quadratic order in �η to study the interplay
between the applied stress and crystal anisotropy.

All three terms in (9) can be shown to be extremized by real
values of �η. Together with (2), every term in the free energy
favors a real �η. One is again allowed to set φ = 0 from this
point on.

Let us first look at �ε · �S. Define g0 = |g′
0| > 0. By appro-

priately choosing �0 = 0 or π/2, this term can be written as

−g′
0 �ε · �S = −g0 εD cos (2θ − 2�). (10)

The free parameter �0 has been used up to fix the sign of
g0; now the �T term must be taken as is. Define g1 = ±g′

1 with
an appropriate sign depending on the previous choice of �0,
and one may write

−g′
1 �ε · �T = −g1 εD2 cos (2θ − 2�). (11)

Similarly, the �U term becomes

g′
2 �ε · �U = −g2 εD2 cos (4θ + 2�), (12)

with g2 = ±g′
2 appropriately defined to absorb the possible

sign due to the choice of �0.
To sum up, the stress dependent part of GL free energy is

Fε = −g0 cos (2θ − 2�)εD

− [g1 cos(2θ − 2�) + g2 cos(4θ + 2�)]εD2. (13)

The coefficient g0 is made positive by an appropriate choice
of �0. The other two coefficients g1 and g2 can be of either
sign.

It can be seen that (4), (10), (11), and (12) are all in-
variant under sixfold (improper) rotation about the z axis.
Consequently, we are free to impose the restriction � ∈
(−π/6, π/6], which amounts to redefining the x direction
relative to the external stress.

The full expression of GL free energy F employed in this
paper is the sum of (4) and (13). Let us also introduce another
notation:

F = F0 + Fε = aD + bD2 + cD3, (14)

where a, b, and c are functions of α, θ , �, and ε.

C. Limit on the magnitude of stress

The explicit form of coefficient b in F is

b = β − g1 ε cos(2θ − 2�) − g2 ε cos(4θ + 2�). (15)

If we take this expression at its face value, for ε large enough,
the minimum value of b turns negative, and the transition from
normal to superconducting state becomes first order.

While not implausible, this stress-induced first order tran-
sition has not been observed in any material to our knowledge.
We therefore limit the range of ε in our theoretical investiga-
tion to avoid this regime. The appropriate condition is

ε 	 β

|g1| ,
β

|g2| . (16)

D. Sign of γ2

In the absence of an SBF, up to order D2 the free energy F0 is
symmetric under arbitrary rotation around the z axis. That is,
ηx and ηy are completely degenerate. The sixfold symmetric
γ2 term breaks the degeneracy between ηx and ηy. When γ2 <

0, the ground state has nonzero ηx, while γ2 > 0 results in
nonzero ηy [49].

Using a two-band lattice model, Fu [10] argued that ηy is
the correct superconducting order parameter for CuxBi2Se3,
which corresponds to γ2 > 0. We will thus assume the positive
sign for the remainder of the paper. However, we point out
that all the result obtained subsequently can be easily mapped
to the case where γ2 < 0, should it turn out that way in
experiment.

Let θ = θ − �, and eliminate all occurrences of θ in
favor of θ in (4) and (13). By shifting � → � + π/6, one
effectively reverses the signs of both γ2 and g2.

III. PHASE DIAGRAMS

In this section we will describe the three possible phase
diagrams, assuming the GL free energy (14). The reduced
temperature α, the magnitude of the stress ε, and the orien-
tation of the stress � will span the three axes of the phase
diagrams. The derivation and analysis of the features on these
phase diagrams will be given in later sections.

We want to emphasize that any of the nontrivial structure
of the phase diagram is a direct consequence of the nematic
superconducting order parameter �η. An s-wave superconduc-
tor coupled to an explicit SBF may show anisotropic response,
but will only exhibit a single superconducting phase, with Tc

depending on �ε analytically.
First let us consider the stress-free case ε = 0. The su-

perconducting transition takes place at α = 0, and the order
parameter is sixfold rotationally degenerate: θ = −π/6, π/6,
or π/2. We will refers to these directions as the “natural
minima” of the free energy.

Let us turn on the stress. By assumption, the size of stress
ε is such that b remain positive for all values of θ and �. The
normal-to-superconducting transition is then solely controlled
by the coefficient a in (14):

a = α − g0 ε cos(2θ − 2�). (17)

At finite stress, the transition occurs at

α = α1(ε) ≡ g0 ε, (18)

and the order parameter is directed at θ = �. We will refer to
this as the upper transition.

A. � = 0

We first examine the case when the direction of stress is
fixed at � = 0. This is a plane in the full three-dimensional
parameter space (�, ε, α).

We first orient the stress along � = 0. Below Tc, the order
parameter is locked to θ = 0 by symmetry. This is labeled as
phase A. As discussed earlier, the γ2 term favors θ along one
of the natural minima. The competition between g0 and γ2

eventually leads to a second order phase transition from θ = 0
to θ 
= 0 at a lower temperature α2(ε). This will be referred to
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(a) (b)

stress

(c)

FIG. 2. The three allowed phases when the stress is oriented
at � = 0 as shown. (a) Phase A: immediately below the upper
transition. (b) Phase B: between the middle and the lower transition if
applicable. The two orientations depicted in phase B are degenerate
and coexisting, and the dotted lines mark θ = ±π/6. (c) Phase C:
below the possible lower transition.

as the middle transition. The lower temperature phase will be
called phase B. See Fig. 2.

This can be explained in more physical terms. A hexagon
has two types of high-symmetry directions. When the stress
favors the x-type direction, but the naturally preferred orienta-
tion is of the y type (or vice versa), the middle transition exists
as a result of the competition.

This middle transition only exists for � = 0. Otherwise,
θ will simply be pulled toward the nearer of ±π/6 due
to the reduced symmetry of the setup. At ε = 0, the upper
and middle transition merge into a single superconducting
transition.

Below α2(ε), the � = 0 plane is a first order coexistent
surface, separating the θ > 0 and θ < 0 phases on either side.
The middle transition is the critical end line of this surface.

Going still lower in temperature, another first order phase
transition may occur at some α3(ε), and forms the lower
bound of the coexistence surface. It will be referred to as the
lower transition. Below this lower transition, the orientation
θ is fixed at π/2 (see Fig. 2). The necessary and sufficient
condition for the lower transition is

g1 < g2. (19)

The lower transition occurs at an temperature where �η is
no longer small. The sixth order γ2 term dominates the free
energy, and by the same argument g0 is overwhelmed by g1

and can be ignored. The γ2 term has six degenerate minima
[see Eq. (4)], and this degeneracy is lifted by g1 and g2.
It will be shown subsequently that the difference (g1 − g2)
determines which of the six minima is most favorable, leading
to the criterion (19).

All three lines of phase transition may continue indefinitely
into higher stress, or alternatively the middle transition line
may bend down and end when it merge with the lower

T

|ε|

T0

N

A

B

(a)

T

|ε|

T0

N

A

B

C

(b)

T

|ε|

T0

N

A

B

C

ε∗
(c)

FIG. 3. The three possible phase diagrams when � = 0. The
dashed lines denote second order transitions, and the dash-dotted
lines denote first order transitions. N denotes the normal phase. Note
that the critical temperature T2 of the middle transition is asymptot-
ically (T2 − T0 ) ∝ √

ε for small ε, as required by thermodynamics.
(a) The lower transition is absent. (b) The lower transition is present.
(c) The lower transition is present, and the middle transition merges
with it at ε = ε∗.

transition at some value of stress ε∗. Overall, there are three
different possible scenarios associated with this given F at
� = 0, as shown in Fig. 3.

B. � = π/6

Immediately below the upper transition the order parame-
ter has θ = π/6, which is again locked by the symmetry. We
shall refer to this as phase D. This orientation also minimizes
the γ2 term, however, and there is no middle transition.

On the other hand, the competition between g0 and g2 may
be relevant at low temperature if (19) is satisfied, and then
there is a lower transition. Crossing this transition from high
to low temperature, the equilibrium state goes from θ = π/6
to twofold degenerate (θ − π/6) > 0 and (θ − π/6) < 0.
Please see Fig. 4 for illustration.

Purely from the symmetry standpoint, this transition can be
of either first or second order. It will be shown that, for stress
ε smaller than some critical value εc, the lower transition is of
first order; beyond this point it becomes second order. We will
let α4(ε) denote the line of this lower transition.

Similar to the middle transition at � = 0, lower transition
here serves as the critical end line of a first order coexistent
plane between the θ > π/6 and θ < π/6 phases on two sides
of � = π/6.

There are two possible scenarios at � = π/6, one with and
the other without a lower transition. The phase diagrams are
as shown in Fig. 5.
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(a)

stress

(b)

FIG. 4. The two allowed phases when the stress is oriented at
� = π/6. (a) Phase D: immediately below the upper transition.
(b) Phase E: the phase below the lower transition if it is present. The
dotted line marks the direction perpendicular to the stress.

C. The full phase diagram

A generic value of � breaks the sixfold rotational sym-
metry, and there cannot be a middle transition. If the (19) is
satisfied, the resulting lower transition indeed span a first order
coexistent surface, interpolating between the lines of lower
transition we have identified at � = 0 and � = π/6. Overall
there are three possible scenarios, as shown in Fig. 6.

As discussed earlier, the magnitude of stress in our discus-
sion is limited by (16). Beyond the small-stress regime, the
possible phase diagrams display very rich and complicated
behaviors. But as noted above, this regime is unlikely to be
physically relevant.

The middle transition at � = 0 marks the temperature
below in which γ2 dominates over g0. The lower transition
is due to the competition between g2 and γ2. This already
exhausts the list of possible competitions. Consequently we
do not anticipate any other transition on the phase diagrams.

We have numerically verified the assertions made in this
section. In the following sections we will present analytical
derivations the phase diagrams, and analyze their experimen-
tal implications.

T

|ε|
T0

N

D

(a)

T

|ε|

T0

εc

N

D

E

(b)

FIG. 5. The two possible phase diagrams when � = π/6. The
dashed lines represent second order transitions, and the dash-dotted
line represents first order transition. N denotes the normal phase.
(a) The phase diagram in the absence of a lower transition; and
(b) the phase diagram in the presence of a lower transition. The lower
transition change from first to second order at ε = εc.

(a) (b)

(c)

FIG. 6. The possible phase diagrams, with the � axis added.
The upper shaded surface is the second order upper transition that
separate normal and superconducting phases. The other shaded
surfaces are first order coexistence surfaces, while the thick dashed
line represents second order critical end lines. (a) Lower transition is
absent. (b) Lower transition is present. (c) Lower transition is present,
and the middle transition line ends on it.

IV. THE SPLIT SUPERCONDUCTING TRANSITION

A. Upper transition

The normal-to-superconducting transition occurs at α1(ε),
as given in (18). Equivalently, one may revert to using the
physical temperature:

T1(ε) = κ α1(ε) + T0 (20)

is the corresponding critical temperature of the upper tran-
sition. This critical temperature is isotropic and independent
of �.

However, the fact that α1 depends linearly in ε is itself an
experimental signature for the nematic superconducting order.
A single-component order parameter cannot couple linearly to
�ε, as there is no way to form a combination that is invariant
under threefold rotation.

The specific heat jump will be anisotropic. Following
standard analysis, one recovers

cv,1 = κ2

2T1(ε)

1

β − ε [g1 + g2 cos(6�)]
. (21)

This sixfold anisotropy is another unique signature of the
nematic superconducting state. It shares similar physical ori-
gin with the predicted sixfold anisotropy of Hc2 [22–24]: the
external field sees only the underlying lattice as the source of
anisotropy. By mapping out the ε and � dependence of cv,1,
one can in principle experimentally determine the Ginzberg-
Landau coefficients involved. In particular, the the relative
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size of g1 and g2 can be used to predict whether a lower
transition may exist.

B. Middle transition

The existence of a middle transition is another unique
signature of the nematic superconducting state. It separates the
θ = 0 phase from θ 
= 0. Therefore θ itself is an appropriate
order parameter to describe this transition. To this end, it is
useful to first minimize F with respect to variation in D. Thus
we define D̃ such that (

∂F
∂D

)
D=D̃

= 0. (22)

D̃ is an implicit function of θ , α, ε, and �. We will assume
that the stress orientation is tuned to � = 0 for the remainder
of this part.

One can now derive a Ginzberg-Landau expansion for θ by
replacing D with D̃:

F̃ ≡ aD̃ + bD̃2 + cD̃3 = k0 + k2 θ2 + k4 θ4 + · · · . (23)

Then the standard analysis of second order phase transition
applies.

As noted in the previous section, the middle transition is
due to the competition between g0 and γ2. It can be shown
that, for asymptotically small ε, the leading expressions of
coefficients k2 and k4 are independent of g1 and g2. Here we
present these asymptotic formulas, though the exact analytic
result can be obtained by carefully retaining all terms.

The critical temperature T2 is

T2 = T0

[
1 − 2

3

β

κ

√
g0

γ2

√
ε + g0

κ

(
2γ2 − γ1

3γ2

)
ε

]
, (24)

and the specific heat jump is

cv,2 = κ2T2(ε)

T 2
0

9 γ2 g0 ε

8β2√γ2g0ε + 2β(8γ1 − γ2)g0ε + 2√
γ2

[5 + (γ1/γ2) − 4(γ1/γ2)2](goε)5/2
. (25)

The formulas (24) and (25) are accurate in the limit where
(g1 ε/β ), (g2 ε/β ), g1

√
ε/g0 γ2, and g2

√
ε/g0 γ2 are small.

It is worth pointing out that, around T0 where the upper and
middle transition merge, Eq. (24) implies

(T2 − T0) ∝ √
ε. (26)

In particular, the T2 line has an infinite slope at ε → 0.
Generally it is thermodynamically forbidden for two lines of
second order transition with finite slopes to meet and form a
kink [50]. However, observing that the specific heat jump at
the upper transition is the same for ε → 0±, one can invoke
thermodynamic arguments similar to that in [50] to show that
T2 must possess an infinite slope, and then this is an exception
to the aforementioned “no-go” theorem.

We also note that cv,2 vanishes in the limit ε → 0. This
is consistent with the sum rule

lim
ε→0

(cv,1 + cv,2) = cv, (27)

where cv is the specific heat jump of the superconducting
transition at zero stress.

V. LOWER TRANSITION

The existence of a lower transition can be inferred by
looking at the extremely low temperature α → −∞ limit:

F̃ ≈ |α|3/2[3γ1 + 3γ2 cos(6θ )]

+ |α|{β − ε[g1 cos(2θ − 2�) + g2 cos(4θ + 2�)]}
3

× [γ1 + γ2 cos(6θ )] + O(|α|1/2). (28)

The leading term has the sixfold rotational symmetry, favoring
all natural minima equally. The subleading term lifts this
degeneracy.

The sign of (g1 − g2) controls the qualitative behavior
of (28). First assuming a generic value of � that breaks

the sixfold rotational symmetry. If g1 > g2, out of the three
minima, the one closest to � wins out. Conversely if g1 < g2,
the minimum furthest away from � becomes the lowest.
On the other hand, the order parameter has θ = � at the
upper transition, and then initially drifts toward the nearest
of the natural minima as the temperature is lowered. For
g1 < g2, there must be a first order transition separating the
low-temperature asymptotic behavior from that just below the
upper transition. This justifies (19) as the criterion for a lower
transition.

The cases of � = 0 and π/6 require special attention.
For the sake of clarity, we introduce σ = (θ − �), and con-
sider the range −π/2 < σ � π/2. It can be shown that F̃
exhibits the following properties at � = 0 or π/6:

(1) F̃ is symmetric under σ → −σ .
(2) F̃ is always stationary at σ = π/2 and 0.
(3) F̃ admits at most five stationary points within the

range −π/2 < σ < π/2 [51].
(4) Just below the upper transition, σ = 0 is the global

minimum of F̃ , and σ = π/2 is the global maximum.
First let us look at the � = 0 case. Coming down from

high temperature, σ is initially fixed at 0, but drifts away from
this high-symmetry direction below the middle transition. The
previous argument for generic value of � therefore applies
equally. However, below the lower transition, the location of
global minimum in this case is pinned exactly at σ = π/2 by
the enhanced symmetry.

Now we turn to the case of � = π/6. As noted in the
previous section, the lower transition here may be either first
or second order.

If the lower transition is first order, F̃ must develop a
maximum-minimum pair on each side of σ = 0 as the tem-
perature is lowered. This already accounts for five stationary
points within −π/2 < σ < π/2, and σ = 0 must always
remain a local minimum. On the other hand, a second order
lower transition implies the stationary point at σ = 0 must
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revert its character as the temperature is lowered. Therefore
the criterion separating first and second order transition is
whether (∂2F̃/∂σ 2)σ=0 changes sign when the temperature
is lowered. This gives the critical stress:

εc = 36 g0γ3

(g1 − 4g2)2
. (29)

If ε > εc, the lower transition becomes second order.
Finally, we will address the question of if and when the

middle transition at � = 0 ends on the surface of the lower
transition. While a closed-form analytic solution is possible,
the full expression is extremely long and unwieldy. We instead
supply a recipe here.

The line of middle transition α2(ε) is implicitly defined by(
∂2

∂σ 2
F̃ (α = α2, ε, σ,� = 0)

)
σ=0

= 0. (30)

Since the phase below the lower transition has exactly σ =
π/2 at � = 0, the equation

F̃ (α2(ε∗), ε∗, σ = 0,� = 0)

= F̃ (α2(ε∗), ε∗, σ = π/2,� = 0) (31)

determines the stress ε∗ at which the middle and lower transi-
tions meet if a solution exists. If there is no solution, then the
line of the middle transition extends indefinitely into large ε.
Our numerical results indicate that, depending on the actual
values of GL coefficients, ε∗ can be well within the limit
(16), and the ending of the middle transition can be physically
relevant.

VI. PREEXISTING PINNING FIELD AND SIGNATURES OF
NEMATIC SUPERCONDUCTIVITY

As noted in the Introduction, there must be a preexisting
SBF in the MxBi2Se3 crystal to explain the pinning of the
twofold anisotropic direction. Thus far we have assumed that
mechanical stress is the only SBF present in our GL analysis.
Should this be the case, one has direct control of the SBF by
application of another external stress, and the predictions in
the previous sections can be directly tested.

However, the true nature of the preexisting SBF is yet
unknown, and it may not be mechanical stress or strain after
all. In this section we consider the crystal subjected to both
a preexisting pinning field �p that is beyond our experimental
control, and an artificially applied stress �ε as an experimental
probe.

The pinning field �p must also transform under the Eg

representation. In the same notation developed for stress, �p
can be expressed as

�p = p

(
cos(−2�p)
sin(−2�p)

)
≡

(
p1

p2

)
, (32)

where the magnitude p is positive. In the absence of stress
or any other external SBFs, the orientation of �η is pinned at
θ = �p near the superconducting Tc.

As discussed in the Introduction, the pinning effect is ro-
bust up to room temperature. Therefore we find it reasonable
to model the �p as essentially a given background, independent
of temperature, near the superconducting Tc (≈3 K). While

�p may itself depends on the applied stress, one can formally
expand

�p(�ε) = �p(�ε = 0) + · · · (33)

and the higher order terms merely renormalizes the GL coef-
ficients.

To our knowledge, the reported twofold anisotropy always
aligns with a lattice direction in all known cases [14,17–19].
We therefore conjecture that the pinning field, whatever it may
be, breaks the lattice symmetry by favoring one of the three
twofold axes in the Bi2Se3 structure.

The twofold axis of Hc2 in transverse field at zero applied
stress can be identified experimentally. We can redefine this
twofold direction as the x axis. Following the analysis of [24],
one deduces that the order parameter �η is pinned at either
the (1,0) or (0,1) direction. The (unknown) sign of the GL
coefficient to a certain gradient term determines the correct
choice. The two cases respectively yield

�η ∝ (1, 0), θ = �p = 0, �p ∝ (1, 0); or

�η ∝ (0, 1), θ = �p = π

2
, �p ∝ (−1, 0).

(34)

Now we consider how the system behaves when both the
preexisting SBF �p and the applied stress �ε are present. We will
focus on the split superconducting transition here, i.e., the pair
of upper and middle transitions. To this end, one only needs
to retain the coupling terms at order O(η2). The modified GL
coupling terms reads

Fp = −(g0�ε + gp �p) · �S, (35)

where S is given by (6).
We will define the so-called “total SBF” in the bulk of the

superconductor as

�Pb ≡ g0�ε + gp �p, (36)

with �b the corresponding orientation angle. The GL free
energy under consideration is

F = [α − |Pb| cos (2θ − 2�b)]D + βD2 + · · · . (37)

The ratio gp/g0 is unknown. However, one can always
make �ε ∝ (1, 0) so that it is parallel to �p. Physically, this
amounts to keeping ε2 = −2εxy = 0 while varying ε1 = εxx −
εyy. The the change in magnitude |Pb| is linearly dependent
on the applied ε1.

A. Upper transition

Following (18) and (20), the critical temperature of the up-
per (normal-to-superconducting) transition will show a kink
when one continuously varies the applied stress:

(T1 − T0) ∝ |Pb|. (38)

This behavior is a unique signature of a nematic supercon-
ducting state. If the order parameter is single component, it
cannot couple linearly to either stress or the SBF. One would
expect instead a quadratic dependence:

(T1 − T0) ∝ |Pb|2. (39)

In either case, the minimum of T1 also marks the point where
the twofold direction is tilted by π/2.
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If the kink in (38) can be identified, the predicted sixfold
anisotropy purely due to the lattice should be restored at that
point. This effect can be seen from the specific heat jump,
following (21). Following [24], the upper critical field Hc2

should also exhibit the same sixfold anisotropy. This provides
further verification for the nematic state.

B. Middle transition

The existence of the middle transition is another unique
signature of the nematic superconducting state. Recall that
it is due to the competition between the naturally preferred
alignment of �η and the explicit SBF.

We have been assuming that ηy is the naturally preferred
order parameter, or that the GL coefficient γ2 is positive. The
middle transition exists when the orientation of the total SBF
obeys �b = 0, or �Pb ∝ (1, 0), which is satisfied on only one
side of the |Pb| = 0 kink. The second order phase transition
may in principle be identified by the jump in specific heat (25).

We have made two assumptions here: the natural preferred
direction, and the orientation of the preexisting pinning field
(34). First, it may well be that ηx is the natural preference
instead, but the conclusion that the middle transition exists on
only one side of the |Pb| = 0 kink stands unaltered.

It is trickier if the preexisting �p does not in fact align with a
lattice direction. Should this turns out to be the case, one can
instead apply both nonzero ε1 and ε2, keeping the ratio ε1/ε2

constant. The �b = 0 condition is satisfied by exactly one
value of the magnitude ε, and the middle transition exists only
at that point. Nevertheless, just off that exact value, the sharp
middle transition is smeared into a crossover, and one can still
register a steep increase in specific heat as an experimental
signature.

VII. JOSEPHSON JUNCTION WITH AN s-WAVE
SUPERCONDUCTOR

In this section we change gear slightly and discuss the
phenomenology of tunneling current between a nematic su-
perconductor and an s-wave superconductor. As pointed out
by Yip et al. [43], one may write down the effective Hamilto-
nian of a junction purely based on symmetry considerations,
in the same spirit of the GL theory. The behavior of the
critical current then reflects the symmetry of the nematic order
parameter. Here the implicit assumption is that the interface
itself has spin-orbit coupling [52] so as to allow a tunneling
supercurrent.

The theory for Josephson tunneling between two s-wave
superconductors was worked out in the classic paper by Am-
begaoker and Baratoff (AB) [53]. For a junction between two
different s-wave superconductors, right below the lower of the
two critical temperatures, the critical current is proportional to√

Tc − T , and shows no strong stress dependence. In this sec-
tion we explore how the proposed nematic superconducting
state gives rise to qualitative differences.

We consider the scenario where an s-wave superconductor
(with a much higher Tc) is attached to the MxBi2Se3 sam-
ple being tested. The surface contact of the sample is cut
perpendicular to the z axis. We assume that the junction is
in the tunneling limit.

The twofold rotation C2
′ (and space inversion) in the orig-

inal D3d group is no longer a valid symmetry on the surface
of contact. We will denote the reduced symmetry group as
G. The junction coupling term in the effective Hamiltonian
respects G, and of course the U (1) gauge symmetry.

The s-wave superconductor is described by a complex
scalar order parameter � = eiχ |�|. We make the gauge choice
so that the order parameter �η is real, and χ represents the
phase difference between the two superconductors.

A. The intrinsic contribution

Let us first discuss the leading order junction term that is
independent of any SBF. One can form G-invariant combi-
nations at order O(η3), but these are not gauge invariant in
their own right, and must be coupled to �. And then the
time-reversal symmetry demands the coupling terms to be
overall Hermitian. The leading coupling term, at O(�) and
O(η3), has the form

F j0 = m0�
∗(ηx S2 − ηy S1) + H.c.

= m0�
∗(�η ∧ �S) + H.c., (40)

where S is defined in (6). The coefficient m0 must be real to
satisfy time-reversal symmetry.

Here we assume that the junction is but a small perturba-
tion to the bulk, and that the system is sufficiently close to
the upper transition. One may therefore use the unperturbed
solution for the nematic order parameter �η. Then the coupling
(40) reduces to

F j0 = −m0|�|D3/2 sin (3θ ) cos(χ ), (41)

where θ is the orientation of the order parameter �η in the bulk.
The supercurrent across the junction can be identified [43]

as 2 (∂F j0/∂χ ). The factor of 2 is due to that the order
parameters in the GL theory describe Cooper pairs. Using also
the fact that D ∝ |α| just below the upper transition, one can
identify the critical current across the junction:

Ic0 ∝ (T1 − T )3/2| sin 3θ |. (42)

In the hypothetical case where no SBF is present, (42) is the
only contribution to the critical current. Our default scenario
is that ηy is naturally preferred, or that θ = π/2 here. Then
(42) shows a 3/2 power-law temperature dependence that is
markedly different from the AB theory. The other scenario is
that θ = 0, and tunneling is completely disallowed, again a
drastic departure from the AB theory. When the total SBF in
the bulk �Pb is nonvanishing, θ = �b in the immediate vicinity
of the upper transition.

B. The SBF-assisted contribution

The quantity S can be replaced by any SBF to yield an in-
variant coupling term. Here we will impose both a preexisting
�p and an applied stress �ε. The coupling term is thus

F j1 = �∗ �η ∧ (mp �p + mε�ε) + H.c. (43)

Again, mp and mε are real by time-reversal invariance.
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Unfortunately, the ratio mp/mε is not necessarily the same
as g0/gε. One defines another “total” SBF for the junction:

�Pj ≡ mp �p + mε �ε, (44)

which is in general not aligned with �Pb in the bulk.
Let � j be the orientation angle corresponding to �Pj . Again

using the bulk solution for �η, (43) becomes

F j1 = −�∗|Pj |
√

D sin(θ + 2� j ) cos χ. (45)

For a nonzero |Pj |, (45) is dominant in the immediate
vicinity of the upper transition, where D is still small. Taking
this limit, the critical current is

Ic1 ∝ |Pj |(T1 − T )1/2| sin(θ + 2� j )|. (46)

If �ε and �p are not aligned, the angles �b and � j are
different in general. This critical current therefore shows a
twofold anisotropy as one rotates the stress, and has the
conventional square-root dependence on temperature. At first
sight, this tunneling current may seem indistinguishable from
that of the anisotropic s-wave scenario, but there are still
some dramatic signatures that are direct consequences of the
nematic superconductivity.

C. Experimental signatures

At zero applied stress and nonvanishing preexisting pin-
ning field, one has θ = �b = � j = �p. We proceed to dis-
cuss the two cases in our conjecture (34) separately.

If �p = 0, then at zero applied stress, both Ic0 and Ic1

vanish, and there is no tunneling current allowed. An applied
stress at a generic direction tilts both θ = �b and � j , and
turns on the tunneling current.

Alternatively, one keeps ε2 = 0 and applies a nonzero ε1

as proposed in the previous section. �b and � j go from 0 to
π/2 as �Pb and �Pj crosses zero, respectively. While this change
in � j does not affect the critical currents, the change in �p

switches on the tunneling current from zero.
On the other hand, if �p = π/2, tunneling current without

applied stress is initially nonzero. One again applies ε1 while
keeping ε2 = 0. When �Pb crosses zero, the tunneling current
is switched off.

Additionally, if one finds a region where �Pj ≈ 0 while
�b = π/2, then F j1 is anomalously suppressed by the fine
tuning of the applied stress, and the critical current will instead
show the 3/2 power-law temperature dependence of Ic0.

The above treatment amounts to the direct coupling of
the two superconducting bulks. This is admittedly an over-
simplification: for unconventional superconductors, surface
depairing may occur depending on the exact detail of the gap
function [54]. The extent of this surface effect is dictated by
the coherence length. Therefore, near Tc when the coherence
length is large, surface depairing may substantially suppress
the tunneling current; the overall temperature dependence will
then have a higher power [38,55] than our simple prediction
of 3/2. Nonetheless, the temperature dependence is clearly
distinct from the s-wave-to-s-wave case.

D. �η in Eg representation

As advertised in the Introduction, if �η is instead even under
space inversion, i.e., in the Eg representation, the results in
this section need minor modifications. This stems from the
fact that M, the mirror reflection about the yz-plane, acts
differently on Eu and Eg. The coupling terms F j0 and F j1

becomes

F j0
′ = m0�

∗(�η · �S) + H.c.,

F j1
′ = �∗ �η · (mp �p + mε�ε) + H.c. (47)

The upshot is that sines are to be replaced by cosines in both
Ic0 and Ic1:

Ic0
′ ∝ (T1 − T )3/2| cos 3θ |,

Ic1
′ ∝ |Pj |(T1 − T )1/2| cos(θ + 2� j )|. (48)

The experimental signatures proposed above are still avail-
able, but all angles involved are shifted by π/2. Without an
applied stress �ε, now tunneling current is forbidden at �p =
π/2, and a nonzero �ε that tilts �Pj away switch on the current.
On the other hand, �p = 0 initially allows a tunneling current
that can be switched off by reversing �Pj . The temperature
dependence of Ic0 can be observed by having �b = 0 and
|Pj | ≈ 0.

VIII. CONCLUSION

In this paper we explore the coupling between the two-
component superconducting order parameter �η and the (trace-
less part of) stress �ε in the basal plane, and map out possible
phase diagrams allowed by symmetry constraints. Indeed the
analysis is not restricted to mechanical stress: any SBF must
couple in a similar manner. In later sections we consider the
the case where there are a preexisiting pinning SBF in the
sample, and an applied stress as an experimental probe.

In the presence of a SBF, we found that the superconduct-
ing transition splits into two (upper and middle transitions),
and there may be another phase transition at an even lower
temperature (lower transition), depending on the values of GL
coefficients.

The critical temperature (20) of the upper transition does
not show any anisotropy, but a sixfold anisotropy for the
specific heat jump (21) is predicted as the SBF is rotated.
The physics behind is similar to the theoretical angular depen-
dence of upper critical field discussed in the literature [22–24].

The middle transition only exist when the SBF is aligned
along � = 0; the sharp transition becomes a crossover if the
alignment is not exact. We give formulas for the transition
temperature (24) and specific heat jumps (25). As the middle
transition is connected to the superconducting transition with-
out a symmetry breaking field, we expect that these results
from our GL theory are still quantitatively accurate.

The same cannot be said for the lower transition, which
is not connected to the superconducting transition without
a SBF. The assumption that GL coefficients are tempera-
ture independent may no longer be a quantitatively accurate
approximation, and we focus our effort on the qualitative
results. The existence of a lower transition hinges on the
criterion (19). It is first order almost everywhere, except when
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� = π/6 and ε > εc it becomes second order. The critical
value εc is given in (29).

The observed twofold anisotropy of Hc2, and the robust
pinning of the twofold direction over many cycles, suggest
that a preexisting pinning field explicitly breaks the rotational
symmetry in the sample. We discuss how, at leading order in
GL theory, the pinning field and an externally applied stress
combine to form a “total” SBF felt by the sample. By varying
the applied stress, one gains access to different regions of the
three-dimensional phase diagram worked out above.

We point out two thermodynamics experimental signatures
unique to the nematic state. First, the superconducting critical
temperature is linearly proportional to the strength of the
total SBF, as given in (38), as opposed to the quadratic
relation if the order parameter is single component. Second,
the existence of the middle transition, and the associated finite
crossover even if the total SBF is not exactly tuned to the right
orientation, can be observed through calorimetry experiments.

When linked to another s-wave superconductor, the
Josephson tunneling current also offers hints to the supercon-
ducting pairing symmetry. We discuss how an applied stress

can switch the tunneling current on and off if the super-
conducting order parameter is indeed nematic. The unusual
(T1 − T )3/2 temperature dependence of critical current Ic0

(42) may also be seen in experiment if the required conditions
are met. None of these peculiar behaviors can be seen if the
superconductivity of MxBi2Se3 turns out to be s wave.

We hope our findings here will guide future experimental
effort in discerning the pairing symmetry of the Bi2Se3 family
of superconductor, thereby helping to settle the debate on the
topological nature of the superconductivity.
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