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Chains of superconducting circuit devices provide a natural platform for studies of synthetic bosonic
quantum matter. Motivated by the recent experimental progress in realizing disordered and interacting chains
of superconducting transmon devices, we study the bosonic many-body localization phase transition using
the methods of exact diagonalization as well as matrix product state dynamics. We estimate the location of
transition separating the ergodic and the many-body localized phases as a function of the disorder strength
and the many-body on-site interaction strength. The main difference between the bosonic model realized by
superconducting circuits and similar fermionic model is that the effect of the on-site interaction is stronger
due to the possibility of multiple excitations occupying the same site. The phase transition is found to be
robust upon including longer-range hopping and interaction terms present in the experiments. Furthermore, we
calculate experimentally relevant local observables and show that their temporal fluctuations can be used to
distinguish between the dynamics of Anderson insulator, many-body localization, and delocalized phases. While
we consider unitary dynamics, neglecting the effects of dissipation, decoherence, and measurement back action,
the timescales on which the dynamics is unitary are sufficient for observation of characteristic dynamics in the
many-body localized phase. Moreover, the experimentally available disorder strength and interactions allow for
tuning the many-body localization phase transition, thus making the arrays of superconducting circuit devices a

promising platform for exploring localization physics and phase transition.
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I. INTRODUCTION

Superconducting circuits, specifically arrays of supercon-
ducting transmon devices (Fig. 1), are a promising platform
for quantum simulation. Transmon is a weakly anharmonic
oscillator made of Josephson junctions and capacitors. How-
ever, scatter in circuit parameters, such as on-site energy and
interaction strengths, is inevitable in the process of fabrication
and hinders their applications [1]. Parameters of different cir-
cuit elements can be made also in situ tunable with microwave
and magnetic flux controls, and disorder can be removed.
This tunability requires extra junctions [2], engineered cou-
plers [3], and control lines, which all add to device, char-
acterization, and measurement complexity. Moreover, these
ingredients add decoherence and dissipation and thus are not
the most advantageous methods for large arrays.

The presence of intrinsic disorder suggests that transmon
arrays can be a natural platform to study physics emergent
from interplay between disorder and interactions. Sufficiently
strong disorder may lead to a many-body localized phase—a
stable phase of matter characterized by the breakdown of ther-
malization [4-6]. Many-body localized systems are charac-
terized by a logarithmically slow entanglement spreading [7]
and relaxation to a nonthermal state that retains memory of
initial conditions. This is in contrast to ballistic spreading of
entanglement in thermalizing systems that achieve thermal
equilibrium and lose memory of the initial state [8]. The char-
acteristic slow dynamics of the many-body localized phase
makes it a prospective target for quantum simulators that are
characterized by slow loss of coherence [9-11].
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Many-body localization is an active research field at the
intersection of nonequilibrium quantum dynamics, quantum
thermalization, condensed matter physics, quantum informa-
tion, computational physics, and other fields [4—6]. The major
focus of earlier studies was on localization in one-dimensional
systems with the two-dimensional local Hilbert space. Spe-
cific examples of such systems include interacting spinless
fermions [12-14], spin-1/2 chains [15-19], and hard-core
bosons [20] on one-dimensional lattices. In contrast, localiza-
tion in bosonic systems received relatively little attention, with
an exception of a few works [21-26]. The bosonic systems are
more challenging for numerical studies [23], since the size
of the local Hilbert space in a bosonic model with particle
conservation is limited only by the total number of excitations
in the system. This implies that the scaling of the total Hilbert
space with system size heavily depends on the filling fac-
tor. Furthermore, as we show below, the disorder-dependent
asymmetry in the density of states presents additional compli-
cations.

Recent research considered interacting microwave pho-
tons in disordered [27,28] and clean [29,30] superconducting
circuit chains as well as bosonic Rb atoms in optical lat-
tices [31-33] and demonstrated that bosonic systems provide
good experimental platforms to study many-body physics.
Motivated by this experimental progress with bosonic syn-
thetic matter, we study here a chain of superconducting trans-
mon devices (Fig. 1) realizing a disordered Bose-Hubbard
model with attractive interactions [29,34] (Sec. II).

After introducing the model, we proceed with numerical
calculation of the phase diagram, identifying the location of
the phase transition that separates ergodic and many-body
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FIG. 1. Schematic of a transmon chain realizing the Bose-
Hubbard model with attractive interactions. A transmon is made of
Josephson junctions (black crosses) and capacitor plates (blue rectan-
gles). Transmons are anharmonic oscillators with natural frequency
o and anharmonicity U and they interact with each other through ca-
pacitive interaction J. Nonidentical sites visualize fabrication scatter
and disorder.

localized phases as a function of disorder strength and in-
teractions (Sec. III). In addition, we consider experimentally
relevant longer range hopping and interaction terms in the
Hamiltonian and study their effect on the many-body localiza-
tion phase transition. Crucially, we demonstrate that the phase
transition stays within the experimentally accessible range of
parameters in the transmon chains.

In the second half of the paper, we consider time dy-
namics of local observables after a quench from an initial
product state (Sec. IV). We show that the fluctuations of
local observables can be used to experimentally distinguish
between the dynamics of Anderson insulator, many-body
localization, and delocalized phases on the experimentally
accessible timescales. In other words, temporal fluctuations of
local observables can serve as an alternative to the challenging
measurement of the entanglement dynamics in a quantum
quench [33,35]. Finally, we conclude with discussing future
directions and possible effects arising from dephasing, dissi-
pation, and measurement back action (Sec. V).

In addition to our two main results, the phase diagram of
the bosonic Hubbard model and dynamics of local observ-
ables, our work extends the numerical methods for studies
of many-body localization to bosonic systems. We utilize
methods of exact diagonalization for solving eigenstates
and resolving the phase diagram. Dynamics are performed
using Krylov subspace methods [36] as well as time evolving
block decimation [37], which is a Trotter-based evolution
scheme for matrix product states [38]. As bosonic systems
are rather an untrodden path in the context of numerics
of interacting and disordered systems, we also present
details on the used numerical methods and their scalability
(Appendixes A-D). In particular, we discuss the combination
of the LDL matrix decomposition and the stochastic
Chebyshev series expansion [39] for efficient estimation
of the density of states without solving the full energy
eigenvalue spectrum.

II. TRANSMON ARRAY

Transmon is a weakly anharmonic electric oscillator
with natural frequency w = (/8EcEyxy; — Ec)/h made of ca-

pacitor plates that set the capacitive charging energy Ec
and Josephson junctions that act as a weakly nonlinear
inductor [2,40], setting the total Josephson energy Eyj. In
the transmon regime, the Josephson energy dominates over
the charging energy, characterized by the ratio Ex;/Ec, in the
range of 25-100. In this work, we are interested in probing
many-body dynamics in a chain of transmons. The transmon
chain is schematically depicted in Fig. 1, assuming transmons
with a three-dimensional (3D) architecture [34,40] placed in
a 3D cavity or a waveguide (not shown). The 3D architecture
offers benefits in terms of low dissipation and decoherence
rates as well as versatile geometric options in coupling of
the transmons. In contrast, transmons with a two-dimensional
(2D) architecture coupled to 2D cavities made on coplanar
waveguide resonators [27,30] have very accurate, fast, and
developed measurement and controlling schemes. However,
both architectures are essentially similar from the point of
view of unitary many-body dynamics.

Given the recent experimental demonstrations with chains
and clusters of 10-20 superconducting qubits [27,30,41,42],
the arrays are expected to reach 10-100 sites in the near
future. Transmons interact with each other via capacitive
dipole-dipole interaction J, whose strength can be tailored
from 10 to 100 MHz by changing the orientation and size of
transmon capacitors [29,34]. The interaction strength should
be compared with the dissipation and decoherence rates of the
state-of-the-art devices [40,43—48]. The decoherence rates I'»
range from 10 kHz in 3D architecture transmons to 25 kHz in
2D architecture transmons. Similarly, the dissipation rates I'y
range from 2 to 5kHz in 3D and 2D architectures, respec-
tively. Almost three orders of magnitude difference between
the interaction strength and dissipation and decoherence rates
yields an ample time frame of unitary many-body dynamics
before disruptive dissipation and decoherence effects become
important.

In quantum computing applications, one uses the trans-
mon anharmonicity U = Ec/h in the order of a few
100 MHz [40,49] to turn transmons into effective two-level
systems [50]. However, in the quantum simulations of the
many-body physics, the higher energy levels and their bosonic
excitation statistics can be accessed. In this case, the an-
harmonicity acts as an on-site interaction between bosonic
excitations. Superconducting transmon devices can be easily
driven with single-site accuracy, offering a possibility to study
driven-dissipative dynamics [51]. Furthermore, superconduct-
ing qubit readout can be made almost perfectly quantum
nondemolition [52,53], offering a possibility to explore many-
body dynamics and entanglement phase transitions [54-59]
under continuous repeated or variable strength [60] measure-
ments.

In this section, we introduce the nondisordered Bose-
Hubbard model realized by a chain of identical trasmons.
In addition, we discuss additional terms present in the
Hamiltonian—the longer range and higher order multiparticle
interactions as well as transmon-specific disorder potential.
As our main focus lies in many-body localization induced
by the presence of strong disorder, we continue by discussing
different ways to realize in sifu tunable disorder and calculate
the resulting many-body eigenspectrum.
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TABLE I. Experimentally relevant values for the parameters in
the disordered Bose-Hubbard Hamiltonian (8). The dimensionless
ratios are in the range U/J = 2-30 and W/J = 0.1-200 [27,29,30],
which we demonstrate to be sufficient for tuning the many-body
localization phase transition.

Parameter Symbol Value
On-site energy w/2n 5-10GHz
On-site interaction U/2n 200-300 MHz
Hopping J/2m 10-100 MHz
Disorder amplitude W/2n 10 MHz-2 GHz
Transmon asymmetry d 0.1

A. Clean Bose-Hubbard model

One-dimensional array of L identical transmons (Fig. 1) is
described by the attractive Bose-Hubbard model [27,29,30]

L L
. U
Heu/h =) why—» e = 1)
=1 =1
L-1
+ ZJ(%&ZH + &zﬁLl)» )]

=1

where @, and & are the bosonic annihilation and creation
operators of the site £, [a,, &Z] =8¢k, and 7y = &z&e is the
corresponding number operator. In the many-body language,
the natural frequency w corresponds to the on-site energy,
capacitive dipole-dipole interaction J is interpreted as the
nearest-neighbor hopping between adjacent sites, and the
anharmonicity U = Ec/h serves as the on-site interaction.
The Hamiltonian (1) conserves the total number of excita-
tions since it commutes with the total occupation operator
N = ZL, 7i¢. It is therefore sufficient to study only a single
subspace of the Hamiltonian with a fixed total number of
excitations N. Here we focus mainly on the chain at half-
filling, i.e., N = L/2, with filling factor f = N/L = 1/2. The
experimentally relevant parameters are summarized in Table I.

We note that the on-site interaction is attractive. It
stems from the cosine potential of the Josephson junctions,
Ej cos[/2Ec/Exy(a + a')], that softens as a function of the
excitation number. The anharmonic term U = E¢/h is the
lowest order correction to the harmonic potential, and as the
occupation number increases one has to take into account also
higher order corrections, the first of such being

L

N U
un/h="Y 2 hu(he = Dl = 2). @)
(=1

Here, the higher order anharmonicity, which is repulsive with
U, /2w in the range 10-30 MHz, effectively reduces total an-
harmonicity of the transmon. The cosine potential also implies
that there exists a finite number of bound states [61-63],
denoted as the transmon states, whose total number per site
is approximately «/Ej/Ec. Because the excitations in this
system are bosons, there is a possibility that they all occupy
the same site. These facts introduce a theoretical upper limit
for the validity of our model. Depending on the parameters,
only \/Ey/Ec ~ 10 lowest states of each transmon are bound.

Higher occupations on single sites break the Bose-Hubbard
approximation, limiting the validity of our model to roughly
20 transmons at half-filling.

In addition to the nearest-neighbor interaction, in realis-
tic systems there exists also longer range tunneling process
between sites further apart. Tunneling between next-nearest
neighbors is described by term

L-2
Aig/h= " Dh@a,, +a,al,). 3)
(=1

The next-nearest neighbor hopping is typically weak com-
pared to the nearest neighbor hopping, J, ~ J/10 [29]. Notice
that the additional perturbations of Eqs. (2) and (3) also
conserve the total number of excitations.

At zero temperature, the clean Bose-Hubbard Hamilto-
nian (1) can undergo a phase transition between the Mott-
insulating and superfluid phases [64]. This is a ground-
state phase transition studied in the repulsive Bose-Hubbard
model. In this work, we are interested in the highly excited
or infinite-temperature eigenstates of the attractive Bose-
Hubbard model. Therefore, it is important to understand the
structure of the many-body eigenspectrum and especially how
it is affected by the on-site interaction U. We show the full
energy spectrum of Eq. (1) with L = 10 at half-filling in
Fig. 2 for three values of the on-site interaction U/J = 0 (a),
3.5 (b), and 20 (c). When discussing the energies of excited
many-body eigenstates (shown in Fig. 2 as horizontal lines),
it is often convenient to consider the normalized energy

€ = ﬂ e [0, 1], 4)
Emax - Emin
where Eni, and E,y are the smallest and largest eigenvalues
of the Hamiltonian in the studied sector and E € [Ewin, Emax]
is an arbitrary energy eigenvalue.

In the absence of on-site interaction U, the Bose—Hubbard
Hamiltonian describes a chain of coupled harmonic oscilla-
tors. This system has a symmetric spectrum [Fig. 2(a)], but
as the anharmonicity is increased in Figs. 2(b) and 2(c), the
symmetry is removed and the eigenstates begin to form mini-
bands. Because of the negative anharmonicity, two excitations
occupying the same transmon have smaller energy than two
excitations on different sites. The lowest energies are obtained
when all excitations occupy the same transmon. This is seen
in the expectation values of the total anharmonicity operator
Zz nig(fig — 1) (black dots in Fig. 2): The larger the expec-
tation value, the more bosons are occupying a single site.
This behavior is visible in Figs. 2(b) and 2(c), showing that
in systems with nonzero U the expectation value decreases
as the energy is increased. In the limit of large U/J, the
minibands are fully formed, the total anharmonicity is con-
served within each band separately, and the nearest-neighbor
hopping interaction weakly lifts the degeneracy within the
bands.

To calculate the many-body spectrum, we utilize exact
diagonalization of Hamiltonian (1). Exact numerical calcula-
tions of many-body quantum systems are very demanding due
to the exponential scaling of the Hilbert space dimension. In
our case, we are interested in L coupled (N + 1)-level systems
with a total Hilbert space dimension D; = (N + 1)*. Because
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FIG. 2. Normalized eigenenergies of the clean (a)—(c) and the
disordered (d)—(f) Bose-Hubbard Hamiltonian at half-filling and L =
10 for anharmonicities U/J =0 (a) and (d); U/J = 3.5 (b) and
(e); U/J =20 (c) and (f). The eigenenergies are scaled as € =
(E — Enin)/(Emax — Emin)- The disorder realization, drawn from a
uniform distribution with the disorder strength W/J = 10, is the
same for each U. Black dots show the expectation value of the
total anharmonicity operator Y, 7,(i, — 1) in the corresponding
eigenstate.

of the conservation of total number of quanta, Hamiltonian
is a block-diagonal matrix where each block is characterized

by a total number of excitations (N) = N. In a system with L
sites, these individual blocks have dimensions

(N+L—-D! [+ A+ ]
(L—DIN! VL ’

where the last form is an approximation in the long-chain
limit with filling factor f = N/L. For a spin chain the size

Dy = )

of a sector with zero total magnetization (the largest sec-
tor) scales approximately as 2%/+/L [65]. In the long-chain
limit, the Bose-Hubbard chain with half-filling scales roughly
as 2.61/+/L, and with unit filling already as 4°/+/L. This
naturally implies that we cannot reach as large system sizes
as used in spin chain studies, where the currently reached
upper limit is L = 24 [65] for exact numerical studies of the
Hamiltonian eigenstates. The largest spin chain studies rely
on massive parallelization on distributed memory machines.
Our simulations use smaller computational resources, but we
are still able to study systems with 14 transmons, which
have Hilbert space roughly comparable to that of spin-1/2
chain with 18 sites. The chain with 16 transmons is already
comparable to 22 spins, so it seems to be the current practical
upper limit for this kind of study.

Technically, in a sector with N quanta, each transmon
needs N + 1 lowest energy levels. One can then construct all
the necessary operators in this desired sector. This can be done
by first building all the possible Fock state configurations in
this sector, i.e., states |n, n2, n3, ..., ny) with 2521 ng=N.
One can then obtain the necessary matrix elements by consid-
ering how the individual operators such as &T&z should operate
on these basis states. The operators are most efficiently imple-
mented as sparse matrices, which is done here with Eigen-
library [66] for C++4-. The resulting Hamiltonian is a sparse
matrix. However, we note that the next-nearest-neighbor inter-
action of Hamiltonian (3) reduces the sparseness and makes
exact diagonalization numerically more demanding problem
than the regular Bose-Hubbard model. For more details of the
exact diagonalization, see Appendix A.

B. Flux-tunable disorder potential

Since our goal is to study the many-body localization phase
transition tuned by disorder, we explore the means to control
disorder amplitude in siru. With transmons, this is possible
via overall magnetic flux tuning [67]. A single transmon can
be made to consist of two parallel Josephson junctions with
energies Ey; and Ej, [2] connected by a loop with a surface
area A; see Fig. 1. In this case, the on-site energy of a transmon
depends on the magnetic flux ® = BA induced by a uniform
magnetic field B threading the loop. Thus, the on-site energy
of a transmon is [2]

8ECE [ ()
w(®) = %\‘/0052 (%) + d? sin® <%>, (6)
0

0

where @y = h/2e is the superconducting flux quantum, Exy =
Ej + Ep is the sum of the junction energies and d =
% ~ %0.1 is the junction asymmetry. We have neglected
the constant term —E¢ /.

The process of multiple transmon fabrication typically
results in a Gaussian distributed variation of the loop areas
A, of the resulting devices. If an array constructed from
these transmons is placed in the external magnetic field,
a Gaussian distributed magnetic flux &, = BA, is induced
in each transmon, which leads to nonuniformly distributed
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FIG. 3. Behavior of the mean energy @ and corresponding stan-
dard deviation oyusmen Of the transmon potential as a function of
magnetic field. The fact that the mean energy (blue curve) is close to
the “middle” energy wmia = (Wmax + @min)/2 (blue dashed curve) at
high magnetic fields suggests that the uniform distribution provides
a good approximation to the true distribution of w;. The standard
deviation (green curve) of the transmon disorder potential of Eq. (7)
as a function of magnetic field also becomes close to the one of
the uniform distribution oyiform = W/ 3 (dashed green curve) for
strong magnetic field. In contrast, weak magnetic fields give the
narrow distribution of transmon energies sharply peaked around the
mean energy. Junction asymmetry is d = 0.1, loop areas are assumed
to be Gaussian distributed with standard deviation 1/5 of the mean A,
and all the values are expressed in the units of unperturbed transmon

energy «/8EcEy;.

on-site energies wy,

SECE BA BA
wy(B) = %\‘/cos2 (u) + d?sin® (ncp E).
0

d 0
(7

The energy is bounded above by wm,x = «/8EcEyx;/h and the
junction asymmetry sets the lower bound wmin = /|d|®max-
Since the energy depends nonlinearly on the magnetic flux,
both the mean energy and the variance of the nonuniform
energy distribution of Eq. (7) can be in sifu controlled with
the uniform magnetic field B, as visualized in Fig. 3.

The resulting distribution of w, is nonuniform, so that
in general the mean energy @ differs from the average of
largest and smallest energy. Nevertheless, the mean energy
is the same for each transmon and has no effect on the
many-body dynamics since it can be removed by switching
to a rotating coordinate system with U = exp(—idt > o).
The random energies are distributed around their mean value
with width 2W = wpax — 0min; see Fig. 3. Thus, we can use
the parameter W as an approximate disorder strength and
assume that the distribution is uniform, w, ~ [—W, W] with
the resulting standard deviation W/~/3.

In Fig. 3, we show that the disorder strength W exhibits
nonlinear growth at weak magnetic field, but it quickly sat-
urates due to the saturation of the minimum energy to value
®min = v/|d]/8EcEsx;. Notice that because loop area is corre-
lated with neither the total Josephson energy nor the charging
energy, in the absence of magnetic field and assuming no

fabrication disorder in junctions, all the transmons are nom-
inally identical. Weak fabrication disorder [34] breaks this
by inducing a lower bound for the attainable experimental
disorder Wy,in /2 & 10 MHz. In practice, however, the exact
form for the disorder potential influences only nonuniversal
details, such as the exact location of the phase transition.
Therefore, in what follows, we use the uniform distribution
instead of the transmon potential due to its simpler form and
to facilitate the comparison with other studies of many-body
localization [15-17,23,68].

C. Disordered Bose-Hubbard model

As discussed above, the on-site energy can be made
strongly disordered by flux tuning. In addition, anharmonic-
ity and tunneling terms can also contain disorder through
fabrication and dependence on the flux-tunable Josephson
energy. We can write the Hamiltonian of the disordered Bose-
Hubbard model as

L L
R X Uy . .
A/n=> ohy -y 7‘;1@(;1,Z — 1
=1 =1
L—1
+ ) Je@fag,, +a.al,,), @®)
=1

and we can also include disordered higher order anharmonic-
ity and next-nearest-neighbor hopping in Eqgs. (2) and (3).
Experimentally achievable parameters for this Hamiltonian
are listed in Table I. The disorder in hopping and on-site
interaction can be drawn, e.g., from a Gaussian distribution.
Because the disorder in the on-site energy reaches much larger
values than is possible for the hopping and on-site interaction,
we mainly focus on the situation where disorder is included
only in the on-site energies wy of Eq. (8).

The many-body eigenenergies of the disordered Bose-
Hubbard model are shown in Figs. 2(d)-2(f). We observe that
the disorder changes the structure of the spectrum from that of
the clean system shown in Figs. 2(a)-2(c). Because sites are
no longer identical, there exists a preferred site with the lowest
on-site energy and the configuration where all excitations
occupy this site gives a good approximation to the ground
state of the system. For sufficiently weak anharmonicity, the
disorder dominates and the expectation value of the total
anharmonicity operator can be large even in high-energy
eigenstates. For strong anharmonicity, minibands of the clean
system start to overlap, and the clean system structure, where
the expectation value of the total anharmonicity operator
decreases with increasing energy, still remains.

D. Density of states

The interplay of disorder and anharmonicity also has im-
pact on the density of states, which varies between different
disorder realizations, as shown in Fig. 4. Especially we note
that the normalized energy at which the density of states has
a maximum depends on the realization, the disorder strength
W and the on-site interaction U. The same behavior is also
observed with the density of states plotted as a function of
energy E rather than rescaled energy €.
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FIG. 4. The density of states p(e) in the disordered Bose-
Hubbard model of Eq. (8) as a function of normalized energy €
for three different disorder realizations with parameters L = 10,
U/J = 3.5, and W/J = 10. The location of the maximum varies due
to interplay of anharmonicity and disorder. The realization 1 (blue)
is the same as in Fig. 2(e).

Since many-body localization is a property of highly ex-
cited eigenstates, the disorder-dependent density of states
introduces an additional complexity. In the most studied
model of the many-body localization, the Heisenberg spin
chain [15,16], the spectrum is symmetric and the density of
states has much weaker dependence on disorder realizations
with a maximum located in the middle of the spectrum (¢ =
0.5). Thus, in that model one can choose some fixed normal-
ized energy and compare the corresponding many-body eigen-
states and their properties (bipartite entanglement entropy,
bipartite number uncertainty etc.) between different disorder
realizations and eventually average the properties over a nar-
row energy window around the fixed normalized energy [15].
However, for the disordered Bose-Hubbard model with suffi-
ciently large many-particle interaction strength U, this is not
possible because the properties of eigenstates obtained this
way would vary too much. For example, in one realization
the many-body eigenstate closest to the fixed normalized
energy € = 0.6 might be close to the maximum density of
states [see realization 3 (black) in Fig. 4] and thus exhibit
infinite-temperature behavior, but in another [realization 2
(green) in Fig. 4] it might correspond to one of the low-lying
eigenstates. Thus, in order to obtain comparable eigenstates,
we instead choose them at the maximum density of states
of each individual realization. This is a physically justified
choice since in the Heisenberg spin chain the many-body
localization transition is known to require the largest disorder
strength in eigenstates located at the maximum density of
states, due to the influence of the neighboring states, which
gives rise to the many-body mobility edge [15]. Similar be-
havior is expected also in the disordered Bose-Hubbard model
of Eq. (8). A downside is that we need at least an estimate for
the density of states, which introduces additional numerical
complexity.

An estimate of the density of states, without solving the
full spectrum of many-body energy levels, can be obtained by
using Sylvester’s law of inertia [39], which requires compu-
tation of LDL matrix decompositions of the Hamiltonian of
Eq. (8). This results in an exact number of energy eigenvalues
within a specified energy interval. If the interval size is suffi-
ciently large, this method produces the density of states more
efficiently than the full exact eigendecomposition. Since we
are not interested in the full shape of the density of states but
just the location of the maximum, the LDL-decomposition-
based method is very efficient. For large systems, however, the
LDL decomposition [essentially scaling similarly as eigen-
decomposition, On?), where n is the matrix dimension, but
with a smaller prefactor] becomes numerically too heavy.
Luckily, accurate and efficient approximation of the number
of eigenvalues within a specified energy interval, and hence
the density of states, can still be obtained with the stochastic
Chebyshev expansion method [39]. This method is efficient
for large systems for two main reasons. First, as a stochastic
method, accuracy can be traded to speed similar to Monte
Carlo methods. Second, important for large systems, this
method is based only on sparse matrix-vector multiplications
instead of matrix decomposition. The details of Sylvester’s
law of inertia, LDL decomposition, and the stochastic Cheby-
shev expansion method are presented in Appendix B.

II1I. PHASE TRANSITION

Generic, isolated, and interacting many-body quantum
systems reach thermal equilibrium in course of their uni-
tary dynamics [8]. The eigenstate thermalization hypothesis
(ETH) provides a microscopic mechanism for thermalization,
by imposing the condition that individual eigenstates of the
many-body system have thermal expectation values of all lo-
cal observables [69,70]. Eigenstate thermalization hypothesis
has numerous implications for the structure of eigenstates. In
particular, it suggests a volume-law entanglement in highly
excited eigenstates.

However, the sufficiently large disorder may lead to the
many-body localized phase that is characterized by the break-
down of thermalization [4,6]. The many-body localized phase
can be viewed as the interacting cousin of Anderson insu-
lator [71]. However, the presence of interactions leads to
qualitatively different properties, in particular allowing long-
distance entanglement spreading in the many-body localized
phase. In addition, by increasing interactions and/or decreas-
ing disorder, one can tune the transition between many-body
localized and thermalizing phases [17].

The many-body localization phase transition is a dynami-
cal phase transition that occurs in highly excited eigenstates.
This transition separates the thermalizing phase where eigen-
states are obeying eigenstate thermalization hypothesis from
many-body localized phase characterized by emergent local
integrals of motion [4,6]. Consequently, one can diagnose
the many-body localization phase transition by observing the
breakdown of eigenstate thermalization hypothesis in highly
excited eigenstates manifested in the scaling of the bipar-
tite entanglement entropy, the bipartite fluctuations of global
conserved quantities, participation ratios of many-body eigen-
states, and distribution of adjacent energy level spacings [17].
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In this section, we characterize the critical disorder strength
W, as a function of interaction strength U at which the
phase transition between the ergodic and many-body localized
phase occurs in the disordered Bose-Hubbard model (8). First,
we introduce the different quantities used to diagnose the
phase transition. Afterward, we present the phase diagram,
discuss the influence of filling factor, and compare our results
to earlier studies.

A. Bipartite entanglement and number uncertainty

The bipartite entanglement entropy between two parts
of the system provides a natural quantity to diagnose the
transition from ergodic to many-body localized phase. For
an arbitrary state |a), one can construct the corresponding
density operator p = |«) («|. We divide the system into two,
left and right, partitions. The density operator for the left part
of the chain (A) is then obtained by tracing out the degrees of
freedom of the right part (B) from the full density operator,

pa = Trp (Jar) {et). ©))

The entanglement between the subsystems A and B is given by
the von Neumann entropy of the subsystem density operator,
defined as

S = —Tra (Paln pa), (10)

and it can be calculated efficiently with Schmidt decompo-
sition [72]. In the ergodic phase, the entanglement entropy
of a typical Hamiltonian eigenstate grows with the size of
the subsystem A—a volume law scaling. In the localized
phase, however, the entanglement scales according to an area
law since eigenstates can be obtained by a quasilocal unitary
acting on a product state [4,6]. The transition between these
two distinct behaviors provides a tool for diagnosing the phase
transition [15,16].

Even though the Hamiltonian (8) conserves the total num-
ber of excitations, the number of excitations within a given
half of the system, determined by the operator

L2

Ry=> . (11)
=1

is not fixed. The fluctuations of N4 can be used as a charac-
teristic measure between delocalization and localization. The
particle number uncertainty is defined through the variance of
the half-system particle number operator Ny,

F = («|N}]e) — (@lf4la)? (12)

and it shows similar behavior as the entanglement entropy in
ergodic and localized phases [15,16,73].

We have studied how the disorder strength W and the
on-site interaction U affect the bipartite entanglement entropy
S and the bipartite number uncertainty F' in different sized
systems for equal bipartition of the transmon chain: Data
for U/J = 3.5 value is shown in Fig. 5. The eigenstate |o)
for which these properties are calculated is selected to be
the one closest to the estimated maximum of the density of
states for each disorder realization. We observe that with weak
disorder both observables scale according to the volume law,
but as the disorder increases the scaling turns to the area

0.4

4.0
™
So2) Y
3.0 I =14 \
0.0
e 50 —45 015

(W - VVC)LI/I//J

0.0
1

FIG. 5. The bipartite entanglement entropy S (a) and the bipartite
number uncertainty F' (b) as a function of the disorder strength
W of uniform disorder distribution for different system sizes L =
8 (blue), 10 (green), 12 (red), and 14 (yellow) with U/J = 3.5. The
eigenstate, for which the properties are calculated, is the one closest
to the maximum density of states. The results are averaged over 4000
disorder realizations, except in L = 14 we have 264 realizations.
Dots denote our data points, and the curves are polynomial fits for
visibility. The standard error is denoted with the error bars, and for
shorter chains they are smaller than the marker size. In the insets,
we present the collapsed data from a finite-size scaling analysis with
the ansatz g[L'/"(W — W,)] without the shortest chain L = 8. With
this value of U, we obtain critical disorder strength W, /J = 8.24 and
scaling exponent v = 1.126 for the bipartite entanglement entropy
and for the bipartite number uncertainty W./J = 9.36 and v = 1.24.

law, which signals the presence of a phase transition from
ergodic to localized phase. For large on-site interaction U,
the eigenstates form the miniband structure, as discussed in
Sec. II. In such a situation, the density of states has several
local maxima, and the selection of the eigenstates is no longer
clear. However, the miniband structure rapidly vanishes with
increasing W for the studied values of U, and therefore it does
not affect the results.

B. Energy level statistics

The bipartite entanglement entropy and bipartite number
uncertainty are properties of the Hamiltonian eigenstates,
but the distinction between ergodic and localized phases is
also visible in the distribution of the energy eigenvalues.
A widely used tool for measuring it is the energy level
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FIG. 6. Average adjacent gap ratio r as a function of the disorder
strength W for different sized systems with anharmonicity U/J =
3.5. The reference values for Gaussian orthogonal ensemble (rgog)
and Poissonian distribution (rpjsson ) are denoted by black horizontal
lines. The results are averaged over 4000 realizations, except for
L = 14, which is averaged over 264 realizations. The eigenvalues
are located at the maximum density of states, and the gap ratio is cal-
culated over 16 adjacent eigenstates from each disorder realization.
The error bars denote the standard error and are in general smaller
than the marker size.

spacing distribution. In the ergodic phase, the eigenvalues are
distributed according to the Gaussian orthogonal ensemble,
while in the localized phase they are uncorrelated and obey
Poissonian statistics [8]. One often considers the adjacent gap
ratio [12,15,17,68]

min[§", §"+D]

) o 1
max[§™, §¢+D]’

13)

where 8V = E, — E,_; > 0 is the energy difference between
a pair of adjacent levels. In the ergodic phase, the average
adjacent gap ratio over n is rgog ~ 0.536, and in the localized
phase rpoisson = 0.386 [74]. We have also studied the distri-
bution of the adjacent gap ratios as a function of disorder
strength around the maximum of the density of states. At weak
disorder, the average gap ratio is consistent with the Gaussian
orthogonal ensemble [74], whereas for strong disorder energy
levels become essentially uncorrelated and the average gap
ratio tends to rpyisson, @S shown in Fig. 6. An estimate for the
transition point can be obtained from the point at which the
lines of different sized systems cross. However, in order to
obtain convergent results for the transition point, one has to
calculate a large number of eigenvalues from each realization,
which makes the adjacent gap ratio computationally much
more expensive than the bipartite entanglement and number
uncertainty for longer chains. For this reason, we have not
used the average adjacent gap ratio in further studies of the
phase transition.

C. Phase diagram

An estimate for the critical disorder strength W, can be
obtained from the data in Fig. 5 by scaling the curves with
corresponding chain lengths and determining the disorder
strength at which the curves cross. Another possibility, the
one that we use, is the finite-size scaling collapse using
ansatz g[L'/"(W — W,)], which collapses the data to a single

05 20 40 6.0 8.0 10.0
U/J

FIG. 7. Phase diagram for the half-filled disordered Bose-
Hubbard Hamiltonian (8) as a function of the on-site interaction U
and the disorder strength W. The transition point is estimated using
finite-size scaling analysis for different sized systems L = 10, 12, 14
for the bipartite entanglement entropy and the bipartite number
uncertainty, shown in Fig. 5. The disorder is included only in the on-
site energy w, and it is drawn from the uniform distribution [-W, W1].
The data points are obtained as an average of the transition points
given by the finite-size scaling analysis on the bipartite entanglement
entropy and the bipartite number uncertainty and the error bars
show the deviation between these two values. The white curve is a
polynomial fit that improves visual clarity.

curve [15,75] (see insets of Fig. 5). We obtain the critical
disorder strength as a function of the anharmonicity U for both
the bipartite entanglement entropy and the bipartite number
uncertainty and use their average as an estimation for the tran-
sition point. The phase diagram shown in Fig. 7 is constructed
from this data. The overall shape of the phase diagram is simi-
lar to the corresponding fermionic system studied in Ref. [68].
However, the maximum critical disorder strength is reached
at much weaker on-site interactions in the bosonic system
compared to the fermionic case. We attribute this behavior to
the fact that the on-site interaction is effectively much stronger
in the bosonic case since the number of excitations per site is
unlimited.

From the point of view of experimentally realizable super-
conducting transmon circuits, the attainable parameter regime
(see Table I) is roughly U/J = 2-30 and W/J = 0.1-200,
yielding that the phase transition occurs within the experimen-
tally realizable parameter range. Furthermore, based on our
additional calculations (not shown here) with experimentally
relevant parameters, the additional perturbations by the higher
order anharmonicity in Eq. (2) and the next-nearest-neighbor
hopping in Eq. (3) do not change the situation and the phase
diagram remains intact within the original error bars. How-
ever, if the next-nearest-neighbor hopping J, is made strong
enough, J, 2 J/5, the transition point shifts toward larger
disorder strengths. This can be qualitatively understood as
an increase in kinetic energy, promoting delocalization [24].
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The higher order on-site interaction U,, on the other hand,
effectively weakens the anharmonicity due to opposite sign.
With sufficiently large values U, = U/3, the higher order
anharmonicity shifts the transition points toward larger U.
Finally, in systems where the disorder is included also in the
hopping and on-site interaction terms, the phase transition
occurs at slightly weaker disorder strengths since the system
is more disordered.

We have also studied the phase transition also for systems
with the transmon disorder of Eq. (7) and observed that the
critical disorder strength corresponds to a somewhat larger
(<J) disorder strength than with the uniform disorder. This
happens because disorder distributions with larger standard
deviations are more effective at localizing the system. Indeed,
in the studied disorder strength range, the uniform distribution
has larger standard deviation than the transmon disorder (mag-
netic field values between 0.01 and 0.3 in Fig. 3). With large
anharmonicities, the on-site interaction starts to dominate, and
the critical disorder strength is within error bars the same for
both disorder distributions.

The increase of the filling factor also increases the crit-
ical disorder strength. We attribute this to the bosonic en-
hancement of tunneling for multiply occupied sites, which
makes the system more robust against localization. We have
performed simulations for small systems (L < 10) with unit
filling and confirmed this behavior. The numerical simulations
with larger fillings are limited to smaller system sizes than in
the half-filled case due to larger total Hilbert spaces, given
by Eq. (5). Because there is no upper limit for the total
number of excitations in bosonic systems, an open question
remains regarding how critical disorder strength behaves at
much larger fillings.

The phase transition was studied experimentally in
Ref. [27], where a chain of nine transmons with two ex-
citations in total was studied through adjacent energy gap
and participation ratios. They used quasiperiodic potential
wy = Acos(2m L), where A is the disorder strength and 8
is an irrational number. Notice that the quasiperiodic potential
with the disorder strength A has standard deviation A/~/2.
Thus, when using standard deviation as a disorder measure
the quasiperiodic potential is more random than the uniform
disorder with disorder amplitude W = A and standard devia-
tion A/+/3.For U/J = 3.5, Roushan et al. in Ref. [27] found a
phase transition at A /J ~ 2, which corresponds to W/J = 2.5
for the uniform potential when the mapping is done through
equal standard deviations between the two distributions. Such
a small disorder strength compared to our phase diagram is
explained partly by the small filling factor and partly by the
more disordered potential.

IV. DYNAMICS

All the eigenstate measures of localization that we have
presented so far (eigenstate bipartite entanglement entropy,
bipartite number uncertainty, and average adjacent gap ratio
in Figs. 5 and 6) are shared between the phases of Ander-
son localization and many-body localization. The distinction
between the two phases of localization as well as between
the localized and ergodic phases can be observed in several
dynamical properties, some of which are available also for

experiments on superconducting circuits. In this paper, we
consider only unitary dynamics. We utilize exact eigende-
composition only for the shortest system L = 8, and for the
larger systems L = 10, 12, 14 the unitary time evolution is
calculated through Krylov subspace methods; see Appendix C
for details. Furthermore, we simulate the time evolution for a
long chain of L = 40 transmons to confirm that the results are
properly saturated in the system size and exhibit no boundary
effects. The long chain simulations are performed using time-
evolving block decimation scheme for matrix product states,
detailed in Appendix D.

Dissipation and decoherence are always present in su-
perconducting circuits, and they are expected to eventually
destroy the many-body localized phase [76-78]. However, due
to long relaxation and coherence times of modern transmons
(Th ~ 60 us and T, =~ 20 us) [40], the system dynamics re-
main unitary to relatively long times, about 10 us. Based on
our simulations, this is sufficient for observing the distinct
behaviors of all three phases.

A. Dynamics of bipartite entanglement entropy

Let us start by considering the quench dynamics under the
disordered Bose-Hubbard Hamiltonian of Eq. (8). We perform
the time evolution of the nonentangled initial state |y) and
measure the dynamics of the entanglement entropy S(¢). Our
choice for the initial state is a Néel-type of state [101010...)
studied also in experimental setups [41]. The dynamics of
the bipartite entanglement entropy S(¢t) for different sized
systems is shown in Figs. 8(a) and 8(d). Our main interest is
in the differences of the dynamical behavior in the many-body
localized, Anderson localized, and ergodic phases.

At strong disorder in Fig. 8(a), the early dynamics of
the bipartite entanglement entropy S(¢#) for the interacting
(many-body localized) and noninteracting (Anderson local-
ized) systems are similar, that is, they both initially exhibit
similar rapid growth of entanglement. However, for the in-
teracting system, the information spreading does not stop
after reaching the length scales of the localization length but
instead continues at much smaller rate than initially. This
logarithmic growth of entanglement at long times is caused
by the interaction-induced dephasing [7,16,18,19,79] present
only in the many-body localized phase. The interacting sys-
tem eventually equilibrates, but not to the canonical ensem-
ble [5,80]. Thus, in the many-body localized phase there exists
two distinct regions in time evolution. During the first one,
the excitation quanta explore the surrounding region within
the localization length. After this, they start to slowly dephase
with other particles further apart, which leads to the described
long-time behavior.

At weak disorder in Fig. 8(d), information rapidly spreads
and eventually reaches thermal equilibrium as expected in
the ergodic phase [8]. The entanglement entropy S(#) has a
ballistic growth and saturates to a value that obeys the volume
law [81] [inset of Fig. 8(d)]. After the saturation and thermal
equilibration, local observables are determined by canonical
ensemble [5,36]. In the Anderson localized phase at U = 0
[dashed line in Fig. 8(a)], the dynamics is constrained within
the localization length and the entanglement entropy saturates
to a much smaller value than in the ergodic phase. This
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FIG. 8. The bipartite entanglement entropy S(z) [(a) and (d)], the temporal number fluctuation 7., (z) of even sites [(b) and (e)], and
the two-site number correlations C,.(¢) [(c) and (f)] as a function of time ¢. The dynamical probes are calculated for interacting system with
U/J = 3.5 (solid lines) for system sizes L = 8 (blue), 10 (green), 12 (red), 14 (yellow), and 40 (purple), and for the noninteraction situation
U/J = 0 with L = 12 sites (dashed red line). The disorder distribution is uniform, and panels (a)—(c) correspond to strong disorder W/J = 15
and panels (d)—(f) to weak disorder W/J = 1. Results for system sizes L < 12 are averaged over 2000, for L = 14 over 1000, and for L = 40
over 500 disorder realizations. For L = 40, additional truncation of on-site Hilbert space was applied with maximal occupancy limited to
Nmax = 4 for W/J =1 and ny,, = 3 for W/J = 15, which is justified by the dilute initial state and rather short evolution times. Shaded
regions depict the standard errors of the disorder averages. In panels (c) and (f), the yellow dots depict the points at which the corresponding
correlations reach the predetermined reference value (dashed horizontal line). The insets in panels (d) and (e) describe the equilibrium values
of the corresponding observables as a function of system size. Note also the different time scales in left and right columns.

saturation value depends on the localization length and is
independent on the system size (not shown here). Anderson
localized systems never reach thermal equilibrium within the
whole system [80].

B. Dynamics of on-site number fluctuations

The entanglement entropy provides a good measure for
identifying the many-body localized phase, and recent exper-
iments with optical lattices [33] and trapped ions [35] have
demonstrated that it can also be measured without mapping
the full density matrix. We expect that similar schemes can
be extended also to superconducting circuits. However, it
is still beneficial to study simple observables that require
measurements of only a few local expectation values and show
the distinction between the three phases. Such observables are

more accessible in experiments. One possibility is to study
temporal fluctuations of local observables [82,83]. We con-
sider here dynamics of fluctuations for the number operator
1, of the site £, defined as

To(t) = ([{Ae(@)) — Ael*)a,

where (-)q denotes average over disorder realizations. The
fluctuations are measured with respect to a steady-state, equi-
librium value defined here as a long-time average

(14)

t

i, = lim 1 (fe(7)) d. (15)

t—oo t 0
For additional convergence, we have averaged the temporal
fluctuations over even and odd sites separately, and denoted
these averages as Teyen(r) and Toqa(t), but the results are
similar also for individual sites. Fluctuations averaged over
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even sites are shown at strong disorder in Fig. 8(b) and at
weak disorder in Fig. 8(e). At weak disorder, only results from
the exact diagonalization are shown, since the time-evolving
block decimation is restricted to short times and thus the
long-time average is not accessible. Experimental advantage
of this measure is that it requires only measurement of a
single site or few sites and it can be achieved in high precision
with superconducting circuits through dispersive readout that
naturally measures transmon occupation (;) [84].
Monitoring temporal fluctuations of a local operator can
be seen as a measure for attainable volume that an initial ex-
citation can explore. In Anderson localized systems, temporal
fluctuations never vanish [83] since the effective volume is
strictly limited by the localization length, seen in Fig. 8(b)
(dashed line). In the many-body localized phase, after tran-
sients, the fluctuations decay as the power law [Fig. 8(b)]

To(t) < 177, (16)

being a signal that after the initial buildup of the wave function
the effective volume is slowly expanding [82,83]. Curiously,
there is a clear distinction at later times between the power-
law-like decay in the many-body localized phase and the
saturation in the Anderson localized phase, but this distinction
becomes visible roughly one order of magnitude later than
in the bipartite entanglement entropy. In the thermal phase
[Fig. 8(e)], we observe a rapid decay of the fluctuations until
saturation to a value that depends on the system size as e~%",
where a is some positive constant [inset of Fig. 8(e)].

C. Dynamics of two-site correlations

Finally, we study the propagation of information using
two-site number correlations [80,83]. For two sites separated
by distance r, the correlations are defined as

Cor (@) = ([(AeOhgsr (1)) — (Ae(0)) (Aeqr(O))a- (A7)

In order to improve convergence, we average over each pair
with fixed separation r to obtain the distance-dependent cor-
relation C,(¢),

1
Ct) = 7— > Cer(), (18)
14

where L — r is the number of r separated pairs in chain of
L sites. The conclusions are similar also for individual pairs.
Experimentally, this might be more challenging to measure
than the temporal fluctuations due to the limited ability to
access the two-site correlation functions.

The time evolution for the four nearest correlations C; (1) —
C4(t) is shown in Fig. 8(c) for strong disorder for different
system sizes. In Fig. 8(f), we display the weak disorder case
for L = 40 and additional longer range correlations. In both
figures, we have also displayed a reference value (dashed
horizontal line) for monitoring the development of nearest
correlations C;(t) — C4(¢) in different phases. In the thermal
phase, the correlations first develop between adjacent sites and
spread to more distant pairs at constant velocity; i.e., the peaks
of the correlations are linearly spaced in time. Similarly, the
correlations reach the reference value at equidistant times. The
height of the peaks decays exponentially with the distance r,
which implies exploration of finite fraction of Hilbert space up

to Lieb-Robinson bounds [85]. After rapid initial dynamics,
the correlations saturate to values inversely proportional to the
system volume. The equilibrium values are all of the same
magnitude.

In the localized systems, the correlations first increase
rapidly. After the localization length is reached, the corre-
lations in the Anderson localized system saturate to a value
inversely proportional to the separation of the pairs. Saturated
values are independent on the system size (not shown), and
there is a difference of several orders of magnitude between
different distances. In the many-body localized system, the
correlations instead continue to grow at much smaller rates
than initially. Because of this slow growth, the reference
value for correlations at different distances is reached at
logarithmically spaced times, revealing a logarithmic light
cone. On the other hand, in the Anderson localized systems,
the correlations never reach the reference value due to the
saturation.

In summary, we conclude that the interacting and strongly
disordered system resulting many-body localization is clearly
distinguishable from that of noninteracting and ergodic phases
by the presented dynamical probes shown in Fig. 8. Impor-
tantly, this dynamical distinction between the phases occurs at
experimentally feasible timescales 0.1-10 us [horizontal bar
in Fig. 8(a)] set by the decoherence and dissipation rates of
the modern superconducting ciruits.

V. CONCLUSIONS

In this work, we have numerically studied the many-body
localization phase transition in the attractive Bose-Hubbard
Hamiltonian using the methods of exact diagonalization as
well as matrix product state dynamics. Such systems can
be experimentally realized with arrays of superconducting
circuits, and our purpose was to produce results that could be
verified experimentally with currently available technology.
The distinct features of many-body localization are visible
in systems with a minimum of eight transmons, as shown in
Fig. 8, although similar signatures can be observed already
with six sites.

The bipartite entanglement entropy, bipartite number un-
certainty, and adjacent gap ratio of the Hamiltonian eigenpairs
exhibit ergodic behavior at weak and localized behavior at
strong disorder. Using finite-size scaling analysis, we have
obtained an estimate for the critical disorder strength as a
function of the transmon anharmonicity and constructed the
ergodic-many-body localized phase diagram for the attractive
Bose-Hubbard Hamiltonian (Fig. 7). The phase transition
occurs at experimentally feasible parameters and it is robust
against higher order on-site interactions and longer range
tunneling. The eigenstates were taken at the maximum den-
sity of states, which, due to the anharmonicity and bosonic
nature of the system, is heavily dependent on the Hamiltonian
parameters as well as on the disorder realization. Thus, in
order to study comparable eigenstates, we had to estimate the
density of states for each realization. For smaller systems, this
was done with the LDL matrix decomposition method that
resorts to Sylvester’s law of inertia. For larger systems, an
approximation with the stochastic Chebyshev expansion was
used.
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Distinction between the many-body localization and An-
derson localization of noninteracting systems can be observed
in the dynamics. We have simulated unitary quench dynam-
ics and studied the time evolution of entanglement entropy,
temporal number fluctuations, and two-site number operator
correlations. These observables feature distinct behavior in er-
godic, many-body localized, and Anderson localized phases.
In the many-body localized phase, the entanglement displays
logarithmic growth at long times, the temporal fluctuations
decay according to a power law and the correlations spread
logarithmically to more distant sites. This behavior becomes
visible at experimentally relevant timescales, and thus we
suggest that the temporal fluctuations and correlation func-
tions are suitable dynamical observables for the experimental
studies of the many-body localization in systems of super-
conducting circuits. We believe that the results presented in
this paper will increase the attention and lead to focused
experimental studies of many-body localization in systems of
superconducting circuits.

The localization phenomenon ideally occurs in closed
systems but it is known to survive for intermediate times
in weakly open systems [78,86,87]. Dissipation and deco-
herence will have primarily different roles in the many-
body localization of transmon arrays. Dissipation removes
energy and excitations from the system, eventually bringing
it into a dilute noninteracting phase, whereas decoherence
destroys localization by destroying the phase coherence. The
models for dissipation and decoherence of superconducting
transmons are well known and characterized [50], which
make it an excellent basis for studying open quantum system
effects on many-body localization both experimentally and
theoretically. Specific research questions are, for example, at
what timescales will localization survive under dissipation
and decoherence, and how these times depend on the filling
factor, interaction, and disorder strengths and how continuous
monitoring will affect localization through measurement back
action. We leave addressing these questions for a future work.
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APPENDIX A: EXACT DIAGONALIZATION

We are interested in the properties of the eigenstates and
eigenvalues of the Hamiltonians of Egs. (1) and (8). Because
of the large dimensions and the need for several disorder re-
alizations, the efficient full diagonalization is limited to small

systems L < 10. However, we do not need the full spectrum,
but only eigenpairs close to some specified target energy. The
target-specified eigenpair can be obtained efficiently with the
shift-and-invert method, where one considers an eigenvalue
problem

Hu = \u, (A1)

where the eigenvector u is such that the eigenvalue is close

to the target, A & o. To obtain this eigenpair efficiently, we

can make a spectral shift and consider the matrix (H — (rl)_].

The largest eigenvalue of the matrix (H — o'1)™" corresponds

to the eigenvalue of the matrix H closest to the target o.
Thus, we obtain a new eigenvalue problem,

H-—ohlu= u. (A2)

A—oO
The eigenvector u can then be obtained with the power
iteration method where one repeatedly applies the matrix
(H — o1)~! to an initial random vector uy and normalizes the
result:

H- O‘|)7lllk
[I(H = oD~ hw |

After a suitable number of iterations, one obtains the eigen-
vector of the original matrix with the eigenvalue closest to the
target. Because inverting a large matrix is a challenging opera-
tion, it is customary to convert the inverted matrix-vector mul-
tiplication to a system of linear equations subsequently solved
with the LU decomposition [15,36,65], where L and U are
lower and upper triangular matrices. We have (H — ol)w =
LUw = u, which results in w = (H — o) 'u. We use the
shift-and-invert method provided by Spectra library [88] built
on top of Eigen library [66]. This algorithm also transforms
the matrix inversion to a system of linear equations and has the
advantage that it can give arbitrary number of states closest to
the target.

(A3)

U1 =

APPENDIX B: EFFICIENT ESTIMATION OF THE
DENSITY OF STATES

In order to use the shift-and-invert method, one needs a
target eigenvalue. Since we are interested in the eigenstate
closest to the maximum density of states, we need to know
the location of the maximum of the density of states. If the
full eigendecomposition is possible, the density of states is
obtained as a trivial side product. However, a more efficient
way of estimating the density of states is to apply Sylvester’s
law of inertia [39], which gives the number of eigenvalues of
a matrix H within an arbitrary interval [g;, &;41].

In our case, H is a real, symmetric, and nonsingular matrix
with a well-defined LDL decomposition

H = LDLT, (B1)

where L is a lower unit triangular matrix and D is a diagonal
matrix. Sylvester’s law of inertia states that the number of
positive diagonal entries of the matrix D is equal to the
number of positive eigenvalues of the matrix H. One can then
construct the shifted matrices H — ¢;1 and H — ¢;,41, whose
LDL decompositions give the number of eigenvalues of H
that are larger than ¢; and ¢, 1, respectively. The difference of
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these numbers gives the exact number of eigenvalues within
the interval [g;, €;+1], which can be used to construct the
density of states. The algorithm that we use to perform the
LDL decomposition is included in Eigen library [66].

A disadvantage of applying Sylvester’s law of inertia is
the need to perform several full LDL decompositions in order
to determine accurately the density of states. This limits the
applicability of the method only to moderately small system
sizes, L < 10. For larger systems, one has to resort to approx-
imations. Our choice is a method that relies on Chebyshev
series [39]. In this method, one considers a projection operator

Poe = D ) {ujl

rj€lei gir]

(B2)

constructed from eigenvectors |u;) whose eigenvalues A; are
within the interval [g;, €;41]. The trace of this operator then
gives exactly the number of eigenvalues within this interval of
interest. Since the eigenvectors are not known a priori, one has
to approximate both the operator and its trace. Our discussion
here follows closely to that given in Ref. [39].

In the eigenbasis of the Hamiltonian matrix H, the projec-
tion operator (B2) can be written as

0 0 O 0 0 O
0 1 0 0 0 O
0 01 ... 00 O
Peiein = P S S (B3
0 0 O 1 0
0 0 O 0 1 0
0 0 O 0 0
i.e., its diagonals are determined by a boxcar function
. L, Aj€le&, el
ji — J +
Feier { 0, otherwise ’ (B4)

and trace of the projection matrix thus gives the number of
eigenvalues inside the corresponding interval:

IU“S/',SI’H = Tr(PsissH»l)' (BS)

We interpret the projection matrix as a boxcar function of the
Hamiltonian matrix H

Pee () =HMH—&l) = HH —¢ei4),  (B6)

where H(x) is the Heaviside step function. A boxcar function
can be expressed as a series of orthogonal functions. We use
the Chebyshev expansion due to its rapid convergence and
efficient recursion relations, but in principle one could choose
also other basis functions, for example, a Fourier series. We
expand the projection matrix as

P (H) =Y yi(ei, )T (H)

Jj=0

~ ) yjen e T (H), (B7)

P
j=0

where T; is the jth Chebyshev polynomial of the first kind,
the series is truncated to the order p, and the expansion
coefficients y;(e;, £i41) are those of the boxcar function
vo(€i, €ir1) = [arccos(e;) — arccos(€;41)]/m and for j > 1

sin[ j arccos(g;)] — sin[j arccos(&;11)]
Vj(gi» giy1) =2 i .

(B3)

Here, we have assumed that all the eigenvalues of H are
inside the domain of the Chebyshev polynomials [—1, 1]. We
therefore first have to scale the matrix

H-— I()\max + )\min)/z
I()‘-max - )‘-min)/z

where Apmin and Anax are the smallest and largest eigenvalues
of H, respectively. Similar scaling has to be done also to the
values ¢; and ;1.

In principle, one could obtain an estimation for the number
of eigenvalues by taking the trace of the sum in Eq. (B7).
The problem with this is that in order to construct the value
of the matrix-argument Chebyshev polynomial T,(H), one
needs several matrix-matrix multiplications, which makes it a
heavy calculation. However, we can reduce the amount of re-
quired computational resources considerably if we include the
trace operation into Eq. (B7). This replaces the matrix-matrix
products with matrix-vector and vector-vector products. An
option for performing the trace is to use the full computational
basis set in which H is expressed, but because the matrix H is
large, this is not very efficient. A better approach is to use
a Monte-Carlo-like method. We utilize a stochastic estimator
by Hutchinson [89], who proved that the trace of a matrix A
can be obtained as a stochastic average of random vectors vy
whose elements are either 1 or —1 with equal probabilities:
TrA = limy_ oo M~} Zkle v/ Av. For our purpose, we write
the Hutchinson stochastic trace estimator as

H— , (BY)

1 &
Tr(P£;,£i+1) ~ }’l_ Z VZ PSj,EiJr]Vk! (BIO)

Y k=1

where we have truncated the amount of random vectors to n,,
which is much smaller than the dimension of H. We combine
Egs. (B7) and (B10) and obtain

1 ny 14
Moo N = DY viCen eV Ti(Hve.  (BI1)

V k=1 j=0

Let us denote the vector T ;(H)v; with W’]‘.. With the recursion
relation for the Chebyshev polynomials, one can write this as

k_ koo Wk
w; =2Hw,_ | —w;

ey (B12)

where, since To(H) = l and T;(H) = H, we have w’(j = vy and
wt = Hvy. Finally, Eq. (B11) becomes

ny

p
~ Tk
i E V(€ Eir 1)V W3,
U k=1 j=0

e e (B13)

which only contains matrix-vector and vector-vector products.
In the Chebyshev expansion, we have used n, = 30 random
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TABLE II. Comparison of the scaling of the execution times
for estimating the number of eigenvalues within an arbitrary in-
terval [e;, &;+1] based on the LDL matrix decomposition and the
stochastic Chebyshev expansion. D/, ; denotes the Hilbert space
dimension of Eq. (5) at half-filling for different sized systems L. All
computations are performed on the same tabletop machine using a
single thread from a four-threaded Intel 15-2400 core with 3.10 GHz
clock frequency. The execution times of the Chebyshev expansion
method scales roughly linearly with the system size due to its sparse
matrix-vector multiplication.

L D1 LDL decomposition Chebyshev expansion
10 2002 0.02s 0.15s
12 12376 10s 1.1s
14 77520 2500 4.7s
16 490314 41.0s

vectors and p = 50 terms, which are sufficient for accurate
results. Performance and accuracy comparisons between the
LDL decomposition and the stochastic Chebyshev expansion
methods are shown in Table II and Fig. 9, showing that the
Chebyshev method produces the maximum of the density of
states both rapidly and accurately.

In summary, the desired eigenstate is obtained in a fol-
lowing way. We first create a random realization of on-site
energies wy and construct the Hamiltonian of Eq. (8). If the
system is small, we use the exact LDL method to construct
the density of states, and otherwise we use the stochastic
method of Eq. (B13). We then select the target energy at
which the density of states has its maximum. This target
energy is then used in the shift-and-invert algorithm to obtain
the eigenpair closest to the target. The largest and smallest
eigenstates, required in Eq. (B9), can be obtained, e.g., with
power iteration or with algorithms included in Spectra [88].

w0l | — LDL - Chebyshey|
H”H 0.12
30
| ] 0.08 %
22 r <
& N -

-
|J 0.04
|

0 R 0.00
0.2 0.4 0.6 0.8 1.0
€

FIG. 9. Comparison of the density of states histograms for sys-
tem with L =12 using LDL matrix decomposition (solid blue)
and Chebyshev expansion (dashed blue). Relative error percentage
is shown as the red histogram and it tells how much the results
obtained with the Chebyshev expansion differ from those obtained
with the LDL method. The Chebyshev method is the most accurate in
intervals with large number of states. Around the maximum density
of states the error is & 1%. In the Chebyshev expansion, we use 50
terms and the stochastic trace is obtained with 30 random vectors.

APPENDIX C: TIME EVOLUTION WITH KRYLOV
SUBSPACE METHODS

The unitary time evolution of a closed quantum system is
governed by the Schrodinger equation
. d N
lhE () =H[y@)) . (ChH

If the Hamiltonian A is time independent, the Schrodinger
equation has the formal solution

(@) = e My,

where |Y) is the initial state. If one is able to diagonal-
ize the Hamiltonian, that is, to form the eigendecomposi-
tion, the matrix exponential of Eq. (C2) is trivial. However,
for large systems, the full diagonalization is inefficient or
even impossible, and therefore the matrix exponential has
to be approximated. In this work, we use the Krylov sub-
space method, allowing efficient computation of the prod-
uct between an exponentiated sparse matrix and a state
vector [36,90-93].

If the system at time ¢ is in state |/ (¢)), after a time 7 the
state becomes

(C2)

W +1) =y,

If the time step 7 is short, one can accurately express the state
vector | (f)) and the Hamiltonian H in an m-dimensional
Krylov subspace /C,,, with m much smaller than the Hilbert
space dimension. This subspace is spanned by the vectors

2 m—1
{V(),HV(),H V(),...,H V()},

(C3)

where the vector vy denotes the state | (t)) and H is the
Hamiltonian in the matrix form. Because H is Hermitian, an
orthogonal matrix

Km = (VO Vi V2 . mel) (C4)

can be constructed with the Lanczos algorithm [36,90-94].
The Hamiltonian in the Krylov subspace then becomes a
tridiagonal m X m matrix

ao B 0
Bi o B2
K'HK,, = M,, = B @ (C5)
. ,Bmfl
0 ,Bm—l Upp—1

The matrix elements o; and B; as well as the orthogonal
vectors v; are obtained from equations [90,93]

(C6a)
(C6b)

o =v;-(Hv; = B_1vj-1),
Bivjti =Hv; —a;v; — B 1vj1.

After solving the matrix K,,, the approximative time evo-
lution can be calculated in the Krylov subspace as [36,91]

W+ 1)) = ey (1)) & Kye ™MK v (C7)

where the exponential of the small tridiagonal matrix M,, is
easily computed either with the eigendecomposition or Padé
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FIG. 10. Relative error percent of the bipartite entanglement
entropy obtained from the exact diagonalization and Krylov method
with m = 5 as a function of evolution time calculated for a single,
representative disorder realization. The system parameters of Eq. (8)
are L=12,W/J =15,and U/J = 3.5.

approximation provided by many numerical libraries. The
Krylov method gives accurate results because the eigenvalues
of the tridiagonal matrix approximate the eigenvalues of the
Hamiltonian that are the most important for the dynamics
during the current time step [91].

The Lanczos algorithm used for constructing the basis of
the Krylov subspace can suffer from numerical problems.
The floating-point arithmetic causes numerical instabilities
which lead to a loss of orthogonality of the vectors v; with
increasing subspace dimension m [90,93]. This can be fixed by
performing a reorthogonalization on the matrix K. However,
for our simulations, the Krylov method produces sufficiently
accurate results before the orthogonality is lost. Error of the
Krylov method as compared to the exact diagonalization is
shown in Fig. 10. We see that the Krylov method is very
accurate even for very small subspace size m = 5. The error is
cumulative, which restricts this method to shorter times than
the exact diagonalization.

APPENDIX D: TIME EVOLVING BLOCK DECIMATION
WITH MATRIX PRODUCT STATES

For long chains of transmons, we express the wave function
[¥) in terms of matrix product states (MPS) and then utilize
an approximate method, denoted as the time-evolving block
decimation, to efficiently calculate the unitary time evolution
of Eq. (C3). First, matrix product states for an open chain of
L transmons are defined as

W) =Y AVAR AP Iy ) (D1)
{n}
where the index ny € 0,1, ..., nn. labels the number of

bosons at site £ with maximum (truncated) occupation 7p,x
and the sum is performed over all “physical” indices n,.
A} is a Ny x M, matrix. For the left-right boundary tensors,
N;, M; = 1. The dimensions associated to N, and M, are
the “bond” dimensions between sites £ — 1, £ and £, ¢ + 1,
respectively. In numerical algorithms, we bound the size of
the matrix Ny, M, < D. The bound on bond dimension, for

10
S R D = 2000
10°
Q 10° P———
101 / — W/J =1
— W/J=15
10°
100 10! 102

t)J!

FIG. 11. Evolution of the average bond dimension D in ergodic
(green) and many-body localized (blue) phases.

example Ny, is equivalent to a bound on entanglement entropy
S ~ InD, across the bipartition (1, £ — 1)U (¢, L).

The total number of resources R required to store a matrix
product state is R ~ Nmax D2L. If the entanglement entropy
is small, matrix product states provide an efficient classical
storage container of many-body quantum states. Examples of
such states are gapped ground states, many-body localized
eigenstates and in general any state which obeys area law
in entanglement entropy, i.e., S ~ const for all bipartitions
(1,€ — 1) U (¢, L). Unfortunately, entanglement entropy for a
quench at finite-energy density in a chaotic system increases
linearly with time S o ¢, which implies that for a fixed cutoff
D ~ O(10%) the state can be quantitatively approximated
up to times for which 7 o In(D). On the other hand, for
many-body localized systems S o In#, which implies T o
D¢, where c is a disorder dependent constant. In Fig. 11, we
compare the computational resources over time in the ergodic
and many-body localized phases by monitoring the growth
of average bond dimension over time. We track the largest
bond dimension per disorder realization and then average over
realizations. As expected, the scaling in the localized phase is
a power law Dy, o t*, while the scaling in the ergodic phase
is exponential Dery o< .

Time evolving block decimation [37] is an evolution
scheme based on the application of the Trotter formula to the
unitary time evolution, i.e., breaking the many-body unitary
to a successive application of few-body unitary gates, and
a controlled truncation of the matrix product state after the
application of each gate.

1. Integrator

We first describe the integrator we use, which is a fourth-
order Trotterization scheme. For a nearest-neighbor Hamil-
tonian, we define the “forward-backward” sweeps (time-
evolution steps) as

Qdt) =Upp(d)Up—1 1-o(dt), ..., Uy 1(dt),
(D2a)

Q*(dt) = Uy 2(d)Us5(dt), ..., Up_1.(dt),  (D2b)
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where the two-site gates are defined as

U es1(dr) = e7 o, (D3)
The Hamiltonian density /¢4 is defined to symmetrically
include the one-site terms of the Hamiltonian of Eq. (8),

heer = S(he + hewr) + Je(@)a,,, +He.), (Dda)

. U, .

he = weity — 7}’15(”[ —1). (D4b)
The backward sweep is the adjoint method of the forward
sweep, i.e., Q*(—dt)Q2(dt) |¢¥) = |¥). It can be shown that
for self-adjoint methods the Trotter error is always of even
order [95]. Thus, it is favorable to create the self-adjoint
method W(dt) = Q*(dt/2)2(dt /2), which is a second-order
method. Using standard composition rules [95], we compose
the following fourth-order self-adjoint method,

F(dt) = W(a,dt)V(ardt)¥(adt), (D5)
where ap = (2 =231,
F(T) = e ™HT/h L TO® ).

a; = 1—2611, and

2. Truncation

Matrix product states have some gauge freedom associated
to the virtual bond dimension. We use the “mixed” gauge [96]
to perform the evolution and efficiently truncate the matrix
product state. We discuss the process for a forward sweep.
Before applying the gate U, ¢4 mixed gauge implies that local
tensors satisfy

D AFAR = ym, k< €, (D6a)

Nk

ZAZkAZ” = ]lNkXNk’ k > E,

e

(D6b)

while the tensor at site £ does not have any special property.
The tensors at site £, £ + 1 are combined and the two-body
gate is applied,

n V]
Ocer1 = Upet1 E A AV Inenesr) .

nesNg+1

D7)

The updated local tensors are constructed from the singular
value decomposition,

Oty mnce) = D UinboaSaaVimerry (D82
a

Azj,az = Unby).ar (D8b)

AWH *
= E /
a',ceq Sa ’ava~(nl+lcé+l)’
a

Because of the unitarity of the matrix U, U = 1, the
updated tensor A, obeys the correct gauge form required
for the evolution of sites of £ 4+ 1, ¢ 4 2. The singular val-
ues A, (in descending order) are the diagonal elements
of S and correspond to the square roots of the eigenval-
ues of the reduced density matrix p = Try_, |¥) (Y], thus
>, A7 = 1. We truncate the singular values for k > k. so
that the probability loss >, k,% < €, and then renormalize
the truncated density matrix, Y, A; = 1. This process is
iterated to perform a forward sweep. The backward sweep
is performed in a similar way. The computational bottle-
neck of the algorithm is the singular value decomposition of
Eq. (D8), which scales as O[(nmaxD)?] for a square matrix of
dimension 7,4 D.

(D8c)

3. Numerical details

Calculations were performed using the ITensor Library
[97]. In all simulations, we have explicitly conserved the
U (1) symmetry associated to the total particle number, which
allows for an additional speedup due to the block diagonal
structure of the Eq. (D7). For the simulations in the er-
godic regime (W/J =1, U/J = 3.5), we have used time step
dt/J~" = 0.025 and cutoff € = 1078 as well as a hard cutoff
to the bond dimension D, = 2000. The local Hilbert space
is truncated at ny,,x = 4. The simulations are stopped at time
T/J~!' =5, where the hard cutoff is reached for most real-
izations to ensure that the quantities of interest are accurate.
For the disordered regime (W/J = 15, U/J = 3.5), we have
used dt/J~' =0.01 and cutoff € = 10~ as well as a hard
cutoff to the bond dimension D, = 2000. To gain additional
speedup, we truncated the local Hilbert space at np,, =3
which does not affect the dynamics for strong disorder and di-
lute initial state. The simulations are stopped at time T /J ' =
200. The bond dimension is not saturated for any disorder
realization.
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