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Spin transport in an electrically driven magnon gas near Bose-Einstein condensation:
Hartree-Fock-Keldysh theory

So Takei*

Department of Physics, Queens College of the City University of New York, Queens, New York 11367, USA
and Physics Doctoral Program, Graduate Center of the City University of New York, New York, New York 10016, USA

(Received 30 July 2019; revised manuscript received 25 September 2019; published 31 October 2019)

An easy-plane ferromagnetic insulator in a uniform external magnetic field and in contact with a phonon
bath and a normal metal bath is studied theoretically in the presence of DC spin current injection via the spin
Hall effect in the metal. The Keldysh path integral formalism is used to model the magnon gas driven into a
nonequilibrium steady state by mismatched bath temperatures and/or electrical injection, and we analyze the
magnon system in the normal (uncondensed) state, but close to the instability to Bose-Einstein condensation
(BEC), within the self-consistent Hartree-Fock approximation. We find that the steady state magnon distribution
function generally has a nonthermal form that cannot be described by a single effective chemical potential and
effective temperature. We also show that the BEC instability in the electrically driven magnon system is signaled
by a sign change in the imaginary part of the poles for long-wavelength magnon modes and by the divergence
of the nonequilibrium magnon distribution function. In the presence of two bath temperatures, we find that the
correlation length of the superfluid order parameter fluctuations exhibits nontrivial finite temperature crossover
behaviors that are richer than the standard crossover behaviors obtained for the vacuum-superfluid transition
in an equilibrium dilute Bose gas. We study the consequences of these thermal crossovers on the magnon
spin conductivity and obtain an inverse square-root divergence in the spin conductivity in the vicinity of the
electrically induced BEC instability. A spintronics device capable of testing our spin transport predictions is
discussed.
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I. INTRODUCTION

Magnetic insulators provide an attractive arena to
study nonequilibrium Bose-Einstein condensation (BEC) of
magnons in a solid state environment [1,2]. Unlike BECs in
ultracold atomic systems and superconductors, BECs in solids
require nonequilibrium states in which external pumping with
sufficient energy is necessary to compensate for incessant
quasiparticle decay [3,4]. An early spectroscopic evidence
for room temperature BEC of magnons was reported in a
ferrimagnetic insulator, yttrium iron garnet (YIG), driven
by parametric pumping [5–7]. According to the prevailing
heuristic picture, the BEC forms during a transient stage after
a sufficient number of hot incoherent magnons are injected
into a narrow region of the spectrum [8,9]. Once the pump is
switched off, the magnons rapidly thermalize to a quasiequi-
librium state via multimagnon scattering and condense before
they ultimately decay into the lattice.

An alternative pumping mechanism is DC electrical pump-
ing. This mechanism involves interfacing the magnetic in-
sulator to a normal metal with strong spin-orbit coupling
and utilizing the spin Hall effect for spin injection [10,11].
Exchange coupling at the interface allows for magnon in-
jection into (absorption out of) the insulator via annihilation
(creation) of spinful particle-hole excitations in the metal, so
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that the metal serves both as a spin injector and a dissipative
environment from the viewpoint of the insulator. Here the
threshold injection strength necessary for magnon condensa-
tion can be attained by increasing the electrical current inside
the normal metal. An interesting aspect of this proposal is the
possibility to realize magnon BECs in a nonequilibrium steady
state—a stationary flow-equilibrium state—in which spin lost
into the dissipative environment is precisely compensated by
spin injection from the metal [10,11].

Motivated by this proposal, a recent experiment achieved
magnon BEC using a DC electrical spin injection in a bilayer
setup consisting of YIG and a heavy-element metal platinum
(Pt). The experiment reported a significant increase in the
two-terminal DC spin conductivity once the magnon density
surpassed the critical value needed for BEC and a compelling
evidence for dissipationless spin transport mediated by the
magnon condensate [12]. This exciting development calls for
a detailed study of spin transport through magnon gases in
the vicinity of the BEC transition and in the simultaneous
presence of dissipation and electrical pumping.

On a broader note, quasiparticle BECs in driven-dissipative
steady states have been studied in different contexts including
photons [13], excitons in coupled quantum Hall bilayers [14],
and exciton-polaritons in light-driven semiconductor het-
erostructures [15]. In exciton-polariton systems, the Keldysh
path integral formalism has proved useful for systematically
analyzing the effects of the drive and decay on the coherent
state dynamics and accounting for fluctuations beyond the
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mean-field limit [16]. This powerful theoretical machinery
is now proving useful in rigorously treating magnon BECs
in driven-dissipative environments as well [17]. Furthermore,
the BEC transition of ferromagnetic exchange magnons be-
longs to the same universality class as the vacuum-superfluid
phase transition in dilute Bose gases [18]. The rigorous
theoretical formulation of the nonequilibrium magnon BEC
should therefore set the stage for studying how departures
from thermal equilibrium and particle/energy conservation
modify the behavior of Bose gases near this well-known phase
transition.

In this work we develop a Keldysh functional integral the-
ory for a driven-dissipative easy-plane ferromagnetic insulator
coupled to a bosonic (phonon) bath and a metallic bath. Both
baths introduce spin/energy loss (i.e., Gilbert damping) in the
ferromagnet, and a nonequilibrium spin accumulation in the
metal (generated, e.g., via the spin Hall effect) allows for
incoherent spin injection (DC electrical pumping) into the
magnet. In this work we allow the two baths to have two
different temperatures, i.e., TB for the phonon bath and TF for
the metallic bath. Starting from a full microscopic Keldysh
action consisting of the magnon system and the baths, the
reduced Keldysh action for the magnons alone is first obtained
by tracing out the bath degrees of freedom. Using the resulting
effective action, we analyze the properties of the magnons
by focusing exclusively on the normal (uncondensed) phase,
considering various bath temperatures and electrical pumping
strengths, and accounting for the quartic magnon-magnon
interaction term by generalizing the self-consistent Hartree-
Fock approach used for equilibrium dilute Bose gases to the
nonequilibrium [19].

Before delving into the details of the work, we first present
a brief summary of the main results. Throughout this work,
our focus is on the asymptotic steady state of the magnon
system, a state emerging after the magnons have interacted
with the baths for a long time. In this steady state, we find
that the magnon distribution function, for mismatched bath
temperatures TB �= TF and/or in the presence of electrical
pumping, generally has a nonthermal form that cannot be
described by a single effective chemical potential and ef-
fective temperature. It is in fact determined by a superposi-
tion of the two bath distribution functions weighted by their
respective coupling strengths to the magnons. This result
contrasts with similar past studies of electrically pumped
magnon BECs, in which magnons were assumed to be inter-
nally thermalized to the Bose-Einstein distribution function
with a well-defined effective temperature and a chemical
potential [11,20].

One important consequence of this nonthermal magnon
distribution function is that it is not possible to induce a
magnon BEC by elevating the metal temperature above the
phonon temperature while maintaining zero electrical pump-
ing. In other words, the formation of a magnon BEC solely
via the spin Seebeck effect is not possible. This is because
the magnon distribution function is given by a superposition
of both bath distribution functions, so heating up the metal
always leads to partial heating of the magnons and hinders
condensation. This claim is essentially consistent with the
analysis of Ref. [11] in their floating-magnon-temperature
regime.

The presence of the two bath temperatures has notable
consequences on the critical phenomena surrounding the BEC
transition as well. An important aspect of the standard BEC
critical phenomena in equilibrium Bose gases is the finite
temperature crossover behavior exhibited by the correlation
length for the superfluid order parameter fluctuations [18]. For
the standard Bose gas in equilibrium, the different finite tem-
perature regimes are defined in terms of a single temperature
T , i.e., the magnon temperature. However, the nonequilibrium
magnons in the current work are defined in terms of two bath
temperatures TB and TF . We therefore find crossover behaviors
with respect to both bath temperatures that are richer than
those obtained in the standard counterpart. In particular, since
both baths can contribute to the thermal magnon population in
the ferromagnet, both can act to cut off the correlation length.
Which bath temperature ultimately cuts off the correlation
length in the high temperature regime depends on the relative
magnitudes of the temperatures and how strongly the baths
hybridize with the magnons.

In the latter part of the work, we evaluate the DC spin
conductivity of the magnon gas using Kubo formalism, and
find that the above-mentioned finite temperature crossovers
in the correlation length are reflected in the conductivity.
For equal bath temperatures TB = TF ≡ T and zero electrical
pumping, for example, the DC conductivity traverses through
three different temperature regimes, each possessing a distinct
temperature dependence, as T is increased from absolute zero.
When the temperature is much lower than the bare magnon
gap μ0 (defined, e.g., by the intrinsic magnetic anisotropy
of the ferromagnet and the external magnetic field), thermal
magnon population is exponentially suppressed and the DC
conductivity obeys σ0 ∝ T 3/2e−μ0/kBT . However, as the bath
temperature increases, magnon population increases corre-
spondingly and the conductivity crosses over to algebraic scal-
ing σ0 ∝ T . For yet higher temperatures, where the correlation
length is cut off by the bath temperature rather than the bare
magnon gap μ0, the scaling crosses over to σ0 ∝ T 1/4. Finally,
we investigate spin conductivity in the presence of electrical
pumping. When the electrical pumping strength (denoted μs)
increases and approaches the critical value μc

s necessary for
BEC instability, we find that the DC conductivity diverges as
σ0 ∝ (μc

s − μs)−1/2.
At the end of the work, motivated by the recent spin

transport experiment on magnon gases close to the elec-
trically driven BEC [12], we discuss how the temperature
scalings and the inverse square-root divergence of the spin
conductivity can be verified using a similar experimental
setup.

The paper is organized as follows. In Sec. II we introduce
the models for the magnon system and the baths, and in
Sec. III obtain an effective theory for the magnons alone
by tracing out all of the bath degrees of freedom using the
Keldysh functional integral formalism. In Sec. IV we develop
a self-consistent Hartree-Fock theory for the magnon system,
and study the BEC critical line and the finite temperature
crossover behavior in Sec. V. Spin conductivity is computed
in Sec. VI, and a discussion on how the conductivity can be
experimentally verified in a two-terminal spin transport setup
is presented in Sec. VII. Finally, conclusions are drawn in
Sec. VIII.
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FIG. 1. Each atomic spin at site i of the ferromagnetic insulator
is coupled to its own phonon and metallic baths with coupling
strengths ηi and κi,α , respectively. The phonon bath is characterized
by excitations bi,α , where α labels the eigenmodes, and the metallic
bath is characterized by fermion excitations ψi,kσ with wave vector k
and spin σ . We assume the two baths are thermalized at temperatures
TF and TB, respectively, and a nonequilibrium spin accumulation μs

in the metal allows for spin injection into the ferromagnet.

II. MODEL

We consider a three-dimensional ferromagnetic insulator
coupled to a bosonic bath and a metallic (fermionic) bath as
shown in Fig. 1. The boson bath is introduced to explicitly
model the intrinsic spin/energy loss (i.e., Gilbert damping) in
the ferromagnet, while the metal leads to additional Gilbert
damping due to the fermionic continuum. A nonequilibrium
spin accumulation μs in the metal (generated, e.g., via the spin
Hall effect) also allows for incoherent spin injection into the
magnetic insulator.

A. Ferromagnet

Since our focus is on the impact of dissipation and nonequi-
librium drive on a ferromagnetic insulator, we consider a
relatively simple, but quite general, model Hamiltonian HF

for an exchange ferromagnet with an easy-plane magnetic
anisotropy perpendicular to the z axis and in a uniform mag-
netic field B along the same axis, i.e.,

HF = 1

2

∑
i j

(−Ji jSi · Sj + Ki jS
z
i Sz

j

) + h̄γ B
∑

i

Sz
i . (1)

Here i, j label the sites of the lattice, Ji j > 0 is the ferro-
magnetic exchange matrix, Ki j > 0 is the anisotropy matrix,
γ is the gyromagnetic ratio, and S is the saturated spin
moment per lattice site. We assume throughout that both Ji j

and Ki j depend on the lattice positions Ri and Rj only through
their difference, and that Ji j = J ji and Ki j = K ji. Furthermore,
assuming a spherically symmetric exchange matrix with a
spatial range ξJ , i.e., Ji j ∝ e−|Ri−R j |2/2ξ 2

J , we may approximate
its Fourier transform as Jq = ∑

j Ji je−ιq·(Ri−R j ) = J0e−q2ξ 2
J /2,

where J0 ≡ Jq=0 and ι = √−1. A similar result can be applied

to a spherically symmetric anisotropy constant Ki j with a
spatial range of ξK , i.e., Kq ≈ K0e−q2ξ 2

K /2.
Following a standard boson mapping (see, e.g., Ref. [21]),

Eq. (1) can be reexpressed in terms of creation and annihi-
lation operators, a†

q and aq, for magnons with wave vector q,
i.e.,

HF =
∑

q

(εq + μ0)a†
qaq

+ 1

N
∑
{qn}

Vq1q3
a†

q1
a†

q2
aq3

aq4
δq1+q2,q3+q4

, (2)

where εq = S(J0 − Jq) ≈ (J0Sξ 2
J /2)q2, valid for q � ξ−1

J , is
the magnon spectrum, μ0 = h̄γ B − SK0 is the bare magnon
gap (tunable using the external field), and N is the total
number of lattice sites in the ferromagnet. Under the boson
mapping, the four-magnon vertex takes the form

Vq1q3
= Kq1−q3

− Jq1−q3

2
+ λ(Jq1

+ Jq3
), (3)

where λ = S(1 − √
1 − 1/2S).

B. Coupling to the baths

We now define the spin-bath coupling. As shown in Fig. 1,
we assume that the atomic spin Si on each lattice site i couples
to its own independent boson and fermion baths. Then the
Hamiltonian for the entire system (magnons and the baths
included) can be written as H = HF + ∑

i hi, where hi is the
local Hamiltonian describing the coupling of the atomic spin
at site i to the baths. This local Hamiltonian may be written
as hi = hB

i + hm
i , where hB

i and hm
i model the coupling to the

boson and fermion baths, respectively.
We begin by defining the local Hamiltonian corresponding

to the bosonic bath, i.e.,

hB
i =

∑
α

h̄
αb†
i,αbi,α + h̄

∑
α

(κi,αaib
†
i,α + H.c.),

where bi,α is the annihilation operator for a bath boson in the
ith bath and eigenmode α, which couples to a magnon at the
site with strength κi,α . The second term describes the decay of
a magnon into the bath via transmutation into a superposition
of bath boson modes. We assume that all of the bosonic baths
are identical and that they are held at the same temperature
TB so that the excitations occupy the states according to
the Bose-Einstein distribution, i.e., 〈b†

i,αbi,α′ 〉 = nαδαα′ , where
nα = (eh̄
α/kBTB − 1)−1. We hereafter refer to the bosonic ex-
citations as phonons and TB as the phonon temperature. In the
absence of the metal (and, therefore, driving), the magnons
thermalize to the Bose-Einstein distribution of the phonons.

The metallic bath contribution to the local Hamiltonian can
be written as

hm
i =

∑
k,σ

h̄νkψ
†
i,kσ

ψi,kσ +
∑
k,k′

(ηiψ
†
i,k↑ψi,k′↓ai + H.c.),

where ψi,kσ annihilates a fermion in the ith bath with wave
vector k and spin σ , h̄νk = h̄2k2/2m is the usual quadratic
spectrum with effective mass m, and ηi quantifies the hy-
bridization between the magnon and the fermions at site i.
This standard form for the magnon-electron hybridization
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FIG. 2. Schwinger-Keldysh time-loop contour. The system is
evolved with the full Hamiltonian H from the infinite past t = −∞
[at which point the density matrix is given by ρ̂0(−∞)], to the infinite
future t = +∞, and then back to the infinite past. The forward
evolution occurs along the + branch and the backward evolution
along the − branch.

has been considered in many other works [10,11,22]. We
assume here that all of the fermionic baths are identical
and that they are held at a common temperature TF so that
the excitations occupy the states according to the Fermi-
Dirac distribution 〈ψ†

i,kσ
ψi,k′σ ′ 〉 = fkσ δσσ ′δkk′ , where fkσ =

[e(h̄νk−μσ )/kBTF + 1]−1. Here μσ is the spin-dependent chem-
ical potential that models the nonequilibrium spin accumula-
tion μs inside the metal, i.e., μs = μ↑ − μ↓.

III. THEORY

Long after the couplings to the baths are turned on, the
magnon system is expected to approach a steady state in
which spin and energy injected by the pumping process are
precisely balanced by the spin and energy lost through dissipa-
tion. In this nonequilibrium steady state, the magnons should
generally be characterized by a nonthermal distribution func-
tion, level broadening, etc., and their behavior must be solved
for in the presence of both drive and decay. To account for
these nonequilibrium properties, we formulate the model from
Sec. II using the real-time Keldysh path integral formalism
[23]. This formalism provides a systematic, straightforward
way to trace out the bath degrees of freedom and obtain an
effective theory for the magnons that takes the dissipative and
nonequilibrium effects into account. The formal procedure
presented in this section closely follows Ref. [23], so we
refer the reader to this reference for any necessary additional
details.

A. The Keldysh path integral formalism

Central to the Keldysh functional integral formalism is the
Keldysh action S , which is obtained by time evolving the
system Lagrangian along the Schwinger-Keldysh time-loop
contour (see Fig. 2). In deriving the nonequilibrium steady
state properties, the formalism involves evolving the system
with the full Hamiltonian from an initial state in the infinite
past, at which point the density matrix of the total system
factorizes into a product of equilibrium density matrices for
the magnons and the baths, to the far future and back to the in-
finite past. To reduce the time integrals to unidirectional ones,
however, it is customary to double the degrees of freedom at
every point in time by defining separate fields on the forward
and the backward branches (labeled by + and −, respectively)
of the time-loop contour (see Fig. 2). Following Ref. [23], we
formulate S in the RAK basis, in which the Green functions on
the time-loop contour are specified in terms of retarded (“R”),
advanced (“A”), and Keldysh (“K”) components. In this basis,
the bosonic fields on the forward and backward branches

φ+
q (t ) and φ−

q (t ) are rotated to the “classical-quantum (c-q)”
fields φc

q(t ) and φ
q
q (t ) using

φc,q
q (t ) = φ+

q (t ) ± φ−(t )√
2

, φ̄c,q
q (t ) = φ̄+

q (t ) ± φ̄−(t )√
2

,

the fermionic fields on the contour ψ+
k (t ) and ψ−

k (t ) are
rotated to the “1–2” fields ψ1

k (t ) and ψ2
k (t ) using

ψ1,2
q (t ) = ψ+

q (t ) ± ψ−(t )√
2

, ψ̄1,2
q (t ) = ψ̄+

q (t ) ∓ ψ̄−(t )√
2

,

and the causality structures of the bosonic (D̂) and fermionic
(Ĝ) Green functions become

D̂ =
(

DK DR

DA 0

)
, Ĝ =

(
GR GK

0 GA

)
, (4)

where R, A, K label the retarded, advanced, and Keldysh
components as mentioned above.

Formulating the action for the model in Sec. II on the time-
loop contour and transforming the fields to the RAK basis, the
Keldysh action for the magnon subsystem [corresponding to
Eq. (2)] becomes

SF =
∑

q

∫
d


2π
A†

q(
)

(
DK

0q(
) DR
0q(
)

DA
0q(
) 0

)−1

Aq(
)

− 1

N
∑
{qn}

∫ ∞

−∞
dt Vq1q3

[
ac∗

q1
(t )ac∗

q2
(t )ac

q3
(t )aq

q4
(t )

+ aq∗
q1

(t )aq∗
q2

(t )aq
q3

(t )ac
q4

(t ) + c.c.
]
δq1+q2,q3+q4

, (5)

where A†
q(
) = [ac∗

q (
) aq∗
q (
)] collects the classical

and quantum components of the magnon field aq(t ) =∫
(d
/2π )aq(
)e−ι
t , and the components of the unper-

turbed magnon propagator matrix are given by

DR
0q(
) = 1


 − (εq + μ0)/h̄ + ιδ
= DA∗

0q (
),

DK
0q(
) = coth

(
h̄


2kBT

)[
DR

0q(
) − DA
0q(
)

]
, (6)

where T is the magnon temperature in the infinite past and
δ > 0 is the usual infinitesimal parameter.

The Keldysh action for the ith phonon bath and its coupling
to the magnons at site i becomes

SB
i =

∑
α

∫
d


2π
B†

i,α (
)

(
dK

α (
) dR
α (
)

dA
α (
) 0

)−1

Bi,α (
)

−
∑

α

∫
d


2π
[κi,αB†

i,α (
)τ̂xAi(
) + H.c.], (7)

where B†
i,α (
) = [bc∗

i,α (
) bq∗
i,α (
)], once again, collects the

classical and quantum components of the bath field and the
bath Green functions read

dR
α (
) = 1


 − 
α + ιδ
= dA∗

α (
),

dK
α (
) = −2πι coth

(
h̄


2kBTB

)
δ(
 − 
α );
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we use τ̂x, τ̂y, and τ̂z to denote Pauli matrices acting in Keldysh
space.

Finally, the Keldysh action describing the ith metallic bath
and its coupling to the magnons is given by

Sm
i =

∑
k,σ

∫
dω

2π
�

†
i,kσ

(ω)

(
gR

kσ (ω) gK
kσ (ω)

0 gA
kσ (ω)

)−1

�i,kσ (ω)

− ηi√
2

∑
kk′

∫
dω

2π

dω′

2π
[�†

i,k↑(ω)ac
i (ω − ω′)�i,k↓(ω′)

+�
†
i,k↑(ω)aq

i (ω − ω′)τ̂x�i,k↓(ω′)] + H.c., (8)

where �
†
i,kσ

(ω) = [ψ1∗
i,kσ (ω) ψ2∗

i,kσ (ω)] collects the 1 and 2
components of the bath fermions, and the unperturbed bath
fermion propagators are given by

gR
k (ω) = 1

ω − νk + ιδ
= gA∗

k (ω),

gK
kσ (ω) = −2πι tanh

(
h̄ω − μσ

2kBTF

)
δ(ω − νk). (9)

The full Keldysh partition function Z can then be written as

Z =
∫ D{Aq(
), Bi,α (
), �i,kσ (ω)}

Tr{ρ̂0(−∞)} exp{ιS}, (10)

where S = SF + ∑
i(SB

i + Sm
i ) and ρ̂0(−∞) is the density

matrix in the infinite past.

B. Tracing out the baths

We may now integrate over the bath degrees of freedom
Bi,α (
) and �i,kσ (ω) in Eq. (10) in order to obtain an effective
theory solely in terms of the magnons. The assumption here is
that each bath is infinite and therefore remains unperturbed
from its equilibrium configuration even in the presence of
the (possibly strongly nonequilibrium) magnon system. The
effects of the baths on the magnon subsystem can then be fully
taken into account by performing a functional integral over the
baths.

We notice from Eqs. (7) that the bosonic bath degrees
of freedom can be integrated out using standard Gaussian
integrals. Upon performing these integrals, we find (see
Appendix A for more details)

SB
i = −

∫
d


2π
A†

i (
)

(
0 �A

i (
)

�R
i (
) �K

i (
)

)
Ai(
), (11)

where �R,A,K
i (
) is the phonon-induced magnon self-energy.

As shown in Appendix A, if we assume an ohmic form for
the phonon bath spectral density, the retarded and advanced
components of the self-energy reduce to

�R,A
i (
) = ∓ιαB

i 
, (12)

where αB
i is a site-dependent Gilbert damping parameter, and

the Keldysh component relates to the retarded and advanced
components through the fluctuation-dissipation theorem,

�K
i (
) = −2ιαB

i 
 coth

(
h̄


2kBTB

)
. (13)

We therefore see that an ohmic phonon bath leads to the stan-
dard level broadening proportional to the magnon frequency
and thus to the familiar Gilbert damping phenomenology.

As seen from Eq. (8), the metallic bath degrees of free-
dom can also be integrated out using standard Gaussian
integrals. However, tracing out these fermions is relatively
more complex compared to the previous bosonic case because
the fermions and the magnons couple nonlinearly. Therefore,
once the Gaussian integrals over �i,kσ (ω) are performed, cor-
rections to the effective magnon action arise at all even orders
in the magnon fields Ai(
) and renormalize the multimagnon
scattering vertices as well.

At Gaussian order in the magnon fields, the correction
renormalizes the Gaussian magnon action, i.e., the first term
in Eq. (5),

Sm(2)
i = −

∫
d


2π
A†

i (
)

(
0 �A

i (
)

�R
i (
) �K

i (
)

)
Ai(
), (14)

where the components of the fermion-induced magnon self-
energy matrix are given by (see Appendix B for details)

�R
i (
) = −ιαF

i (
 − μs/h̄), (15)

�K
i (
) = coth

(
h̄
 − μs

2kBTF

)[
�R

i (
) − �A
i (
)

]
. (16)

Here αF
i = π |ηi|2ρ2

0 h̄2 is the site-dependent Gilbert damping
arising from the metallic bath and ρ0 is the bath fermion
density of states at the Fermi level.

The next order correction comes at fourth order in the
magnon fields and renormalizes the quartic vertices in the
magnon action [see the last two lines in Eq. (5)]. As shown
in Appendix B, the tracing out of the fermion bath not only
generates corrections to the existing quartic coefficients but
also generates new quartic terms with even powers of quan-
tum fields aq

q. However, the bath only generates dissipative
vertices—quartic terms with purely imaginary coefficients—
that are O[(αF

i )2], and, within the self-consistent Hartree-
Fock approximation introduced below, they are expected to
give subleading corrections to the dissipative effects already
accounted for at the Gaussian order [see Eqs. (15) and (16)].
We therefore ignore these metal-induced renormalizations of
the quartic vertices in the remainder of the work [24].

IV. SELF-CONSISTENT HARTREE-FOCK THEORY

We now discuss the properties of the driven, dissipative
magnon subsystem exclusively in the normal (uncondensed)
phase and discern the location of the BEC instability as a
function of various system parameters such as the external
magnetic field B and the bath temperatures TB and TF . This
will be done by generalizing the self-consistent Hartree-Fock
approach used for equilibrium dilute imperfect Bose gases
[19] to the current nonequilibrium problem. For simplicity,
we hereafter restrict our discussion to uniform magnon-bath
coupling amplitudes, i.e., κi,α → κα and ηi → η, though lift-
ing this assumption is not expected to change the qualitative
results presented below.

The starting point for the discussion here is the effective
magnon theory resulting from the elimination of the bath
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fields. Once these fields are traced out, the Keldysh partition
function Eq. (10) reduces to

Z =
∫ D{Aq(
)} exp{ιS̄F }

Tr{ρ̂m
0 (−∞)} ,

where ρ̂m
0 (−∞) is the density matrix for the magnons in the

infinite past and the effective Keldysh action for the magnons
reads

S̄F = SF +
∑

i

(
SB

i + Sm(2)
i

)

=
∑

q

∫
d


2π
A†

q(
)

(
DK

q (
) DR
q (
)

DA
q (
) 0

)−1

Aq(
)

− 1

N
∑
{qn}

∫ ∞

−∞
dt Vq1q3

[
ac∗

q1
(t )ac∗

q2
(t )ac

q3
(t )aq

q4
(t )

+ aq∗
q1

(t )aq∗
q2

(t )aq
q3

(t )ac
q4

(t ) + c.c.
]
δq1+q2,q3+q4

. (17)

We note that the magnon propagator matrix above [with the
components DR,A,K

q (
)] now fully accounts for the nonequi-
librium drive and dissipation due to the baths. Using Eqs. (6),
(12), and (15), its retarded component (which relates to the
advanced component by complex conjugation) can easily be
read off from Eq. (17),

DR
q (
) = 1


 − (εq + μ0)/h̄ + ιαB
 + ιαF (
 − μs/h̄)
,

where αB and αF can now be interpreted as the (spatially
uniform) Gilbert damping parameters arising from the phonon
and metallic baths, respectively.

Using Eqs. (5), (11), and (14), the Keldysh component of
the magnon propagator can also be read off directly from
Eq. (17) as

DK
q (
) = ι

2

�K (
) + �K (
)

αB
 + αF (
 − μs/h̄)

[
DR

q (
) − DA
q (
)

]
. (18)

However, noting that the Keldysh propagator can generally
be related to the retarded and advanced components via the
magnon distribution function N (
), i.e., DK

q (
) = [2N (
) +
1][DR

q (
) − DA
q (
)] [23], Eq. (18) together with Eqs. (13) and

(16) allow us to directly extract the nonequilibrium magnon
distribution function,

N (
) = 1

α
 − αF μs/h̄

[
αB


eh̄
/kBTB − 1
+ αF (
 − μs/h̄)

e(h̄
−μs )/kBTF − 1

]
,

(19)

where α = αB + αF is the total Gilbert damping parameter.
We see from Eq. (19) that the magnon distribution function,

in general, has a nonthermal form in the presence of mis-
matched bath temperatures and/or electrical pumping. Even
at zero pumping (i.e., μs = 0), N (
) is given by a linear
combination of two Bose-Einstein distribution functions, one
corresponding to the phonons equilibrated at temperature
TB and the other corresponding to the spin-1 particle-hole
excitations in the metal equilibrated at temperature TF , and
they are weighted by the respective Gilbert damping param-
eters associated with each of the baths. This has important
consequences on the finite temperature crossover behavior for

= + +

FIG. 3. Dyson equation for the full Green function in the self-
consistent Hartree-Fock theory. Thin lines denote noninteracting
magnon propagators and heavy lines the full propagators. The dotted
lines correspond to the interaction vertex Vqq′ .

the magnons close to the BEC critical line, as we later show
in Sec. V A.

The steady-state nonthermal magnon distribution function
obtained here contrasts with similar past studies of electrically
pumped magnon BECs, in which magnons were assumed
to be internally thermalized to the Bose-Einstein distribu-
tion function with a well-defined effective temperature and a
chemical potential [11,20].

Self-consistent conditions

The Dyson equation for the full magnon Green function
within the self-consistent Hartree-Fock approximation is dia-
grammatically shown in Fig. 3, where each magnon propaga-
tor has the bosonic Keldysh matrix structure consistent with
Eq. (4). Each thin line represents the Gaussian magnon propa-
gator matrix, i.e., DR,A,K

q (
), while the thick lines correspond
to the full propagator matrix. Within the self-consistent theory,
the components of the Keldysh one-loop self-energy matrix
are given by

�̃R
q = − 4

N
1

h̄

∑
q′

∫
d


2π
N (
)(Vqq′ + Vq′q′ )ImDR

q′ (
) = �̃A
q ,

where DR
q (
) is the retarded component of the full self-

consistent magnon propagator, and we find �̃K
q = 0. This then

leads to a self-consistent magnon spectrum given by

ε̃q+μ=εq+μ0

− 4

N
∑

q′

∫
d


2π
N (
)(Vqq′ +Vq′q′ )Im

{
DR

q′ (
)
}
, (20)

where the full retarded magnon propagator above is defined
with the renormalized spectrum ε̃q and band gap μ, i.e.,

DR
q (
) = 1


 − (ε̃q + μ)/h̄ + ια
 − ιαF μs/h̄
. (21)

For weak damping, i.e., αB, αF � 1, the magnon spectral
function Bq(
) ≡ −2ImDR

q (
) is strongly peaked near q ∼
[2(h̄
 − μ)/J0Sξ 2

J ]1/2. Therefore, contributions to the q′ sum-
mation coming from large wave vectors q′ ∼ ξ−1

J in Eq. (20)
(assuming that the spatial range of the exchange constant is
on the order of a few lattice constants) is exponentially sup-
pressed by N (
) as long as J0S/kBTB, J0S/kBTF � 1, which
is almost always true. The last term in Eq. (20) can then be
approximated well by setting q′ = 0 in Vqq′ and Vq′q′ . Using
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Eq. (3) and recalling that Jq ≈ J0e−q2ξ 2
J /2 and Kq ≈ K0e−q2ξ 2

K /2,
we may then expand Vq0 to quadratic order in qξJ � 1 and
qξK � 1 and obtain the self-consistent equation as

ε̃q + μ = εq + μ0 + 2n[(K0 + J0(4λ − 1)]

− K0(qξK )2 + J0(qξJ )2(2λ − 1)

2
n, (22)

where

n = − 2

N
∑

q′

∫
d


2π
N (
)Im

{
DR

q′ (
)
}

is the magnon number per lattice site.
The last term on the right-hand side of Eq. (22) leads to the

renormalization of the effective magnon mass. However, this
renormalization remains small in the dilute magnon limit, i.e.,
n/S � 1. We ignore this correction and finally arrive at the
self-consistent equation for the magnon gap,

μ = μ0 + 2n[K0 + J0(4λ − 1)]. (23)

This self-consistent equation for the magnon gap encodes the
nonequilibrium effects (i.e., mismatch in the bath tempera-
tures and electrical pumping) through the magnon density n
in the second term. Solving this equation therefore allows us
to study the location of the BEC instability and the various
crossover behavior near criticality for the general nonequi-
librium magnon system. A similar self-consistent equation
was obtained recently using the Keldysh formalism for a
spin-current driven magnetic insulator in Ref. [17].

V. BEC CRITICAL PHENOMENA

We now construct a two-dimensional phase diagram for
the magnon system spanned by the phonon temperature TB

and external magnetic field B. We define the equilibrium limit
as TB = TF ≡ T and μs = 0, and systematically study the
departures from this limit by introducing TF �= TB and μs > 0.

We begin with the limit of zero electrical pumping, i.e.,
μs = 0. In this limit, the BEC critical line [defined by μ = 0
in Eq. (23)] is given by the following critical magnetic field:

h̄γ Bc = SK0 − �αc
(αB

α
T 3/2

B + αF

α
T 3/2

F

)
, (24)

where c is a real constant given by

c = [K0 + J0(4λ − 1)]
vsζ3/2(1)√

2ξ 3
J

(
kB

πJ0S

)3/2

,

ζ3/2(x) is the polylog function, vs is the volume occupied by
each atomic spin, and �α = (1 + α2)1/4 cos[(tan−1 α)/2] is a
prefactor that arises due to dissipation.

If the two bath temperatures are equal and the dissipation
is absent, i.e., TB = TF and α = 0, we have �α=0 = 1 and
Eq. (24) reduces precisely to the well-known BEC critical line
for dilute Bose gases (see solid black line in Fig. 4) [18,19]. If
we then introduce Gilbert damping α > 0 (while still keeping
TF = TB), the critical line is modified to the dashed line; we
find that dissipation, as expected, leads to the shrinking of the
BEC phase region.

Let us now consider both TF �= TB and α > 0. The two
colored lines in Fig. 4 give the critical lines for mismatched

TF=TB,   α=0
TF=TB,   α=0.1
TF<TB,   α=0.1
TF>TB,   α=0.1

normal

BECBECB
 [a

rb
itr

ar
y 

un
its

]

TB [arbitrary units]0

FIG. 4. Critical lines separating the BEC phase from the normal
phase at zero electrical pumping, μs = 0. The phase diagram is
spanned by the magnetic field B and phonon temperature TB. The
solid black line corresponds to the equilibrium, isolated limit with
TB = TF and α = 0. For α = 0.1, the dashed line obtains, indicating
that the BEC region is shrunk by dissipation. The red (blue) line
corresponds to the critical line with TF = 1.2TB (TF = 0.8TB); here
we have chosen αB = αF .

bath temperatures TF �= TB, the red and blue lines corre-
sponding to TF > TB and TF < TB, respectively. We find that
raising (lowering) the fermion bath temperature above (below)
the phonon temperature generally destabilizes (stabilizes) the
BEC phase. In the absence of electrical pumping μs = 0, our
model therefore predicts that triggering a steady state magnon
BEC with a positive temperature difference between the metal
and the phonons (TF − TB > 0, i.e., magnon BEC via spin
Seebeck mechanism alone) is not possible.

The reason for this claim can be understood as follows. Our
theoretical analysis in Sec. IV shows that once the phonon
and metallic baths are integrated out, magnon distribution
function Eq. (19) is no longer thermal but is defined by the
distribution functions of both baths. The magnon distribution
function therefore “floats” (i.e., adjusts) according to the
thermal distribution functions of the surrounding baths. In this
sense, it would be reasonable to expect that realizing magnon
BEC by heating the metal is impossible because that will
always heat up the magnon system and hinder condensation.

Electrically pumped BEC of magnons in a setup very
similar to Fig. 1 was studied recently in Ref. [11] by as-
suming that magnons remain internally thermalized with an
effective temperature and chemical potential. In the so-called
“floating temperature” regime, the work obtains the effective
magnon temperature by balancing the spin/energy transfer
across the metal-magnet interface and loss to the phonon
bath. In this regime, the work shows that raising (lowering)
the metal temperature above (below) the phonon temperature
tends to hinder (facilitate) magnon condensation, and there-
fore shows some level of consistency with our findings.

A. Finite temperature crossovers

The finite temperature crossover behavior of the standard
equilibrium Bose gas near BEC instability has been studied in
detail in, e.g., Ref. [18]. However, we show in this section that
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(α
μ 0

/α
Fc

)2/
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B

(αμ0/αBc)2/3μ0/kB
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II
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IIF

μ0 +
αBc

α
T

3/2
B

μ0 +
αF c

α
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3/2
F
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α
T

3/2
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α
T

3/2
F

αBc

α
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3/2
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α
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B
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α
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3/2
F

αF c

α
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3/2
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α
T

3/2
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αF c

α
T

3/2
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FIG. 5. Approximate expressions for the magnon gap μ for μs =
0. The columns separate the low, intermediate, and high temperature
regimes with respect to the phonon temperature, while the rows
separate the three regimes with respect to the metal temperature. The
three finite-temperature regimes familiar from the equilibrium dilute
Bose gas [18] are enclosed by the thick red box.

the presence of two independent bath temperatures endows
the current system with a richer thermal crossover behavior
than the standard counterpart. Here we start by maintaining
μs = 0 and study the effects of the two bath temperatures in
the vicinity of the TB = TF = 0 quantum critical point located
at μ0 = 0.

For weak dissipation, αB, αF � 1, we find that the effects
of the baths on the magnon density of states ρm(
) are very
weak, so we approximate ρm with its expression in the isolated
limit, i.e.,

ρm(
) = − 1

h̄

∑
q

ImDR
q (
)

∣∣∣∣∣
αB = 0
αF = 0

≈ V
√

h̄
 − μθ (h̄
 − μ)√
2π (J0Sξ 2

J )3/2
,

where V is the volume of the ferromagnet. Then the self-
consistent condition Eq. (23) for the magnon gap becomes

μ = μ0 + αB

α

[
ζ3/2(e−μ/kBTB )

ζ3/2(1)

]
cT 3/2

B

+αF

α

[
ζ3/2(e−μ/kBTF )

ζ3/2(1)

]
cT 3/2

F .

This equation can be solved for μ by iteration and gives rise
to nine different regimes with respect to the two bath tempera-
tures as shown in Fig. 5. Since the gap μ is also directly related
to the correlation length ξ of the superfluid order parameter
fluctuations via ξ−2 ∝ μ, Fig. 5 also summarizes how the
correlation length of the critical fluctuations, which diverges
right at the critical line, is cutoff by departures from the critical
line.

Let us first touch base with the known past results. The
finite temperature crossover behavior of the correlation length
for the standard equilibrium Bose gas [18] can be reproduced
by setting αF = 0 here and varying the phonon temperature
TB. If αF = 0, magnons thermalize to the phonons, so TB here
defines the magnon temperature. The three known regimes
that arise are enclosed in the thick red box in Fig. 5. At low
temperatures TB � μ0/kB (shaded in blue), the correlation
length is essentially cutoff by the bare gap μ0 and its TB-
dependent corrections are exponentially small. In this regime,
the interparticle spacing between the magnons is much larger
than the thermal de Broglie wavelength and the the magnon
density is exponentially small. In the intermediate temperature
regime μ0/kB � TB � (μ0/c)2/3 (shaded in green), ξ−2 is
still dominated by μ0, however, the subleading correction now
possesses a power-law form in contrast to the exponential
form obtained in the low-temperature regime. In this regime,
the magnon density scales with temperature as T 3/2

B and
the interparticle spacing becomes of order the de Broglie
wavelength. Finally, in the high-temperature regime TB �
(μ0/c)2/3 (shaded in red), the correlation length is cutoff by
temperature and one finds ξ ∼ T −3/4

B .
If we now reintroduce the fermionic bath (i.e., αF > 0),

each of the above-mentioned regimes is further subdivided
into three subregimes depending on the magnitude of the
metal temperature TF (see Fig. 5): the bottom row corresponds
to the low temperature regime with respect to the fermion
temperature with TF � μ0/kB, the middle row to intermediate
fermion temperatures μ0/kB � TF � (αμ0/αF c)2/3, and the
top row to the high temperature regime TF � (αμ0/αF c)2/3.
These new subregimes arise because the metal is just as
capable of creating thermal magnons in the ferromagnet and
inducing thermal crossovers in the correlation length as the
phonon bath. We see that the correction to the magnon gap
coming from TF is exponentially small in the low temperature
regime and so TF essentially does not enter the expression
for the correlation length (see the bottom row). However, in
analogy with TB, the metal temperature becomes increasingly
effective in cutting off the correlation length as it increases,
and once the high temperature regime is reached (see the
top row), the correlation length essentially becomes defined
by TF unless the phonon temperature TB is also in the high
temperature regime (i.e., the top right corner).

B. BEC instability due to electrical pumping

We finally come to the discussion of the nonequilibrium
drive and reinstate electrical pumping μs. As one increases
μs from zero, the instability of the normal phase is triggered
once the frequency μ/h̄ corresponding to the excitations at the
bottom of the band obeys Im{DR−1

q (μ/h̄)} = 0, i.e.,

μc
s =

(
1 + αB

αF

)
μ. (25)

If μs is increased beyond this point, the imaginary parts of
the small-q poles become positive and fluctuations in the
system grow in time, thus signaling an instability [25]. From
Eq. (19), we see that the instability condition Eq. (25) signals a
divergence in the magnon distribution function N (
) as well.
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FIG. 6. A possible device for measuring spin conductivity.
Magnons are injected into the ferromagnet by the injector metal
via spin Hall effect, and magnon conductivity is quantified by
electrically measuring the magnon density underneath the detector
metal. The central metal bath is thermalized at temperature TF and
may possess a spin-Hall generated nonequilibrium spin accumulation
μs that can modulate the magnon density below it. The entire
ferromagnet is coupled to a phonon bath at temperature TB. The three
ferromagnetic regions in between the injector and detector metals can
be modeled as three resistances in series, as shown below the device.
At the bottom of the figure, we sketch the external magnetic field,
with a negative uniform gradient along the x axis, considered in the
spin conductivity calculation.

We note that Eq. (25) is actually a self-consistent equation
for μs because μ itself depends on μs through magnon density
n in Eq. (23). However, we find that μs has a relatively small
effect on the solution for the magnon gap μ (see Appendix C
for more details). In other words, even with μs > 0, μ can
be well approximated by the solution of Eq. (23) with μs set
to zero, and μs can essentially be introduced as an indepen-
dent nonequilibrium parameter. The BEC instability criterion
Eq. (25) can therefore be well approximated by

μc
s ≈

(
1 + αB

αF

)
μ(μs = 0, TB, TF ).

VI. SPIN CONDUCTIVITY

Finite temperature crossovers exhibited by the magnon
gap entails corresponding crossovers in the magnon spin
conductivity. Here we use the Kubo formalism to compute the
magnon spin conductivity within the normal phase and the
Hartree-Fock approximation for various bath temperatures TB

and TF and the magnetic field μ0. We then later investigate the
effects of finite electrical pumping μs > 0.

Spin conductivity can be obtained by looking at the re-
sponse of the magnons to an external magnetic field B(x, t );
here we focus only on the spin current polarized along the z
axis, which is the conserved component. The relevant (time-
dependent) perturbation can then be written as

H ′(t ) = h̄γ

∫
d3x B(x, t )a†(x)a(x),

where a(x) = ai/v
1/2
s is the continuum magnon field operator.

Assuming that the magnetic field has a negative uniform
gradient only along the x axis (see bottom of Fig. 6), the
resulting spin current J (x, t ) flowing along the same axis,

within linear response, reads [26–28]

J (x, t ) = h̄γ

∫
d3x′

∫
dt ′χ (x − x′, t − t ′)B(x′, t ′),

where the susceptibility is defined as

χ (x − x′, t − t ′) = − ι

h̄
θ (t − t ′)〈[ j(x, t ), �(x′, t ′)]〉HF,

�(x, t ) = a†(x, t )a(x, t ) is the magnon density operator and
j(x, t ) = ι(J0Sξ 2

J /2)[∂xa†(x)]a(x) + H.c. is the magnon spin
current operator.

The spin conductivity σ is defined as the constant of
proportionality between the negative gradient of the mag-
netic field and the spin current that flows in response to
it, i.e., Jq(ω) = σ (q, ω)(−ιqx )h̄γ Bq(ω), where σ (q, ω) =
(−ιqx )−1χ (q, ω). It can be calculated by closely following
the standard calculation for the Kubo electrical conductivity
in metals [26]. Moving the details of the calculations to
Appendix D, the DC spin conductivity, within the Hartree-
Fock approximation and the spatially uniform limit, becomes

σ0 = −2

3

(
J0Sξ 2

J

2h̄

)2 ∫
d


2π

∫
d3k

(2π )3
∂
N (
)k2B2

k (
).

(26)

A. Finite-temperature crossovers

To explore the behavior of σ0, we begin by setting μs = 0
and, for simplicity, consider two equal bath temperatures, i.e.,
TB = TF ≡ T . The DC spin conductivity can then be studied
in the three temperature regimes, I, II, and III, shown in Fig. 5.
Both the phonon and metallic baths contribute to the thermal
population of magnons inside the ferromagnet. Evaluating
Eq. (26) in the limit of weak damping αB, αF � 1, σ0 can
be well approximated by

σ0 ≈ 1

24π2α

√
2kBT

J0Sξ 2
J

S

(
μ

kBT

)
,

where the dimensionless function S(s) has the following
asymptotic behavior:

S(s) ≈
{

3
√

π

4
e−s

s , s � 1,
3π
2

1√
s
, s � 1.

In the low temperature regime T � μ0/kB, the baths gen-
erate very few thermal magnons in the ferromagnet and the
conductivity becomes exponentially suppressed. In this limit,
we have μ ≈ μ0 and obtain

σ0 ≈
√

2

32αξJ

(
J0S

μ0

)(
kBT

πJ0S

)3/2

e−μ0/kBT . (27)

When T is in the intermediate to high temperature regimes
T � μ0/kB, the dimensionless function S(s) crosses over to
the other asymptotic regime, and we obtain

σ0 ≈
√

2

16αξJ

√
J0S

μ0 + cT 3/2

(
kBT

πJ0S

)
.

In the intermediate temperature regime (i.e., regime II), the
bare magnon gap still obeys μ0 � cT 3/2 and the DC spin
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conductivity scales as σ0 ∼ T . However, once the temperature
is increased into the high temperature regime (i.e., regime III),
the inequality reverses, i.e., μ0 � cT 3/2, and the temperature
scaling of the DC spin conductivity crosses over to σ0 ∼ T 1/4.
Experimental consequences of these results will be discussed
in Sec. VII.

B. BEC instability due to electrical pumping

We now consider finite electrical pumping μs > 0 for a
fixed set of bath temperatures TB and TF . In Sec. V B we
found that the magnon gap μ is essentially determined by TB

and TF alone, and so μs can be thought of as an independent
parameter. Exploiting this fact, we explore the behavior of
σ0 as one tunes μs toward the BEC instability point μc

s [see
Eq. (25)] and find that σ0 diverges algebraically. The rele-
vant exponent can be found straightforwardly by evaluating
Eq. (26) with μs �= 0. We fix the magnon gap to a finite
positive value μ > 0 and sweep μs toward μc

s ; we also assume
that the bath temperatures do not change as electrical pumping
is increased to the instability point. Then, again in the limit of
weak damping αB, αF � 1, we find

σ0 ≈ 1

6π2

√
2

J0Sξ 2
J

∫ ∞

μ/h̄
d
 N (
)

∂

∂


(h̄
 − μ)3/2

αh̄
 − αF μs
,

which diverge as (μc
s − μs)−1/2 as μs → μc

s .

VII. DISCUSSION

Spin conductivity predictions in Sec. VI can be experimen-
tally verified using a two-terminal spin transport setup similar
to the devices studied in, e.g., Refs. [12,29]. The setup is
shown in Fig. 6. The magnons are injected from the injector
metal via the spin Hall effect, and magnon spin conductivity
is quantified by electrically measuring the magnon density
underneath the detector metal. The central metal bath is ther-
malized at temperature TF and may possess a nonequilibrium
spin accumulation μs generated via the spin Hall effect. The
main function of the spin accumulation is to modulate the
density of magnons below the metal and to alter the spin
conductivity in that region. The entire ferromagnet is coupled
to a phonon bath at temperature TB.

We characterize spin transport in between the injector and
detector metals using a series resistor model (see Fig. 6).
Given that the cross-sectional area of the ferromagnet is A
and that the conductivities in the three regions from left to
right are σ ′, σ0, and σ ′, respectively, the total spin resistance
R = 1/G of the region should be given by

R = 1

G
= 2d

σ ′A
+ w

σ0A
≡ 2R′ + R0.

The spin conductivity σ ′ for the region outside of the central
region (beneath the metal bath) can be obtained from σ0 in
Eq. (26) by setting αF = 0, i.e.,

1

R′ = σ0A

d

∣∣∣∣
αF =0

.

The first set of experiments can be performed in the
absence of electrical pumping, i.e., μs = 0, maintaining the

∝ T 3/2e−μ0/kBT

∝ T

∝ T 1/4

I II III

FIG. 7. The total spin conductance for the magnon system lo-
cated in between the injector and detector metals for a fixed magnetic
field μ0 > 0 and for μs = 0. We assume here that TB = TF ≡ T . The
conductance traverses through three regimes as the bath temperature
T increased from the low temperature regime T � μ0/kB (regime
I), through the intermediate regime μ0/kB � T � (μ0/c)2/3 (regime
II), and finally to the high temperature regime T � (μ0/c)2/3

(regime III).

temperatures of the two baths equal, i.e., TF = TB = T , and
sweeping T . Here the external field is fixed at some positive
value with μ0 = h̄γ B − SK0 > 0, and the gradual increas-
ing of T from small (T � μ0/kB) to large [T � (μ0/c)2/3]
values allows one to probe the finite temperature crossover
behavior of the spin conductivity. The expected crossover
behavior is shown in Fig. 7. At small temperatures T �
μ0/kB (regime I), the spin conductivities σ ′, σ0 both scale
as T 3/2e−μ0/kBT [see Eq. (27)] as shown by the blue line in
Fig. 7. As the temperature increases into the intermediate and
high temperature regimes (see regimes II and III in Fig. 7), the
spin conductivities (and hence the spin conductance) exhibit
power-law behavior. In the intermediate temperature regime
μ0/kB � T � (μ0/c)2/3, σ ′ and σ0 both scale linearly in T ,
while the behavior crosses over to T 1/4 in the high temperature
regime T � (μ0/c)2/3.

We now include the effect of the electrical pumping μs.
Here we fix the external magnetic field so that μ0 > 0, fix
both bath temperatures to T , but sweep the nonequilibrium
spin accumulation μs toward μc

s . The spin resistance outside
of the region modulated by the central metal bath is then fixed
to a value R′ that is independent of μs, but 1/R0 = σ0A /w

exhibits a diverging behavior as already shown in Sec. VI B.
In Fig. 8 we plot the total spin resistance R (in units of R′) as
a function of μs for d = w and for various ratios of μ/kBT =
0.01, 0.1, 1, 10. We find that as μs approaches the critical
value, the resistance in the central region below the metal
bath vanishes, so that the total spin resistance approaches 2R′.
The plots evince a square root rise in the region μs � μc

s for
relatively high temperatures, e.g., μ/kBT ∼ 0.01, while this
behavior changes for relatively low temperatures (see, e.g.,
μ/kBT = 10).

In Fig. 8 we have chosen αB = αF = 0.01. The y intercepts
of all the curves generally move up (down) when αF is
increased above (decreased below) αB; while the intercepts
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FIG. 8. Spin resistance R as a function of electrical pumping μs

for various values of μ/kBT , where TB = TF ≡ T . Here R is plotted
in units of R′ and we have used αB = αF = 0.01 and d = w.

shift, the qualitative shapes of the curves do not change even
when αF deviates from αB.

VIII. CONCLUSION

We present a microscopic theory based on the Keldysh
path integral formalism to study a magnon system in contact
with a phonon bath and a metallic bath, and subjected to DC
electrical spin injection. For mismatched bath temperatures
and/or finite DC electrical pumping, the magnon system
converges to a nonthermal steady state in which the magnon
distribution function is given by a nontrivial superposition
of the bath distribution functions. Focusing exclusively on
the normal (uncondensed) phase, we uncover a rich finite
temperature crossover behavior exhibited by the correlation
length associated with the superfluid order parameter fluc-
tuations as a function of the phonon and metallic bath tem-
peratures. Motivated by recent spin transport measurements
on a magnon system close to a BEC instability [12], we
compute the linear spin conductivity for arbitrary bath tem-
peratures and electrical pumping strengths, and show that the
finite temperature crossovers in the correlation length leads
to nontrivial dependencies of the spin conductivity on the
bath temperatures. In the presence of pumping, we find an
inverse square-root divergence in the spin conductivity as the
pumping strength approaches the threshold value for BEC
instability. A two-terminal spin transport setup capable of
verifying our predictions is presented.

Recently, the stability criteria for a magnon gas in con-
tact with a metallic bath and in the presence of electrical
spin current injection were studied using the Keldysh path
integral formalism [17]. While the microscopic Keldysh ap-
proach was applied to the normal phase in both Ref. [17]
and here, extending this approach for spin transport analysis
in the condensed phase is an interesting future direction. A
microscopic Keldysh formulation of the coupled nonlinear
dynamics involving the condensate and the thermal magnons
is also an interesting open problem.

Lastly, using the Keldysh formalism to understand the
BEC of parametrically pumped magnons would also be a
worthwhile endeavor. However, a straightforward generaliza-
tion is hampered, at least by the fact that the parametrically
pumped magnon BEC is a transient (dynamic) phenomenon

so that the current formalism must be extended to capture the
nonequilibrium transient physics. Furthermore, understanding
BEC formation following particle and energy injection into
a narrow region of the spectrum requires one to understand
how these excess particles and energy transverse through the
energy shells after the pump is turned off. A well-suited
formalism in treating this physics may be the theory of weak
turbulence, which has been applied to various interacting Bose
gases as well as semiconductor lasers [30–33]. It would be
interesting to apply the idea of weak turbulence to magnon
BEC in parametrically pumped magnetic insulators.
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APPENDIX A: TRACING OUT THE BOSON BATH

Performing the Gaussian integrals over the boson bath
degrees of freedom in Eq. (10) with Eq. (7) directly leads
to Eq. (11), where �R,A,K

i (
) = ∑
α |κi,α|2dR,A,K

α (
) are the
phonon-induced magnon self-energies. The retarded compo-
nent may be written as

�R
i (
) =

∫
d
′

2π

2JB
i (
′)


 − 
′ + ιδ
, (A1)

where JB
i (
) = π

∑
α |κi,α|2δ(
 − 
α ) is the spectral density

of the ith bath, and the Keldysh component reads

�K
i (ω) = −2ιJB

i (ω) coth

(
h̄ω

2kBTB

)
.

Equation (A1) shows that the current formalism allows one to
consider any functional form for the phonon spectral density
JB

i (
). In this work, we consider an ohmic bath,

JB
i (
) = αB

i 


2

c


2
c + 
2

,

where we have introduced a Drude cutoff function with cutoff
frequency 
c and a site-dependent Gilbert damping parameter
αB

i . In the low-frequency limit 
 � 
c, Eq. (A1) reduces to

�R
i (
) = −αB

i (
c + ι
). (A2)

We therefore see that an ohmic bosonic bath here leads to the
standard level broadening proportional to magnon frequency
and thus to the familiar Gilbert damping phenomenology. In
the main text, we have dropped the unimportant constant real
part in Eq. (A2).

APPENDIX B: TRACING OUT THE FERMION BATH

Performing the Gaussian integrals over the fermion bath
degrees of freedom in Eq. (10) with Eq. (8) directly leads to

ιSm
i = Tr ln

[
1 − 1√

2

∑
k

(
ĝk↑(ω) 0

0 ĝk↓(ω)

)

×
(

0 ηiÂi(ω − ω′)
η∗

i
ˆ̄Ai(ω − ω′) 0

)]
,
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where

ĝkσ (ω) =
(

gR
kσ (ω) gK

kσ (ω)
0 gA

kσ (ω)

)
, Âi(ω) =

(
ac

i (ω) aq
i (ω)

aq
i (ω) ac

i (ω)

)
.

Expanding the Tr ln to second order in ηi gives the Gaussian
correction presented in Eq. (14) of the main text, where the
Keldysh components of the fermion-induced magnon self-
energy matrix are given by

�R
i (
) = − ι|ηi|2

2

∑
kk′

∫
dω′

2π

[
gR

k (
 + ω′)gK
k′↓(ω′)

+ gK
k↑(
 + ω′)gA

k′ (ω′)
] = �A∗

i (
),

�K
i (
) = − ι|ηi|2

2

∑
kk′

∫
dω′

2π

[
gK

k↑(
 + ω′)gK
k′↓(ω′)

+ gR
k (
 + ω′)gA

k′ (ω′) + gA
k (
 + ω′)gR

k′ (ω′)
]
.

Inserting Eqs. (9) and performing the internal frequency inte-
gral immediately gives Eqs. (15) and (16).

The fourth order term in the Tr ln expansion gives rise to
the following correction to the quartic terms in SF [i.e., the
last two terms in Eq. (5)]

ιSm(4)
i = −|ηi|4

8

∑
{ki}

∫
dω

2π

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
Tr

[
ĝk1↑(ω + ω1 + ω3 − ω2)Âi(ω)ĝk2↓(ω1 + ω3 − ω2)

× Â∗
i (ω2)ĝk3↑(ω1 + ω3)Âi(ω)ĝk4↓(ω3)Â∗

i (ω + ω1 − ω2)
]
.

Since we expect the energies of the magnons to be much smaller than the Fermi energy, we approximate the above expression
by setting ω = ω1 = ω2 = 0 in the arguments for the fermionic Green functions, and obtain

ιSm(4)
i = −|ηi|4

8

∫
dt

∑
{ki}

∫
dω

2π
Tr

[
ĝk1↑(ω)Âi(t )ĝk2↓(ω)Â∗

i (t )ĝk3↑(ω)Âi(t )ĝk4↓(ω)Â∗
i (t )

]
.

For the retarded and advanced components, we have
∑

k(ω −
εk/h̄ ± ιδ)−1 ≈ −ιπ h̄ρ0, where we assume that the real parts
give zero. Then performing the ω integral, the fermions gen-
erate the following eight quartic terms in the effective magnon
action

ιSm(4)
i = −ι

(
αF

i

)2
∫

dt
[
u1a∗c

i a∗c
i ac

i aq
i − u1a∗c

i a∗q
i ac

i ac
i

+ u2a∗q
i a∗q

i ac
i aq

i − u2a∗c
i a∗q

i aq
i aq

i + u3a∗c
i a∗c

i aq
i aq

i

+ u3a∗q
i a∗q

i ac
i ac

i + u4a∗c
i a∗q

i ac
i aq

i + u5a∗q
i a∗q

i aq
i aq

i

]
,

(B1)

where

u1 = πι
kBTF

h̄

μs

kBTF
,

u2 = πι
kBTF

h̄

5 μs

kBTF
+ 3 μs

kBTF
cosh

(
μs

kBTF

) − 8 sinh
(

μs

kBTF

)
cosh

(
μs

kBTF

) − 1
,

u3 = πι
kBTF

h̄

[
2 − μs

kBTF
coth

(
μs

2kBTF

)]
,

u4 = −4πι
kBTF

h̄

[
1 − μs

kBTF
coth

(
μs

2kBTF

)]
,

u5 = −πι
kBTF

h̄
coth

(
μs

2kBTF

)
csch2

(
μs

2kBTF

)

×
[

3
μs

kBTF
+ μs

kBTF
cosh

(
μs

kBTF

)
− 4 sinh

(
μs

kBTF

)]
.

While the first four terms in Eq. (B1) renormalize the existing
vertices in Eq. (5), the remaining terms are new quartic
vertices generated by the integration over the bath.

APPENDIX C: SELF-CONSISTENT EQUATION FOR THE
MAGNON GAP FOR μs �= 0

In this Appendix we consider Eq. (23) in the presence of
the nonequilibrium drive μs,

μ = μ0 +
[
MB

(
μ

kBTB
,

μs

kBTB

)

+ MF

(
μ

kBTF
,

μs

kBTF

)]
cT 3/2, (C1)

where the two dimensionless functions are given by

MB(x, y) = 2αB

α
√

πζ3/2(1)

∫ ∞

0

ds
√

s

s + x − (αF /α)y

s + x

es+x − 1
,

MF (x, y) = 2αF

α
√

πζ3/2(1)

∫ ∞

0

ds
√

s

s + x − (αF /α)y

s + x − y

es+x−y − 1
.

If we numerically solve Eq. (C1) for μ for a given set of TB

and TF , we find that a finite μs > 0 gives relatively small
corrections to the magnon gap obtained for the same set of
bath temperatures and μs = 0. This allows us to approximate
μ, even with finite electrical pumping, by setting μs = 0
in Eq. (23) and treat μs as an independent nonequilibrium
parameter.

APPENDIX D: KUBO FORMULA FOR
THE SPIN CONDUCTIVITY

In this Appendix we derive the expression for the DC spin
conductivity given in Eq. (26) of the main text. We start with
the Fourier transformed expression for the spin conductivity
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σ (q, ω) = χ (q, ω)/(−ιqx ), where

χ (q, ω) = − ι

h̄V

∫ ∞

0
dt eιωt 〈[ j(q, t ), �(−q, 0)]〉HF. (D1)

The spin current and magnon density operators j and � have
been introduced in the main text. Integrating Eq. (D1) by parts
and using the relation h̄�̇(q, t ) = −ιq · j(q, t ), we obtain

χ (q, ω) = − ι

h̄V

1

ιω

{
− 〈[ j(q, t ), �(−q, 0)]〉HF

+ ιqx

h̄

∫ ∞

0
dt eιωt 〈[ j(q, t ), j(−q, 0)]〉HF

}
.

Evaluating the above expectation values within the Hartree-
Fock approximation, we then obtain

χ (q, ω) = − ιqx

ωV

[
2�

h̄

∑
k

∫
d


2π
D<

k (
) +
(

�

h̄

)2

P(ω)

]
,

where � ≡ J0Sξ 2
J /2, D<

k (
) = −ιN (
)Bk(
) is the lesser
magnon Green function, and

P(ω) =
∫

d


2π

∑
k

(2kx )2
[
DR

k (
 + ω)D<
k (
)

+D<
k (
 + ω)DA

k (
)
]
. (D2)

We find that the ω = 0 contribution of the second term
in χ (q, ω) cancels precisely the first term. We may therefore
write the spin conductivity in the uniform limit as

σ (q → 0, ω) = − 1

V

(
J0Sξ 2

J

2h̄

)2
P(ω) − P(0)

ω
.

Using Eq. (D2) and taking the limit ω → 0 in the above
expression immediately gives Eq. (26) in the main text.
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