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Electronic specific heat coefficient and magnetic properties of Y(Fe1−xCox)2 Laves phases: A
combined experimental and first-principles study
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and Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań, Poland
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We investigated experimentally and computationally the concentration dependence of the electronic specific
heat coefficient γ in the Y(Fe1−xCox )2 pseudobinary Laves phase system. The experimentally observed
maximum in γ (x) around the magnetic phase transition was interpreted within the local density approximation
combined with the virtual crystal approximation. To explain the formation of the observed maximum, we
analyzed theoretically the dependence of the magnetic energy, magnetic moments, densities of states, and Fermi
surfaces on the Co concentration. Furthermore, we carried out the calculations of the density of states (DOS)
at the Fermi level as a function of fixed spin moment. The calculated Co concentration at which γ takes the
maximum value (xmax-LDA-VCA = 0.91) stays in good agreement with the measured value (xmax-expt = 0.925). We
conclude that the observed maximum in γ (x) results from the presence of the sharp DOS peak in the vicinity of
the Fermi level.
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I. INTRODUCTION

The Laves phases are the largest group of intermetallic
compounds [1]. They crystallize in close-packed structure
classified into three types: Hexagonal MgZn2 (C14), cu-
bic MgCu2 (C15), and hexagonal MgNi2 (C36) [2–4]. The
Y(Fe1−xCox )2 alloys crystallize in the cubic C15 MgCu2-type
structure [5] with the space group Fd-3m (No. 227); see Fig. 1
and Table I. The primitive cell of YCo2 consists of two Y and
four Co atoms. The sublattice of Y has a diamond structure
and the sublattice of Co forms the kagome lattice (trihexago-
nal tiling). YFe2 is a ferromagnet with the Curie temperature
of about 550 K [6,7], while YCo2 is an exchange-enhanced
Pauli paramagnet [8] undergoing a metamagnetic transition
in a field of about 70 T (at 10 K) [9,10]. Fe/Co alloying
induces a paramagnetic-ferromagnetic phase transition in the
Y(Fe, Co)2 system with a critical Fe concentration of about
0.14 [11]. The measured dependence of magnetic moment (m)
on Co concentration starts at 2.80 μB f.u.−1 for YFe2, reaches
a broad maximum for intermediate concentrations, and drops
sharply to zero near the critical Co concentration [11]. The
pseudobinary Laves phases Y(Fe1−xCox )2 exhibit both ex-
traordinary magnetic properties [7,12–15] and the ability
to absorb hydrogen [16–19]. Moreover, the DyFe2/YFe2

magnetic thin films are reversible exchange-spring mag-
nets [20,21] and the YCo2 alloys with rare-earth elements
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R1−xYxCo2 (R = Er, Gd) are considered as magnetocaloric
materials for application in magnetic refrigerators [22,23].

Our previous experimental and theoretical investigations
on the Y(Fe1−xCox )2 system covered such issues as the
magnetic moments of Y(Fe1−xCox )2 [24,25], electronic struc-
ture of YCo2 [26,27], effect of YCo2 doping [28], mag-
netic percolation in Y(Fe1−xCox )2 [29], Curie temperature of
Y(Fe1−xCox )2 [30], and structural disorder in YCo2 [31].

In this work we focus on the concentration dependence of
the electronic specific heat coefficient γ , where the specific
heat is a temperature derivative of the internal energy. The
temperature dependence of specific heat consists of a lattice
contribution and linear electronic term γ T . As the Fermi-
Dirac statistic indicates, only a small fraction of electrons
contributes to the specific heat and the electronic contribution
is the most pronounced in metals at low temperatures. In the
Sommerfeld model, the electronic specific heat coefficient γ

is calculated by converting the value of the density of states at
the Fermi level [DOS(EF)] according to the equation

γ = 1
3π2k2

BDOS(EF), (1)

where kB is the Boltzmann constant [32].

II. EXPERIMENTAL AND COMPUTATIONAL DETAILS

The ingots of several Y(Fe1−xCox )2 compositions (x =
0.85, 0.90, 0.925, 0.95, and 0.985) were prepared with the
use of arc furnace by repeated melting of required amounts
of high-purity Y (99.9%), Co (99.9%), and Fe (99.9%) in Ar
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FIG. 1. Crystal structure of the cubic MgCu2-type Laves phase.

atmosphere. The polycrystalline master alloys were rapidly
quenched in a melt-spinning device on a rotating copper wheel
with the surface velocity of 40 m s−1. The x-ray diffraction
with Co Kα radiation in Bragg-Brentano geometry was used to
characterize the crystalline structure of the melt-spun flakes.
The temperature dependencies of heat capacity were mea-
sured with the two-tau relaxation method using the Quantum
Design Physical Property Measurement System.

To simulate the chemical disorder in the theoretical mod-
els of the considered Y(Fe1−xCox )2 alloys three different
methods were used: The coherent potential approximation
(CPA) [33,34], the virtual crystal approximation (VCA) [25],
and the ordered compound method (also called the supercell
method) [24]. The density functional theory (DFT) calcu-
lations were conducted with the full-potential local-orbital
scheme (FPLO) [35]. The older FPLO5.00-18 version of the
code was used for the CPA, which is not available in the more
recent versions. The rest of the calculations were performed
with the FPLO14.0-49. For the exchange-correlation poten-
tial, we used the Perdew and Wang (PW92) model of the
local-spin-density approximation [36]. As a result of using the
CPA, we had to limit our calculations to the scalar-relativistic
approximation. This is because in the FPLO5.00-18 version
of the code, the CPA calculation can only be carried out
with the scalar-relativistic approximation (not including spin-
orbit coupling); therefore for consistency this approach was
also used in other cases. The calculations were done using a
40 × 40 × 40 k mesh for the VCA and 16 × 16 × 16 k mesh
for the CPA and ordered compound methods. For all three
approaches we used the criterion of simultaneous energy and
density convergence with an accuracy of ∼2.72 × 10−7 eV
(10−8 Ha) and 10−6, respectively. In the FPLO5 the Y(4s, 4p)

TABLE I. Atomic coordinates for YFe2 and YCo2, space group
Fd-3m (No. 227), origin choice two.

atom site x y z

Y 8(a) 1/8 1/8 1/8
Fe/Co 16(d) 1/2 1/2 1/2

and Fe/Co(3s, 3p) electrons were treated as semicore with
the Y 4s and 4p orbitals having separate compression pa-
rameters, while the 3s and 3p orbitals in Fe and Co have a
joint one. The Y(5s, 5p, 4d ) and Fe/Co(4s, 4p, 3d ) electrons
were treated as valence ones. The considered crystallographic
models were based on the optimized lattice parameters, as the
application of the experimental parameters for YCo2 resulted
in a ferromagnetic ground state, which is not consistent with
the empirical data [27,31,37]. Due to the overbinding nature
of the local density approximation (LDA), the calculated
lattice parameters (7.05 Å for YFe2 and 6.95 Å for YCo2)
are much smaller than the experimental ones (7.36 Å for
YFe2 and 7.22 Å for YCo2 [7]). However, they stay in good
agreement with the previous LDA results (7.04 Å for YFe2

and 6.96 Å for YCo2 [37,38]). The lattice parameters for the
intermediate Y(Fe1−xCox )2 concentrations were interpolated
assuming a linear behavior of a(x) dependence, which is in
good agreement with experiment [7]. In case of the ordered
compound approach, we started with a model of the YFe2

supercell, composed of two primitive cells including four Y
atoms and eight Fe atoms. We consequently substituted Fe
by Co in the Y4Fe8 master cell producing a series of or-
dered ternary compounds: Y4Fe7Co1, Y4Fe6Co2, Y4Fe5Co3,
etc. The detailed crystallographic data of these compounds
are summarized in Table III of the Appendix. The VESTA

code [39] was used for visualization of the crystal structure.
We determined the enhanced specific heat coefficients

γcalc-enh by multiplying the γ values calculated from Eq. (1)
by the so called enhancement factor (γ̃ ). For each considered
composition we used a single value of enhancement factor γ̃

equal to 6.87, which has been obtained by Tanaka and Harima
for YCo2 by adjusting the γcalc to γexpt [45]. Tanaka and
Harima have introduced the enhancement factor motivating
that for the strongly correlated electron systems the many-
body effects can be taken into account considered as self-
energy of the Co d electrons [45]. The enhancement factor
(γ̃ ) was expressed as an energy derivative of the self-energy
[�(ω)],

γ̃ = 1 − {∂�(ω)/∂ω}ω=EF , (2)

where �(ω) was calculated with the method of second-order
perturbation for Coulomb interactions (Udd ) between Co d
electrons in the framework of the Fermi liquid theory on the
basis of a periodic Anderson model. The value of γ̃ = 6.87
has been obtained by Tanaka and Harima by assuming Udd

equal 1.8 eV [45]. Details of this method can be found in Ref.
[46] along with examples of applications.

III. RESULTS AND DISCUSSION

A. Experimental results and discussion

The experimental study of γ (x) is conducted in the vicinity
of Co concentration x = 0.9, where the maximum in γ has
been previously observed [40]. However, the foregoing study
has been carried out with a relatively large step of �x = 0.1.
Our results of specific heat (Cp) measurements in a temper-
ature range between 2 and 70 K are presented in the inset of
Fig. 2. The Cp(T ) curves do not show any apparent differences
and no indication of a long-range magnetic ordering is visible
in the plots. However, the Cp/T versus T 2 dependencies
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FIG. 2. The Cp/T versus T 2 dependencies for several
Y(Fe1−xCox )2 compositions, where x = 0.85, 0.90, 0.925, 0.95, and
0.985. The symbols denote the experimental results, while the solid
lines denote the fitting. Inset shows the temperature dependencies of
the specific heat (Cp).

already reveal how the γ coefficient changes with x. The con-
centration dependence of the Sommerfeld coefficient exhibits
a broad peak with the maximum of 62.8 mJ mol−1 K−2 at
x = 0.925; see Fig. 3 and Table II. This result is in a good
agreement with the previous one indicating the γmax slightly
below 60 mJ mol−1 K−2 located at x = 0.9 [40].

For x equal to 0.925, 0.95, and 0.985, the estimations
of γexpt were done excluding nonlinear low-temperature re-
gions. Nonlinearity, in the form of a significant upturn on
the Cp/T (T 2) dependence, is visible at low temperatures
for x = 0.985 in the inset of Fig. 2. Some deviations from
linearity were also detected for x = 0.925 and 0.95. For x =
0.85 and 0.90 the linear dependencies in Cp/T (T 2) were
measured down to the lowest temperatures. A very small
upturn of Cp/T (T 2) for x = 0.925 suggests that this alloy is
just below the critical concentration for magnetic percolation.
A similar anomaly has been also observed for other Laves
phases, as for example for Y1−xGdxCo2 [41]. Thus, being
careful one can determine the critical concentration as 0.90 <

xcrit < 0.95, with the other authors reporting somewhat lower
values, xcrit ∼ 0.86 [11], 0.88 [42], and 0.895 [42]. The shift
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FIG. 3. The experimental electronic specific heat coefficient γ as
measured for Y(Fe1−xCox )2 system. The value of γ for YCo2 (x =
1.0) comes from Muraoka et al. [40].

TABLE II. The experimental electronic specific heat coefficient
γexpt, in mJ mol−1 K−2, measured for Y(Fe1−xCox )2 system in the
Co-rich region (0.85 � x � 0.985). � is an estimated error of the
measured value.

x = 0.85 0.90 0.925 0.95 0.985

γexpt 44.0 57.5 62.8 61.6 47.3
� ±1.0 ±0.3 ±0.3 ±1.0 ±0.3

of the measured critical concentration can be explained as an
effect of using the rapid quenching technique for synthesis
of our alloys. This results in chemical and topological dis-
order being introduced, which leads to the formation of the
magnetically ordered state [28,29,31]. When starting from an
exchange-enhanced Pauli paramagnet YCo2, an introduction
of structural disorder (or addition of other element) causes
the formation of magnetically ordered clusters (spin-glass-
type behavior) with nonzero magnetic moment on Co atoms.
Formation of such magnetic clusters has been described for
Y1−xGdxCo2 as a “microscopic” metamagnetic phase transi-
tion that occurs at a sufficiently high molecular field acting
on Co atoms [41]. Magnetic percolation to the long-range
magnetic ordering takes place when the volume and number
of magnetic clusters, which can be described as localized
spin density fluctuations, are increasing. Such fluctuations
originate from the distribution of d-d exchange coupling due
to the presence of chemical or structural disorder and from the
inhomogeneous distribution of the local density of states. This
picture leads to the conclusion that the additional contribution
to the heat capacity of the samples above xcrit is connected
with the presence of magnetically ordered clusters. The above
suggests a close connection between the maximum in γ (x)
and magnetic phase transition in the considered Laves phases.

TABLE III. Crystallographic data for Y4Fe7Co1, Y4Fe6Co2,
Y4Fe5Co3, and Y4Fe4Co4 ordered compounds, where a is the cubic
Laves phase lattice parameter (optimized a equals 7.045 Å for YFe2

and 6.95 Å for YCo2; s.g. = space group).

Y4Fe7Co1 s.g. 20 C2221 Y4Fe5Co3 s.g. 20 C2221

a, b, c: a
√

2 a
√

2 a a, b, c: a
√

2 a
√

2 a
atom x y z atom x y z

1 Y 1/8 1/8 1/8 1 Y 3/8 7/8 1/8
2 Y 1/8 3/8 7/8 2 Y 7/8 1/8 7/8
3 Fe 1/2 1/8 3/4 3 Fe 1/2 3/8 3/4
4 Fe 3/8 1/4 0 4 Fe 5/8 1/4 0
5 Fe 3/4 1/8 3/4 5 Fe 1/4 3/8 3/4
6 Fe 5/8 0 1/2 6 Co 7/8 0 1/2
7 Fe 1/2 3/8 1/4 7 Co 1/2 1/8 1/4
8 Co 1/8 0 1/2 8 Co 3/8 0 1/2

Y4Fe6Co2 s.g. 213 P4132 Y4Fe4Co4 s.g. 91 P4122

a, b, c: a a a a, b, c: a/
√

2 a/
√

2 a
atom x y z atom x y z

1 Y 0 1/2 1/2 1 Y 3/4 3/4 7/8
2 Co 3/8 3/8 3/8 2 Fe 1/4 0 3/4
3 Fe 7/8 7/8 3/8 3 Co 3/4 1/2 1/4
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FIG. 4. To analyze the formation of the maximum in γ (x) on the
Co-rich region of the Y(Fe1−xCox )2 system, we employed the local
density approximation (LDA) in combination with the virtual crystal
approximation (VCA). Here we show the calculated (with LDA-
VCA) densities of states for Co concentrations near xcrit ∼ 0.925
at which a ferromagnetic-nonmagnetic phase transition occurs in
the Y(Fe1−xCox )2 system. Results of spin-polarized calculations are
presented on the left, with solid lines denoting majority and dashed
lines denoting minority spin channels. The nonmagnetic results are
shown on the right.

B. Theoretical results and discussion

According to Muraoka et al. [40] the characteristic en-
hancement of γ (x) around the critical concentration should
be attributed to the spin fluctuations. Subsequently, two theo-
retical attempts have been made by Shimizu et al. to reproduce
the maximum in γ (x) [43,44]. The first approach was based
on the Green’s functions method [43] and in the second one
the rigid-band model was used on top of the YCo2 density
of states (DOS) from the tight-binding approximation [44].
Unfortunately, the γ (x) dependencies obtained from both
methods are unsatisfactory, especially in the vicinity of the
magnetic transition.

1. Densities of states and electronic specific heat coefficient

In Fig. 4 we present the densities of states for several
Co-rich compositions of the Y(Fe1−xCox )2 system. A com-
parison of total energies of ferromagnetic and nonmagnetic
ground-state solutions indicates a magnetic phase transition
at xcrit ∼ 0.925. The presented DOSs are spin polarized for
a ferromagnetic region (x < 0.925) and nonmagnetic above
the critical concentration (x > 0.925). The valence bands of
the considered alloys start at about −7 eV with the most
significant contributions from the 3d states located above
−4 eV [31,45]. The DOS plots presented in Fig. 4 cover
only the narrow region between −1 and 1 eV, which is
the most important from the perspective of magnetic phase
transition. For YCo2 we observe a characteristic sharp peak
near the Fermi level (EF). A decrease of Co concentration
leads to the depopulation of the valence band, whereby
the relative position of the Fermi level moves toward the
center of that peak. Due to the exchange interactions that
peak splits asymmetrically below the critical concentration
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FIG. 5. The calculated (with LDA-VCA) enhanced electronic
specific heat coefficient γcalc-enh for the Y(Fe1−xCox )2 system in
the Co-rich region (0.85 � x < 1), together with the experimental
dependence of γexpt. The enhancement factor γ̃ = 6.87 was applied
as calculated for YCo2 by Tanaka and Harima [45]. The γcalc-enh

plot consists of two sections, ferromagnetic (FM) and nonmagnetic
(NM), on the two sides of the phase transition determined by xcrit ∼
0.925. The value of γ for YCo2 (x = 1.0) comes from Muraoka
et al. [40].

(xcrit ∼ 0.925). The majority spin channel (the occupied one,
red in Fig. 4) moves toward lower energies by about 0.4 eV,
while the minority spin channel (the unoccupied one, blue)
is shifted toward higher energies by about 0.2 eV. Since the
sharp peak of the minority spin channel is located on the Fermi
level, the DOS at the Fermi level increases. Further decrease in
Co concentration leads to an increase of the magnetic moment
and thus to increase of the exchange splitting. That shifts the
observed sharp peak below the Fermi level toward the higher
energies and the DOS at the Fermi level decreases.

In the next step we calculate the values of γ from
DOS(EF) according to Eq. (1). For the nonmagnetic YCo2

(x = 1.00) the γcalc is equal to 4.6 mJ mol−1 K−2 and it
is relatively close to a previously calculated value equal
of 6.1 mJ mol−1 K−2 [45]. Both of those calculated val-
ues are distant from the experimental one, equal to
36.2 mJ mol−1 K−2 (per mole of YCo2) [40]. The underesti-
mation of γ values is a recognized DFT weakness related to
disregard of spin fluctuations and many-body effects in low-
energy excitations [45]. The many-body effects can be taken
into account by considering the self-energy of the correlated
electrons. By using that approach Tanaka et al. justified the
introduction of the so called enhancement factor (γ̃ ) [45,46];
see Sec. II for more details. The enhancement factor for YCo2,
obtained by Tanaka and Harima by adjusting the calculated
values of the specific heat coefficient to the experimental
value, is equal to 6.87 [45]. We use this single value to
calculate the enhanced specific heat coefficient (γcalc-enh) for
each considered composition simply by multiplying the calcu-
lated with LDA specific heat coefficient γcalc by the enhance-
ment factor γ̃ = 6.87. The γcalc-enh(x) dependence consists of
two regions (ferromagnetic and nonmagnetic) separated by a
phase transition at xcrit ∼ 0.925; see Fig. 5. Similarly to the
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experimental result it shows a maximum for the Co-rich com-
positions close to xcrit . The calculated and experimental Co
concentrations for which the maximum in γ is observed are
in good agreement with each other (xmax-LDA-VCA = 0.91 and
xmax-expt ∼ 0.925). The shape of the γcalc-enh(x) dependence
results directly from the contour of a narrow peak observed
about 0.1 eV below EF in the DOS plot of YCo2; see Fig. 4.
The position of this peak in relation to EF changes with x
and for the Co concentration range between about 0.85 and
1.00 this peak is fully scanned by the EF which is reflected
in the observed maximum in DOS(EF)(x) and further in the
corresponding γcalc-enh(x) dependence.

The calculated (without enhancement) maximum of the
specific heat coefficient γmax is around 12 mJ mol−1 K−2 (at
xmax = 0.91). This value multiplied by the enhancement pa-
rameter (γ̃ = 6.87) gives the maximum of enhanced specific
heat coefficient γmax-enh ∼ 70 mJ mol−1 K−2, whereas the ex-
perimental value γmax-expt is around 62.8 mJ mol−1 K−2 [per
mole of Y(Fe0.075Co0.925)2] for x = 0.925; see Table II. The
cause of this big difference between the γmax and γmax-expt,
besides the disregard of many-body effects, can be due to
not taking into account the additional impact of spin fluctu-
ations around the magnetic phase transition in the theoretical
models [40]. The enhanced specific heat coefficient γmax-enh is
much closer to γmax-expt, but at the price of using the enhance-
ment parameter γ̃ justified by the model considering many-
body effects but still neglecting spin fluctuations [45,46].

It is a little bit surprising that the calculated peak of
γ does not coincide with the xcrit-LDA-VCA ∼ 0.925, but in-
stead occurs at xmax = 0.91. Unfortunately, the results of
our measurements (xmax ∼ 0.925 and 0.90 < xcrit < 0.95) are
not accurate enough to confirm this effect in Y(Fe1−xCox )2.
However, a much larger difference has been previously mea-
sured for the Zr(Fe1−xCox )2 system, with xmax = 0.5 and
xcrit = 0.75 [47].

The observed discrepancies between the experimental and
computational results of γ (x) arise, among other things, from
not considering many-body effects and spin fluctuations in the
theoretical description. They can be also partly attributed to
the shortcomings of the LDA and VCA. The application of
the LDA results in reduction of the lattice parameter due to
overbinding, and it is accompanied by reduction of the mag-
netic moments, underestimation of the magnetic energy, and
shift of the critical Co concentration for which the magnetic
transition occurs, whereas the VCA simplifies the nature of
chemical disorder by forming a homogeneous crystal. As a
result, we received a sharp band structure without any broad-
ening coming from the chemical disorder, which is observed
in the angle-resolved photoemission spectroscopy (ARPES)
measurements and in the CPA calculations of disordered
alloys. So why did we choose the VCA instead of the CPA
to do the research? An application of the CPA would not
allow us to analyze the fixed spin moment and Fermi surface,
which results will be presented in the following sections.
Nevertheless, we have also performed the additional CPA-
LDA calculations, which have confirmed the presence of the
magnetic phase transition and the maximum in γ (x) for the
Co-rich compositions. However, the CPA maximum in γ (x)
is much smoother than that from the VCA method, which can
be related to the mentioned broadening caused by chemical
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FIG. 6. The calculated (with LDA-VCA method) magnetic en-
ergy and density of states at Fermi level versus fixed spin moment for
several Co concentrations in the vicinity of the critical concentration
xcrit ∼ 0.925 at which occurs a ferromagnetic-nonmagnetic phase
transition for the Y(Fe1−xCox )2 system. The ground states DOS(EF)
are marked with colored dots. The vertical dashed lines connect the
magnetic energy minima with corresponding DOS(EF).

disorder. Some results of the CPA calculations will be also
presented in the further part of the study.

2. Fixed spin moment calculations

The fixed spin moment (FSM) method allows for cal-
culations of the systems with a nonequilibrium magnetic
moment, and hence it enables us to plot the magnetic energy
dependence as a function of spin magnetic moment [9], where
the magnetic energy is the energy difference between the
magnetic and nonmagnetic ground state solutions. The FSM
calculations have already helped to understand the magnetic
behavior of YCo2 [9,27]. We performed a series of FSM
calculations for several successive concentrations near the
magnetic transition of the Y(Fe1−xCox )2 system; see Fig. 6.
The presented dependencies of magnetic energy and the den-
sity of states at the Fermi level [DOS(EF)] on the FSM are
intended to explain the behavior of γ (x). In order to obtain
accurate plots of DOS(EF) versus FSM, it was necessary to
use a very small step in FSM (0.025 μB). The magnetic energy
plots, in the top panel, confirm that within the LDA-VCA
the magnetic phase transition in Y(Fe1−xCox )2 occurs at Co
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concentration equal to about 0.925. The plots show minima
for nonzero moments above this value. The positions of the
minima shift toward higher magnetic moments with a de-
crease of Co concentration, wherein the deeper the minimum,
the more stable the ferromagnetic state is. The overall shape of
DOS(EF)(m) is similar for all considered Co concentrations.
The observed double-peak structure is related to the DOS plot
with the characteristic maximum near the Fermi level. The
observed shift of the DOS(EF)(m) plots toward the higher
magnetic moments for increasing Co concentration x comes
from filling of the electronic band structure of Y(Fe1−xCox )2

after alloying with the element possessing more valence elec-
trons. The minima in magnetic energies clearly correspond
with the ground state values of DOS(EF). When we look at
the values of the ground state DOS(EF) for subsequent Co
concentrations, we observe the change of tendencies, leading
to the formation of the maximum in DOS(EF) versus x, and
thus in the considered dependence of γ (x). It gives another
perspective for understanding of the formation of maximum
in γ (x).

3. Fermi surface

Another insight into the nature of the electronic specific
heat coefficient γ can be achieved from the perspective of
the Fermi surface. As we discussed in Sec. I, γ is directly
estimated from DOS(EF), where the latter is obtained by
integration of the states on the Fermi level over the whole
Brillouin zone. A distribution of the states at the Fermi level
in the first Brillouin zone is called the Fermi surface. Thus,
the observed maximum in γ correlates with the largest area of
the Fermi surface, as presented in Fig. 7 for several successive
Co concentrations. The Fermi surfaces presented in the right
column are nonmagnetic solutions, while the ones shown in
the left column are spin polarized.

The nonmagnetic Fermi surface for the terminal concentra-
tion x = 1.00 (YCo2) consists of three sheets. The electron-
type surface, denoted with red color, is centered at the high-
symmetry point X and consists of rectangular parts connected
at W points. The other two surfaces are of the hole type and
are located around the 	 point. One of them is nested and
thus not visible in the figure. The Fermi surface calculated for
YCo2 is consistent with the previous theoretical results [46].
We suspect that the small differences observed around the W
point may come from the various forms of the LDA exchange-
correlation potential used in the compared models or from
the inclusion of the spin-orbit interactions in the previous
model [46].

An evolution of the Fermi surface is observed with de-
crease of the Co concentration (x = 0.95 and 0.93). The
new features are forming around the W point. The hole-type
surfaces (blue color) are enlarging, which leads to an increase
of DOS(EF) and eventually to fulfillment of the Stoner crite-
rion at xcrit ≈ 0.925. The decrease of x leads to a magnetic
phase transition, which also manifests in the shape of the
Fermi surfaces. The spin-polarized Fermi surface for x = 0.92
consists of two overlapping spin channels and has the largest
area of all Fermi surfaces shown in Fig. 7. The characteristic
feature of the spin-polarized solutions is the hole-type nested
double tubes along the 	-L direction. The Fermi surfaces for
even lower Co concentrations (x = 0.88 and 0.84) exhibit a

FIG. 7. The Fermi surfaces of Y(Fe1−xCox )2 calculated within
LDA-VCA in the vicinity of the critical concentration xcrit ∼ 0.925
at which the ferromagnetic-nonmagnetic phase transition occurs. The
results of spin-polarized calculations are presented in the left column,
while the results of nonmagnetic calculations are shown in the right
one. Red color denotes the electron-type, while blue color the hole-
type surfaces.

gradual decrease of their area, which correlates with the form
of the DOS(EF) and γ (x) dependencies.

4. Magnetic moments from CPA and ordered compound method

As an addition to the presented VCA results obtained
for the Co-rich concentrations of the Y(Fe1−xCox )2 system,
we show the magnetic moments calculated using the coher-
ent potential approximation (CPA) and ordered compound
method for a full Co concentration range. The magnetic
moments calculated with the CPA and ordered compound
methods are shown in Fig. 8. The calculated total magnetic
moments are underestimated in comparison to the experimen-
tal values [6]. This difference is relatively large and for the
intermediate concentrations it is equal to about 0.7 μB f.u.−1.
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FIG. 8. The spin magnetic moments versus Co concentration x
for the Y(Fe1−xCox )2 system as calculated with the FPLO-LDA. For
YFe2 and YCo2 we used optimized lattice parameters and for the
intermediate concentrations the lattice parameters obtained using the
linear interpolation. The subsequent panels present total magnetic
moments and contributions from individual elements. The chemi-
cal disorder was treated with the coherent potential approximation
(CPA) and the ordered compounds method. The experimental total
magnetic moments’ dependence comes from the work of Piercy and
Taylor [6].

That discrepancy originates, among others, from the limita-
tions of the LDA, which is recognized to underestimate the
magnetic moment [48]. Simultaneously, we used the lattice
parameters calculated within the LDA (underestimated by
about 0.3 Å [7]), which additionally decreased the mag-
netic moment. The application of the generalized gradient
approximation (GGA) gave better values of optimized lattice
parameters and magnetic moments, but it overestimated the
magnetic energy, leading to a ferromagnetic ground state for
YCo2 and no magnetic phase transition in Y(Fe1−xCox )2 was
observed [30]. Furthermore, the lattice parameters for the
intermediate Y(Fe1−xCox )2 concentrations were interpolated
assuming a linear behavior of the a(x) dependence, which
further decreased the lattice parameters of the intermediate
concentrations with respect to the experimental values [7].
Some effect on the calculated magnetic moments has an
application of the scalar-relativistic approximation, as a result
of which the obtained magnetic moments are completely
spin type and do not include the orbital contributions. This
deficiency is the magnitude of the orbital moments of the
bcc Fe and hcp Co, which have experimental values equal
to 0.086 and 0.13 μB, respectively [49,50]. The previously
observed failure of the LDA + U approach for YCo2 suggests
a necessity to make use of dynamical correlations to improve
the theoretical model [30]. However, this goes beyond the
scope of this work.

The calculated total magnetic moment for YFe2, equal
to 2.62 μB f.u.−1, is lower than the experimental value of
2.80 μB f.u.−1 [6]. The contributions to the total magnetic
moment from Fe and Y atoms are equal to 1.51 μB and
−0.39 μB, respectively, in qualitative agreement with the

previous theoretical results (1.68 μB and −0.43 μB [24]). The
calculated spin magnetic moment on Fe in YFe2 (1.51 μB) is
reduced in comparison to the measured spin magnetic moment
of bcc Fe, equal to 1.98 μB [49]. Similarly, the highest values
of the magnetic moment on Co in the Y(Fe1−xCox )2 system,
equal to about 0.8 μB on the Fe-rich limit, are significantly
reduced with respect to the experimental magnetic moment
of fcc Co, equal to 1.67 μB [51]. The above picture of
the magnetic properties obtained from the CPA and ordered
compound method supports the previous findings based on
the VCA and helps to better understand the behavior of
experimentally observed γ versus x dependence.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented a combined experimental
and computational study of the electronic specific heat coef-
ficient γ and magnetic properties of the Y(Fe1−xCox )2 Laves
phases. For high Co concentrations the measurements indi-
cated the presence of a concentration-induced ferromagnetic-
paramagnetic phase transition accompanied by the maximum
in γ . The magnetic transition was modeled based on the
LDA ground state electronic structure. Calculations showed
also that the observed maximum in γ (x) results from the
presence of the sharp DOS peak on the Fermi level. The
LDA-calculated values of γ are significantly underestimated
because of not including the many-body effects and spin
fluctuations in the LDA description. To improve the calcu-
lated γ values we used the so called enhancement factor,
introduced and evaluated by another group. The introduction
of the enhancement factor let us to incorporate the many-
body effects by considering the self-energy of the correlated
electrons. Furthermore, in this work another perspective for
understanding the formation of the maximum in γ (x) was
given by simultaneous analysis of magnetic energy and the
DOS at the Fermi level as functions of fixed spin moment.
Furthermore, using the CPA and ordered compound methods,
we calculated the basic magnetic properties of Y(Fe1−xCox )2

in the whole range of concentrations.
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APPENDIX: CRYSTALLOGRAPHIC DATA
OF ORDERED COMPOUNDS

One of the common approximate techniques for a compu-
tational treatment of the structures with a chemical disorder
is the ordered compound method [25]. It assumes simulating
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of a disordered alloy by the ordered compound of the same
composition. For example, in the case of the Y(Fe1−xCox )2

alloys one can represent a Co concentration x = 0.125 with
an ordered ternary compound Y4Fe7Co1. The generated struc-
tural data of the ordered ternary compounds for x equal 0.125,
0.25, 0.375, and 0.5 are presented in Table III. The other

three intermediate compositions, 0.625, 0.75, and 0.875, can
be obtained from the presented data by exchanging atoms on
Fe and Co sites. The only free parameter here is the lattice
parameter a; thus these ordered compounds are universal and
can be used for calculations of alloys of any AB2-type Laves
phase.
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