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Scattering theory of transport through disordered magnets
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We present a scattering theory of transport through noncollinear disordered magnetic insulators. For con-
creteness, we study and compare the random field model (RFM) and the random anisotropy model (RAM).
The RFM and RAM are used to model random spin disorder systems and amorphous materials, respectively.
We utilize the Landauer-Büttiker formalism to compute the transmission probability and spin conductance of
one-dimensional disordered spin chains. The RFM and the RAM both exhibit Anderson localization, which
means that the transmission probability and spin conductance decay exponentially with the system length. We
define two localization lengths based on the transmission probability and the spin conductance, respectively.
Next, we numerically determine the relationship between the localization lengths and the strength of the disorder.
In the limit of weak disorder, we find that the localization lengths obey power laws and determine the critical
exponents. Our results are expressed via the universal exchange length and are therefore expected to be general.
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I. INTRODUCTION

In magnonics [1–8], the primary focus has recently been on
the propagation of spin waves through various types of mag-
netic insulators. A particular emphasis has been on ordered
systems, such as (anti)ferromagnets, and ferrimagnets. An
advantage is that the spin current may suffer less Joule heating
compared to electric currents, making insulator-magnonics
applications potentially much more energy efficient [3,9].
Numerous successful experiments have generated and manip-
ulated spin currents using the spin-Hall effect and the inverse
spin-Hall effect [10]. A common experimental setup consists
of sandwiching a magnetic insulator between two conductors
and using the spin-Hall effect to generate a spin current in the
left conductor that propagates through the magnetic insulator
and into the right conductor. The spin current in the right
conductor is converted into a charge current via the inverse
spin-Hall effect. This provides a useful method to measure
the spin current and infer the spin-transport properties of the
magnetic insulator [11–25].

A class of materials that has recently attracted attention in
the spintronics community is disordered magnetic insulators
[26–31]. Notably, a recent experiment claimed that a spin
current flowing through a sample of amorphous yttrium-iron-
garnet could travel tens of micrometers [32]. This distance
is comparable to the spin current propagation length in a
crystalline (anti)ferromagnet [25,33]. More generally, it is
crucial to study disordered magnetic materials because almost
all materials contain some degree of disorder, which will
affect the functional properties of magnonic devices. When
the disorder is sufficiently strong, the eigenstates become
trapped in a finite spatial region, completely suppressing the
transport properties. This phenomenon is known as Anderson
localization, and the first discussion of this phenomenon in
magnetic systems began in the 1960s [34–42]. Furthermore,
it has been shown that, even with a small onset of disorder,
the transport properties change from conductive to diffusive

[29,43], which has important consequences for magnonics
applications in low dimensions.

The common sources of quenched disorder in magnetic
insulators are (i) randomness due to anisotropies, local fields,
and amorphous structure and (ii) frustration due to competing
long-range exchange interactions. In this paper we focus on
magnetic insulators with quenched disorder due to (i). Two
models with these properties are the random field model
(RFM) and the random anisotropy model (RAM), where
the disorder is caused by the competition between the ex-
change interaction and the coupling to local random fields
and anisotropies, respectively. The RFM and RAM is used to
model quenched spin disorder and amorphous magnets, re-
spectively [44–49]. Experimental realizations of such systems
are plentiful [50–54].

Furthermore, there are two types of RFM/RAM spin
models. The first is the Ising model, where the spins are
scalars Si = ±1 and are randomly pointing either parallel or
antiparallel to each other in the ground state [55–62]. The
second type is the Heisenberg model, where the spins are
vectors Si that in the ground state are pointing noncollinearly
in random directions [63–68].

Because the ground state in the RFM/RAM Ising model
is relatively simple, it can often be studied efficiently with
analytical methods. For example, one can either solve the
equations of motion by a transfer matrix approach paralleling
Anderson’s celebrated work on disordered fermionic systems
[69,70] or one can use field-theory methods, particularly
the replica trick, replica symmetry breaking, and mean-field
theory [54,71,72]. Although the RFM/RAM Ising models are
analytically accessible, they are only simplified idealizations
of a real disordered magnet where the spins are noncollinear.
In this work, we wish to focus on systems with noncollinear
spins that are harder to describe analytically but exhibit more
realistic spin-wave dynamics.

Disordered magnetic insulators with a noncollinear ground
state are a notoriously difficult system to describe. Due to their
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complexity, it is often useful to study the classical spin waves
of the system. Our work is related to a recent study [29,73]
in which the micromagnetic Landau-Lifshitz-Gilbert (LLG)
equation was solved using a quasimonochromatic Gaussian
wave packet as the initial condition. They found that the width
of the wave packet increases in time until it saturates around
the localization length of the system, which is a hallmark
of Anderson localization. In systems that exhibit Anderson
localization, the localization length decreases as the system
becomes more disordered. However, the exact relationship
between the localization length and the strength of disorder
is far from being well established in noncollinear disordered
magnetic insulators. In this work, we attempt to shed some
light on these issues.

The localization effect in spin models depends on the
dimensionality of the system, similar to disordered fermionic
systems [74]. For fermionic systems in one dimension, there is
Anderson localization; in two dimensions, the effect remains
present but much weaker, while in three dimensions, there is
the possibility of both a localized and a delocalized phase. The
same observations have been established for disordered mag-
nets [50,75]. We focus on one-dimensional spin chains. With
more computational time, this method can also be applied to
two- and three-dimensional systems.

The numerical method that we develop is based on the
Landauer-Büttiker formalism [76,77], which has proven to
be extremely useful in studying the transport properties of
electronic systems. To the best of our knowledge, such a
method has not previously been applied to the RFM/RAM
Heisenberg model. In this paper, we investigate the effect of
Anderson localization on the spin-wave transport properties
of a disordered magnetic insulator. To this end, we first
determine the relationship between the system size and the
transmission probability for different strengths of disorder and
then calculate the spin conductance. With this knowledge,
we can investigate how the localization length of the system
scales with the strength of the disorder. In particular, we
calculate and compare the critical exponents of the RFM and
the RAM. These quantities provide us with direct insights into
how the transport properties of the spin waves are affected by
the localization phenomenon that is present due to quenched
disorder.

We hope that this theoretical investigation may inspire
an experimental investigation into the transport properties
of disordered magnetic nanowires [78–82]. In particular, it
would be interesting to compare the experimental relationship
between the localization length and strength of disorder to the
critical exponents that we determine in this work.

The paper is organized as follows. In Sec. II, we introduce
the RFM and the RAM Hamiltonians and discuss their ground
state. In Sec. III we find the linearized equations of motion,
and derive expressions for the spin current and the spin
conductance. Section IV contains our numerical calculations
of the scattering properties of the system. In Sec. IV we
summarize our results.

II. THEORETICAL MODEL

In this section we carefully introduce the model we are in-
terested in studying. We start by presenting the Hamiltonians

FIG. 1. Disordered magnet (blue) is sandwiched between two
ferromagnets (red). In regions (i) and (iii), ni = ẑ, while in region
(ii) ni is uniformly distributed on the unit sphere. Consequently, the
spins in region (ii) point in random directions, while the spins deep
inside regions (i) and (iii) point in the z direction. The spins close to
the two interfaces rotate similar to the spins in a domain wall. The
length of the domain-wall-like region is illustrated and given by the
exchange length lex = √

J/Kd .

for the RFM and the RAM, and introduce the geometry. We
conclude this section by presenting a method to calculate the
classical metastable states.

A. Hamiltonian

To investigate the transport properties of one-dimensional
disordered noncollinear spin chains, we use the Hamiltonian

Hκ = −J
∑

i

Si · Si+1 − K
∑

i

(Si · ni )
κ+1, (1)

where κ = 0 and κ = 1 represent the RFM and the RAM,
respectively.

The dimensionless spins Si are attached to a one-
dimensional lattice with lattice spacing d . The exchange
interaction with J > 0 attempts to align the spins. The terms
proportional to K encapsulate the quenched disorder of the
system, and we choose K > 0 without loss of generality. Each
spin Si is coupled to a local random vector ni. The competition
between the exchange and the random interactions in Eq. (1)
results in a noncollinear disordered ground state. We use the
parameter K/J to characterize the strength of disorder.

B. Geometry

We consider a one-dimensional chain with N lattice sites.
The chain is split into three regions that we call (i) the left
lead, (ii) the random region, and (iii) the right lead; see Fig. 1.

In regions (i) and (iii), we let the number of spins be equal
to NL and NR, respectively. In addition, we let ni point in the
ẑ direction. In region (ii), we let the number of spins be equal
to Nrand and ni to point in some random direction uniformly
distributed on the unit sphere. Note that far away from the
random region (deep inside of the leads), the spins point in
the ẑ direction, while in the random region, the spins are
oriented randomly. In the regions close to the interface, the
spins are rotating in a domain-wall-like fashion. The length
of this domain-wall region is given by the exchange length
lex = √

J/Kd .
The scattering problem that we are interested in studying

can now be realized by exciting coherent spin waves in the
left lead propagating towards the random region. As the spin
wave approaches the random region, it will be scattered either
back into the left lead (reflection) or into the right lead
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(transmission). We assume semi-infinite leads such that NL

and NR −→ ∞.

C. Ground state

Determining the true ground state of a disordered magnet
(collinear or noncollinear) is a very challenging problem.
The primary reason is that the randomness results in free
energy with many nearly degenerate minima, separated by
high energy barriers. The problem of determining the exact
ground state of disordered systems is its own research field,
and we do not wish to address that problem here [83–94].
However, due to the high energy barriers, the probability of
tunneling between different metastable states is small. Hence,
in an experiment, the disordered magnet becomes trapped in
a state that may differ from the exact ground state when the
system is cooled down, depending on the history. Thus, in this
paper, we study the transport properties of disordered magnets
around classical metastable states.

We can find a classical metastable state of the system
by treating the spins as classical vectors obeying the LLG
equation of the form

dSi

dt
= −γ Si × Hκ

i − λSi × (
Si × Hκ

i ). (2)

Here, the first term with γ > 0 describes the spin Si precess-
ing around its instantaneous effective field Hκ

i = −δHκ/δSi,
while the second term describes the damping towards the
direction of the instantaneous effective field. The metastable
state is then obtained by specifying some arbitrary initial
configuration and allowing the spins to evolve according to
this equation for sufficiently long times t −→ ∞.

III. SCATTERING THEORY

In this section we outline the theoretical approach that we
will use to determine the transport properties of the RFM and
the RAM. We start by determining the linearized equations of
motion, and formulate the scattering problem. Finally, we de-
rive the expressions for the spin current and spin conductance
in the linear response regime.

A. Hamiltonian in terms of spin-wave operators

To study the transport properties of the system, we can
perform a Holstein-Primakoff expansion around one of the
metastable states. Let us at each site i define a local coordinate
system {êx(i), êy(i), êz(i)} such that êz(i) is parallel to the spin
at site i in the ground state. The spin operator in a low-lying
excited state can then be written as

Si = êz(i)Sz
i + êx(i)Sx

i + êy(i)Sy
i . (3)

We perform a Holstein-Primakoff transformation of the form

Sx
i ≈

√
S

2
(ai + a†

i ), (4a)

Sy
i ≈ −i

√
S

2
(ai − a†

i ), (4b)

Sz
i = S − a†

i ai. (4c)

In Eq. (4), we have only included the lowest-order terms
because we are not interested in studying the interactions
between the spin waves. If we substitute Eqs. (3) and (4) into
Eq. (1) and introduce the notations ê±(i) = êx(i) ± i êy(i) and
n±

i = nx
i ± iny

i , we obtain a Hamiltonian of the form

Hκ =
∑

i j

Aκ
i ja

†
i a j + Bκ

i jaia j + H.c., (5)

where

Aκ
i j = δi, j

{
JS êz(i)êz(i + 1) + 1

2
Knz

i

+ κ

[
KS

(
nz

i

)2 − 1

2
KSn−

i n+
i − 1

2
Knz

i

]}

− JS

2
δi, j+1ê−(i)ê+( j),

Bκ
i j = −κ

KS

2
(n−

i )2δi, j − JS

2
ê−(i)ê−(i + 1)δi, j+1. (6)

In the following, we will study the spin waves associated with
the Hamiltonian of Eq. (5).

B. Equations of motion

The equations of motion for the spin-wave operators can
now be calculated from the Heisenberg equation

d

dt
a±

i = i

h̄
[Hκ , a±

i ]. (7)

For clarity, we reinstate the spin operators {Sx
i , Sy

i } using
Eq. (4) and cast the equation of motion in the form

h̄
dSx

j

dt
= JS

{
êz( j)[êz( j + 1) + êz( j − 1)]Sy

j

− êy( j − 1)êy( j)Sy
j−1 − êx( j − 1)êy( j)Sx

j−1

− êy( j)êy( j + 1)Sy
j+1 − êy( j)êx( j + 1)Sx

j+1

}
+ Knz

jS
y
j + κ

{
2KS

(
nz

j

)2
Sy

j − 2KS
(
ny

j

)2
Sy

j

− 2KSnx
jn

y
jS

x
j − Knz

jS
y
j

}
, (8)

h̄
dSy

j

dt
= JS

{−êz( j)[êz( j + 1) + êz( j − 1)]Sx
j

+ êx( j − 1)êx( j)Sx
j−1 + êy( j − 1)êx( j)Sy

j−1

+ êx( j)êx( j + 1)Sx
j+1 + êx( j)êy( j + 1)Sy

j+1

}
− Knz

jS
x
j − κ

{
2KS

(
nz

j

)2
Sx

j

− 2KS
(
nx

j

)2
Sy

j − 2KSnx
jn

y
jS

y
j + Knz

jS
y
j

}
. (9)

Equations (8) and (9) are identical to the linearized classical
Landau-Lifshitz equations expressed in the local coordinate
system {êx( j), êy( j), êz( j)}. Since we are only interested in
studying how the intrinsic disorder affects the transport prop-
erties of the system, we have not included a Gilbert damping
term.
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C. Scattering problem and solution Ansatz

Equations (8) and (9) can be solved numerically in the
classical regime, where we treat the spin operators as classical
vectors. The spin-wave solutions are the normal modes of the
system and precess with the same frequency ω. Therefore, we
can factorize out the time dependence of the spin operators as
e−iωt .

Deep inside the leads, the spins at neighboring sites are
pointing in the z direction; see Fig. 1. This considerably
simplifies the equations of motion in the leads:

−ih̄ωSx
j = JS

(
2Sy

j − Sy
j−1 − Sy

j+1

)
+ K[1 + κ (2S − 1)]Sy

j ,

−ih̄ωSy
j = JS

( − 2Sx
j + Sx

j−1 + Sx
j+1

)
− K[1 + κ (2S − 1)]Sx

j . (10)

The system behaves as a ferromagnet with an external field
or intrinsic anisotropy in the z direction. The solutions are
therefore circularly polarized plane waves traveling with a
fixed wave number q and frequency ω. The dispersion relation
can be determined by substituting the Ansätze S j

x = eiq jd and
S j

y = −i eiq jd into Eq. (10). The result is

ε = h̄ω = 2JS(1 − cos qd ) + K[1 + κ (2S − 1)]. (11)

Let us now formulate the scattering problem. Deep inside
the regions (i) and (iii) in Fig. 1, we know that the solution
must have the form

Sx
j = eiq jd + rxe−iq jd , Sy

j = −i(eiq jd + rye−iq jd ) (12)

and

Sx
j = txeiq jd , Sy

j = −itye−iq jd , (13)

respectively. Inside region (ii), we know that the spin com-
ponents must satisfy Eqs. (8) and (9). Using the Ansätze as
boundary conditions, we have found a finite set of algebraic
equations that we can solve numerically to determine the
reflection and transmission amplitudes {rx, ry, tx, ty} as func-
tions of ε.

D. Spin current and conductance

Once we know the reflection and transmission amplitude,
we can calculate the spin conductance of the disordered
magnet utilizing the Landauer-Büttiker formalism in the linear
response regime. In this section, we derive the expression for
spin conductance.

In the leads, the Hamiltonian in Eq. (5) simplifies to

Hκ =
∑

i

{2JS + K[1 + κ (2S − 1)]}a†
i ai

− JS(a ja
†
j+1 + a†

j a j+1). (14)

From the equation of motion,

d

dt
Ni = i

h̄
[Ni, Hκ ]

= −iJS{(a†
j+1a j − a†

j a j+1) + (a†
j−1a j − a†

j a j−1)},
(15)

FIG. 2. Disordered magnet (blue) is sandwiched between two
ferromagnetic leads (red). The leads are connected to two spin
reservoirs (green) with spin accumulations μL and μR. The reservoirs
are in thermodynamic equilibrium such that the magnon population
is characterized by the Bose-Einstein distribution. A spin current is
induced when there is a nonzero spin bias δμ = μL − μR.

where Ni = a†
i ai is the number operator, and we can extract

the spin current from site j to j + 1 as

I j, j+1 = iJS(a†
j+1a j − a†

j a j+1). (16)

Now consider the situation in Fig. 2, where two reservoirs
in thermodynamic equilibrium are attached to two leads with
a scattering region between them. If the spin accumulation in
the left reservoir μL is greater than the spin accumulation in
the right reservoir μR, the spin current in Eq. (16) will flow
from the left to the right reservoir. We define the operators
αL,R(q) and βL,R(q) injecting and removing magnons with
wave numbers q into the leads, respectively. The relationship
between these operators is given by the scattering matrix(

βL(q)
βR(q)

)
=

(
r t ′
t r′

)(
αL(q)
αR(q)

)
, (17)

where r (r′) and t (t ′) are the reflection and transmission
amplitudes, respectively, for a spin wave originating from the
left (right) lead.

In the left lead, we can express aj as [95]

a j =
∫ π/d

0

dq

2π/d
[eiq jdαL(q) + eiq jdβL(q)]. (18)

If we substitute Eq. (18) and its complex conjugate into
Eq. (16) and utilize that the leads are in thermal equilibrium
with the reservoirs such that 〈α†

L,R(q1)αL,R(q2)〉 = 2π
d δ(q1 −

q2) fL,R(q1), we find that

〈I j, j+1〉 = 1

2π

∫ εmax

εmin

dε T (ε)[ fL(ε) − fR(ε)]. (19)

In this expression, fL,R(ε) represents the Bose-Einstein dis-
tributions in the left and right reservoirs, respectively, and
T (ε) = |t |2. The integration limits are obtained from Eq. (11).

Assume that the spin accumulation in the left lead is
μL = μ + δμ and that the spin accumulation in the right
lead is μR = μ, where δμ/μ 	 1. We find that, in the linear
response, the spin conductance is given by

G = 1

2π

∫ ε̃max

ε̃min

d ε̃ T (ε̃)

(
−df

d ε̃

)
. (20)

This result can also be derived using Green’s functions [96].
In Eq. (20), we are integrating over the dimensionless energies
ε̃ = ε/J . Energies outside of the integration interval result in
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FIG. 3. Behaviors of 〈T 〉 and 〈ln T 〉 as a function of ε̃ and K/J .

the spin waves in Eqs. (12) and (13) becoming evanescent
waves that do not contribute to the spin conductance.

IV. RESULTS AND DISCUSSION

For each realization of the system, we find that rx = ry ≡ r
and that tx = ty ≡ t , reflecting the fact that, inside the leads,
the spin waves are circularly polarized. Furthermore, we
define R = |r|2 and T = |t |2 as the reflection and transmission
probabilities, respectively, and find that R + T = 1. Since R
and T depend on the realization of the system, we must
perform an ensemble average 〈. . . 〉 to obtain physically mean-
ingful quantities. In our calculations, we used 103 different
realizations for the random vectors ni. In Fig. 3, we plotted
〈T 〉 and 〈ln T 〉 as a function of ε̃ for different values of K/J
and a fixed system length L = Nrandd . In the remainder of this
paper we set d = 1 for convenience.

A. Transmission probability

As the system becomes more disordered, the transmission
probability decreases for both the RFM and the RAM. How-
ever, Fig. 3 demonstrates that the quantitative behavior of
the localization is significantly different in the two models.
In both models, as K/J increases, the maxima 〈T 〉max and
〈ln T 〉max shift towards higher ε̃, but in the RAM, this shift
is greater than that in the RFM. In addition, the peak in the
transmission probability is wider in the RAM compared to the
RFM for small K/J . Thus a broader range of spin waves can
pass through the RAM compared to the RFM in the limit of
weak disorder.

We can understand the difference in width from the Hamil-
tonian in Eq. (1). In the RAM, the term causing disorder is
(Si · ni )2; thus the spin Si wants to point either parallel or
antiparallel to ni. The spin is also coupled to its neighbors
through the exchange interaction. Therefore, in the RAM,
whether the spin Si chooses to point parallel or antiparallel
to ni depends on the neighboring spins. Meanwhile, in the
RFM, the term causing disorder is Si · ni, and the spin wants
to only point parallel to ni. The ability to select whether to
point parallel or antiparallel to ni leads to the spin chains in
the RAM being less disordered than the spin chains in the

FIG. 4. Length dependence of the relative variances RVG, RVln G,
RVT , and RVln T for the RFM and the RAM. The strength of disorder
is K/J = 0.4.

RFM, which in turn leads to a broader peak in the transmission
probability.

B. Self-averaging

In disordered systems, certain quantities are not self-
averaging in the thermodynamic limit. This is well known in
disordered fermionic systems and is expected to be a general
feature of a broad spectrum of disordered systems [97]. A
test to determine whether a quantity O is self-averaging is
to check whether the relative variance RVO = Var(O)/〈O〉2

vanishes (or is sufficiently small) in the limit L −→ ∞. For the
fermionic 1D Anderson model with on-site disorder, one finds
that the transmission probability and hence the conductance
are not self-averaging [98]. In two and three dimensions,
one finds that the logarithms ln(T ), ln(G) are self-averaging
such that RVln G ∼ L−D (D = 2, 3) [97,99]. In one dimension
at finite temperature, one finds that ln G is only marginally
self-averaging because RVln G decays logarithmically with L
[99–101].

As expected, we find similar results in this work. Figure 4
shows that the relative variances RVT and RVG increase with
the length of the system. In addition, the relative variances
RVln T and RVln G decrease with the length of the system.
Hence, as the length of the system increases, the fluctuations
in T and G become much greater than the corresponding
expectation values, meaning that they are not representative
variables in the thermodynamic limit. Therefore, we use
{ln(T ), ln(G)}, rather than {T, G}, to calculate the localization
lengths of the system.

C. Localization length

In this work, it is natural to define two types of localization
lengths. The first is based on the maximum of the transmission
amplitude 〈ln T 〉max in Fig. 3. The second is based on the
conductance 〈ln G〉. We refer to these localization lengths as
L̃ln T and L̃ln G, respectively.
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FIG. 5. Length dependence of 〈ln G〉 and 〈ln T 〉max for the RFM
can be approximated with a linear fit. The strength of disorder is
K/J = 0.4 and the temperature is T̃ = 0.05.

In Fig. 5, we plotted 〈ln T 〉max and 〈ln G〉 as a function
of the system length L for a fixed K/J and temperature T̃ =
kT/J . We have performed a curve fit with the functions

〈ln T 〉max = L

L̃ln T
+ A (21)

and

〈ln G〉 = L

L̃ln G
+ B (22)

such that the localization length can be extracted as the
gradient of the straight lines in Fig. 5. In this particular case,
we found a coefficient of determination R2 with the value
R2 = 0.95 indicating a good fit. To determine the localization
lengths as a function of K/J , we performed straight line
curve fits for graphs such as those found in Fig. 5 but with
different K/J and T̃ . In all cases, we found that the coefficient
of determination was in the range (0.9,1) and that the aver-
age coefficient was 〈R2〉 = 0.95, indicating reasonably good
straight-line fits. By then calculating the gradient of these
straight lines, we can estimate the localization lengths as a
function of K/J .

1. Localization length from transmission

In Fig. 6, we plot the localization length L̃ln T and the 95%-
confidence interval for the RAM and RFM, respectively. In
both cases, we have performed a curve fit with the function

L̃ln T = η

(
K

J

)ν

+ ξ . (23)

The parameters (with confidence intervals) are displayed in
Table I. Similar to fermionic systems [102], we find that the
localization length decays monotonically as a power law as
we increase the strength of disorder. Our result can be made
more universal by introducing the exchange length such that

L̃ln T = η(lex)−2ν + ξ . (24)

FIG. 6. Behavior of L̃ln T as a function of K/J for the RAM
and the RFM, respectively. The line represents the numerical fit in
Eq. (23), the dashed lines represent the 95% confidence interval, and
the points with error bars represent the localization length calculated
from Eqs. (8) and (9) with standard error.

Note that, for weak disorder, the localization length is
greater in the RAM than in the RFM. This is a consequence
of the fact that the spin chains are less disordered in the RAM
compared to the RFM, as we discussed at the end of Sec. IV A.

2. Localization length from conductance

In Fig. 7, we plot L̃ln G as a function of K/J for different
temperatures T̃ . There is an interval K/J ≈ (0.5, 2) where
the localization length increases for small T̃ . Furthermore, for
sufficiently large T̃ , this interval vanishes such that the local-
ization length decays monotonically for all K/J . This nontriv-
ial behavior arises because there is a competition between the
temperature dependence of the broadening function −df /d ε̃

and the disorder dependence of the transmission probability
T (ε̃) in Eq. (20). As the temperature increases, the broadening
function excites an increasing number of magnons, which
in turn leads to a greater conductance. Meanwhile, as the
system becomes more disordered, the transmission probabil-
ity T (ε̃) decreases, resulting in a smaller conductance. On
the interval K/J ≈ (0.5, 2), the increase in conductance due
to temperature is greater than the decrease in conductance
due to disorder, which results in an increase in localization
length. Furthermore, in this interval, the localization length
is comparable to the lattice spacing d , which means that there

TABLE I. Numerical values of the parameters in Eq. (23) for the
RFM and the RAM. The brackets (. . . ) give the 95% confidence
interval.

RFM RAM

η 1.3 (0.7, 2.0) 0.2 (0.1, 0.3)
ν −1.2 (−1.4, −1.0) −2.2 (−2.4, −2.0)
ξ 1.1 (0.3, 1.9) 1.6 (1.0, 2.1)
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FIG. 7. Temperature dependence of L̃ln G for strongly disordered
magnetic insulators.

may be complicated microscopic details of the model that may
further enhance this effect.

Due to the complicated temperature and disorder depen-
dence, it is numerically challenging to determine a closed
formula such as the one in Eq. (23) for the localization length
L̃ln G. However, in the weak-disorder limit K/J −→ 0, it is
reasonable to assume that the localization length decays as
a power law of the form

Lln G ∼
(

K

J

)γ

= (lex)−2γ , (25)

where γ is the critical exponent. Figure 8 shows the result
of such a curve fit for the RFM and the RAM for different
temperatures. The corresponding critical exponents γRFM and
γRAM are given in Table II.

In our simulations, we kept the temperature below the
Curie temperature T̃ = 1, where the temperature fluctuations

TABLE II. Numerical values of the critical exponent for the RFM
and the RAM for different temperatures. The brackets (. . . ) provide
the 95% confidence interval.

T̃ γRFM γRAM

0.05 −3.8 (−4.3, −3.4) −1.9 (−2.3,−1.6)
0.1 −3.7 (−4.2,−3.2) −1.7 (−2.0,−1.4)
0.2 −3.6 (−4.1, −3.1) −1.3 (−1.6, −1.0)
0.5 −3.3 (−3.8,−2.8) −0.7 (−1.0, −0.4)

FIG. 8. Temperature dependence of L̃ln G in the limit of weak
disorder K/J −→ 0.

of the spins are negligible. For temperatures T̃ ≈ 1, there
will be additional temperature-induced disorder. This issue
has previously been investigated [73,103,104] by including
a temperature-dependent stochastic field in the effective field
Hκ

i in Eq. (2), and it was found that temperature fluctuations
shorten the localization length and enhance the Anderson
localization.

V. SUMMARY AND CONCLUSIONS

In this paper, we have applied the Landauer-Büttiker for-
malism to noncollinear disordered magnetic insulators. We
have considered both amorphous magnets and magnets with
spin disorder modeled by the RAM and the RFM, respec-
tively. We calculated the self-averaging quantities 〈ln T 〉 and
〈ln G〉 as a function of system length L for a broad range
of disorder strengths K/J . Consistent with the literature, we
found evidence for Anderson localization such that 〈ln T 〉
and 〈ln G〉 were linear functions of the system length L. This
allowed us to define two localization lengths L̃ln G and L̃ln T

based on the conductance and the maximum transmission
probability, respectively. In the limit of weak disorder, the
localization lengths obeyed power laws, and we calculated the
relevant critical exponents. We expect our results to be general
because they are expressed through the universal exchange
length lex.

We found that the Anderson localization is more prominent
in the RFM than in the RAM. The reason for this result is
that the competition between the exchange interaction and the
disorder term leads to more disordered spin chains in the RFM
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than in the RAM. The spin chains in the RAM are less disor-
dered because the disorder arises from a random anisotropy,
where the spin can point either parallel or antiparallel to the
anisotropy with the same energy cost. Whether the spin points
parallel or antiparallel to the anisotropy is determined by
the neighboring spins through the exchange interaction and,
consequently, the configuration with the least disorder will be
chosen by the system.

The results obtained here are valid in the limit of quenched
disorder, i.e., T̃ 	 1, where the random field and anisotropy
are temperature independent. If the temperature is close to
the Curie temperature of the system, one must include tem-
perature fluctuations in the Landau-Lifshitz equations. Such
effects have been considered in other works, and it has been
shown that temperature fluctuations decrease the localization
length.

To experimentally verify the critical exponents obtained
in this paper, we propose a setup in which a disordered
magnetic nanowire is sandwiched between two normal metals.
Similar setups for ordered magnets have been considered in
other works [11–25]. By applying a charge current in the left
metal, the spin-Hall effect generates a spin current through the
disordered nanowire and into the right metal. This will give

rise to a spin wave propagating through the hybrid structure
and into the right metal, where the spin current is converted
into a charge current via the inverse spin-Hall effect.

Alternatively, we can instead sandwich a disordered mag-
net between two ferromagnetic leads. We can excite spin
waves in the left ferromagnet by applying a microwave with
the ferromagnet resonance frequency. This spin wave will
then propagate through the disordered insulator and into the
right ferromagnet, where the resulting spin current can be
measured. By measuring the spin current propagating through
the disordered region, one should be able to characterize the
localization length in terms of the critical exponents of the
system.
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