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Interplay of magnetic field and interlayer coupling in the quasi-two-dimensional quantum magnet
Cu(en)Cl2: Realization of the spin-1/2 rectangular/zigzag square Heisenberg lattice
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The interplay of the magnetic field and interlayer correlations was experimentally investigated in a quasi-
two-dimensional quantum magnet Cu(en)Cl2. For this purpose, extensive quantum Monte Carlo (QMC) studies
of the finite-temperature properties of the spin-1/2 Heisenberg antiferromagnet (HAF) on the rectangular and
the spatially anisotropic zig-zag square lattices were performed. The QMC studies revealed the equivalency
of both models for any values of magnetic fields and spatial anisotropies R = Jinterchain/Jintrachain. The analysis
based on the decomposition of both lattices into local Hamiltonians confirmed the equivalence. Despite the large
influence of the interlayer coupling and rather complicated distribution of the intralayer exchange pathways in
Cu(en)Cl2, considering several constraints in the data analysis enabled the extraction of the main features of the
low-dimensional magnetic subsystem from the specific heat and magnetization. It was found that Cu(en)Cl2 can
be treated as the realization of the spin-1/2 HAF on the rectangular/zig-zag square lattice with the intralayer
spatial anisotropy R ≈ 0.2, the intrachain exchange coupling 2.20 ± 0.15 K, the saturation field 3.7 ± 0.1 T, the
spin-flop field about 0.1 T, and the spin anisotropy of the orthorhombic symmetry. The possibility to investigate
magnon instabilities in the strong-field regime of Cu(en)Cl2 is discussed.
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I. INTRODUCTION

A Heisenberg antiferromagnet (HAF) on the square lattice
with spin 1/2 represents an important paradigm of two-
dimensional (2D) magnetism. After long debate a final form
of the ground state of the model was established as a collinear
Néel order with a partially reduced order parameter (staggered
magnetization) due to strong quantum fluctuations [1]. In
the rectangular lattice (RL), derived from the square lattice
after weakening the exchange coupling in one direction, the
strength of the fluctuations increases and, finally, a fully
disordered Luttinger liquid ground state can be achieved in the
one-dimensional (1D) limit. Despite intensive ground-state
theoretical studies, experimental realizations of the spin-1/2
HAF on the rectangular lattice appeared only recently [2,3].
The main problem in the identification of the proper materials
was the absence of adequate theoretical predictions. What is
more, later theoretical calculations revealed a close similarity
of the finite-temperature properties of the 2D spin-1/2 HAF
models on the square and the rectangular lattice for some
ratios of the intrachain J1 and the interchain J2 couplings. As
a consequence, the analysis of the experimental data can lead
to the oversight of the spatial anisotropy within the magnetic
layer [2,3]. Besides the similarity of the finite-temperature
properties of these 2D quantum spin models, the interlayer
interactions being always present in real materials can modify
to some extent the finite-temperature properties.

The inclusion of the nonfrustrated interlayer coupling
J′ suppresses the quantum fluctuations, which leads to the
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enhancement of the order parameter in comparison to its 2D
counterpart [4]. In addition, the stabilization of the three-
dimensional (3D) long-range order (LRO) at a finite tem-
perature TN appears [5]. Depending on the strength of J′,
the deviations from the pure 2D correlations can prevent
the correct identification of the actual 2D magnetic system
forming at temperatures above TN [4,6]. Quantum Monte
Carlo studies of the spin-1/2 HAF on the spatially anisotropic
simple cubic (SC) lattice (for J’ = 0 the SC lattice decom-
poses into the 3D array of the independent 2D layers with
the square-lattice motif and the intralayer nearest-neighbor
coupling J1 = J2 = J) revealed that a sharp λ-like peak in
the specific heat associated with the phase transition to 3D
LRO completely vanishes for J ′ < 0.015J , and despite the
onset of the 3D LRO the specific heat follows the behavior
of the 2D system [6]. Such extreme weakness of the interlayer
coupling accompanied by the absence of the aforementioned
sharp specific-heat anomaly in the zero magnetic field was al-
ready experimentally observed in Cu(tn)Cl2 (tn = C3H10N2)
[7] and Cu(pz)2(pyO)2(PF6)2 (pyO = pyridine-N-oxide) [8].
The studies of the polycrystalline Cu(tn)Cl2 identified the
compound as a spin-1/2 quasi-2D quantum magnet with
the saturation field Bsat ≈ 6.5 T and the effective intralayer
exchange coupling Jeff/kB ≈ 3 K7.

To find more information on the character of the exchange
pathways, we modified the structure of Cu(tn)Cl2 by substi-
tuting the organic ligand tn by smaller en (ethylenediamine
= C2H8N2). Despite the small difference between the spatial
geometry of tn and en ligands, their mutual substitution
proved to have large impact on the crystal symmetry; while
the structure of Cu(tn)Cl2 is orthorhombic, its en analog
crystalizes in the monoclinic space group [9–14]. Besides the
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room-temperature susceptibility and electron paramagnetic
resonance experiments [15,16], no other magnetic studies
were reported for this compound.

Our recent investigations of magnetostructural correlations
[17] revealed that at temperatures above 20 K magnetic sus-
ceptibilities of Cu(tn)Cl2 and Cu(en)Cl2 become identical
within the experimental inaccuracy. The observed behavior
was ascribed to the close similarity of Cu(II) chromophores
CuN2Cl4 in both compounds. The differences appearing at
lower temperatures reflect the influence of magnetic correla-
tions, which grow with a different intensity in each compound.

The present paper is focused on the identification of a 2D
magnetic system in Cu(en)Cl2 on the basis of the comparative
analysis of the experimental and theoretical specific heat,
magnetic entropy, susceptibility, and magnetization data. For
this purpose, extensive quantum Monte Carlo studies of the
spin-1/2 HAF on the rectangular and spatially anisotropic
zig-zag square lattices (ZZLs) were performed in a wide range
of magnetic fields and spatial anisotropies. Despite rather
strong influence of the interlayer coupling in Cu(en)Cl2, the
analysis supported by considering several constraints enabled
us to quantify the contribution of LRO and short-range order
(SRO) to finite-temperature properties.

This paper is organized as follows. A synthesis procedure,
crystal structure, distribution of exchange pathways, and ex-
perimental details are described in Sec. II. Section III involves
quantum Monte Carlo calculations of finite-temperature prop-
erties of the spin-1/2 HAF on the rectangular and spatially
anisotropic zig-zag square lattices, performed in a wide range
of magnetic fields and spatial anisotropies. Section IV is
focused on the analysis of the experimental specific heat,
susceptibility, and magnetization data. The possibility of the
observation of magnon instability in Cu(en)Cl2 in the strong-
field regime is discussed as predicted theoretically for the
spin-1/2 HAF on the square lattice in the magnetic fields
above some threshold field. The results together with some
conclusions are summarized in Sec. V.

II. CRYSTAL STRUCTURE AND
EXPERIMENTAL DETAILS

Following the synthesis reported in Ref. [10], single crys-
tals of Cu(en)Cl2 were prepared from the equimolar mixture
of CuCl2 · H2O and ethylenediamine in the form of dark blue
plates. The identity of the compound was verified at room
temperature using the infrared spectroscopy and x-ray powder
diffraction.

At room temperature, the compound crystallizes in the
monoclinic space group P21/m, with the unit-cell parameters

a × b × c = 8.219 × 5.747 × 6.776 Å
3
, β = 93.72◦, Z = 2,

ρ = 2.02 g cm−3. The copper atom is surrounded by two
Cl atoms and two N atoms from the ethylenediamine
[Fig. 1(a)] in the cis square-planar arrangement [d (Cu-Cl1) =
2.286 Å, d (Cu-Cl2) = 2.301 Å, d (Cu-N1) = 2.010 Å,

d (Cu-N2) = 2.017 Å] [10]. The molecules are arranged into
chains running parallel to the b axis; the displacement of Cu
atoms from the 21 axis allows Cl2 atoms to lie directly above
and below Cu atoms in adjacent molecules with the separation
d (Cu-Cl2 a, b) = 2.887 Å). As a consequence, the structure
is composed of infinite ladder-type ribbons running parallel

to the b axis in which Cu atoms are coordinated by four Cl
and two N ligands forming a distorted octahedron elongated
along the ladders [Fig. 1(a)]. The hydrogen bonding along the
c axis is responsible for the disorder in the ethylenediamine
ring where the carbon atoms can occupy two positions related
by a mirror plane m [10,18]. Below a phase transition at about
138 K the structure transforms to the space group P21/c with
the unit-cell parameters a × b × c = 8.1729 × 5.7266 ×
13.4626 Å

3
, β = 95.076◦, Z = 4 [18]. The low-temperature

structure is again composed of the ladders, and the geometry
of the local surroundings of the Cu atom remains octahedral;
however, the carbon disorder has disappeared. Instead of the
equal amount of both conformations of the en rings on each
position reported for the high-temperature phase [10], below
the phase transition, the en rings with the opposite chirality
occupy fixed positions in the chains related to each other by
the gliding operation [Fig. 1(b)].

Considering the distorted octahedral surroundings of the
Cu atom, the local geometry stabilizes the d2

z electronic
ground state and, hence, the unpaired electron should be
described by the wave function of dx2-y2 symmetry. Such
atomic arrangement should support the formation of exchange
pathways along the dx2-y2 lobes within the equatorial plane
of the distorted octahedron formed by N1, N2, Cl1, and
Cl2 atoms [Fig. 1(a)]. The inspection of the low-temperature
structure revealed several short distances between the equato-
rial ligands (Cl · · · Cl, Cl · · · N) from neighboring Cu atoms.
While within the bc plane the distances dCl-Cl and dCl-N

range between 3.3 and 3.8 Å, the corresponding distances
along the a axis are much longer, the shortest one exceeding
5 Å.

Thus, assuming formation of exchange pathways along
the aforementioned pairs with short separations, a two-
dimensional magnetic lattice within the bc plane can be ex-
pected in Cu(en)Cl2. The spatial distribution of the potential
exchange pathways forms a rectangular lattice with additional
interactions along one of the diagonals of the rectangular
plaquettes [Figs. 1(c) and 1(d)].

Specific-heat measurements in the magnetic fields
B(= μ0H ) from 0 to 9 T and temperatures nominally from
0.4 to 15 K were performed using a commercial (Quantum
Design Physical Property Measurement System) device
equipped with the 3He insert. The specific-heat data were
corrected for the addenda contribution, which was measured
in a separate run. Magnetization and magnetic susceptibility
were measured in the temperature range from 0.5 to 2 K in
the fields up to 5 T using a commercial (Quantum Design
Magnetic Property Measurement System) device equipped
with the 3He insert. The measurements were performed in
the field cooling (FC) and zero-field cooling (ZFC) regimes.
All magnetic measurements in very small magnetic fields
(i.e. in the mT region) were preceded by the magnet-reset
option to exclude the effect of frozen magnetic fields in the
superconducting coil. In all physical measurements, single
crystals from the same batch were used, with the typical
dimensions d1 × d2 × d3 ≈ 1 × 4 × 2 mm3. The longest
edge d2 is parallel with the b axis, while the shortest d1

is parallel with the a axis [9,16]. The direction along the
medium edge d3 denoted as c* coincides with the c axis
within a few degrees.
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FIG. 1. (a) Fragment of the high-temperature structure of Cu(en)Cl2 demonstrating the octahedral surrounding of the Cu atom. Both
conformations of the en ring are shown. (b) Projection of the low-temperature structure in the ab plane. For clarity, hydrogen atoms and
hydrogen bonds are not shown. (c) Distribution of expected exchange pathways within the bc plane. (d) Schematic drawing of the corresponding
rectangular lattice with the nearest-neighbor J1 and J2 couplings and the additional next-nearest-neighbor coupling J3 along one of the diagonals
of the rectangular plaquettes.

III. QUANTUM MONTE CARLO CALCULATIONS

The expected exchange pathways in Fig. 1(c) form a two-
dimensional magnetic lattice, which corresponds to the spin-
1/2 HAF on the rectangular lattice with the nearest-neighbor
couplings J1 and J2 and the additional next-nearest-neighbor
(NNN) coupling J3 along one of the diagonals of the rectan-
gular plaquettes [Fig. 2(a)]. Without the exact knowledge of
which of the couplings can be considered as the weakest, the
full model can be simplified in several ways.

(i) J1 = 0: The lattice transforms to the rectangular lattice
with the nearest-neighbor interactions J2 and J3.

(ii) J3 = 0: The lattice transforms again to the rectangular
lattice with the nearest-neighbor interactions J1 and J2.

(iii) J2 = 0: The lattice transforms to the linear chains cou-
pled via zig-zag further-neighbor coupling, which is equiva-
lent to the spatially anisotropic zig-zag square lattice (Fig. 2).

The tuning of the spatial anisotropy of the exchange cou-
pling in the lattices depicted in Figs. 2(b)–2(e) enables their

interpolation between the array of the isolated linear chains
and the spatially isotropic square lattice. Besides the ground-
state properties, finite-temperature properties of both limiting
lattice models have been investigated in detail for zero and
nonzero magnetic field [19–23].

Concerning the lattices in Figs. 2(b)–2(e), there is a lack
of proper theoretical predictions for the finite-temperature
behavior. For the spin-1/2 HAF on the rectangular lattice
in zero magnetic field, temperature dependence of the cor-
relation length, uniform susceptibility, magnetization, and
specific heat has been evaluated by means of quantum Monte
Carlo (QMC) simulations [3,24–26] for some values of
the spatial anisotropies R = Jinterchain/Jintrachain ranging be-
tween 0 and 1. More systematic theoretical studies of finite-
temperature properties are available for the spin-1/2 HAF on
the spatially anisotropic zig-zag square lattice [27,28].

It should be noted that besides the chain (R = 0) and
isotropic square lattice (R = 1) the finite-temperature theoreti-
cal studies of the spin-1/2 HAF on the rectangular and zig-zag
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(a) (b) (c) (d) (e)

FIG. 2. (a) Rectangular lattice with the nearest-neighbor couplings J1 and J2 and the additional next-nearest-neighbor coupling J3 along
one of the diagonals of the rectangular plaquettes. (b), (c) Rectangular lattices derived from (a). The lattice denoted by (d) is topologically
equivalent to the spatially anisotropic zig-zag square lattice (e). In the Hamiltonian (1) (see text below), J1 and J3 in (e) correspond to J and
RJ , respectively.

lattice in the external magnetic field are missing. Owing to this
fact, a comprehensive analysis of the basic response functions
usually measured in the experiment was performed in the
present paper.

A. Spin-1/2 HAF on the spatially anisotropic zig-zag
square lattice

The model of the spin-1/2 HAF on the spatially anisotropic
zig-zag square lattice [Fig. 2(e)] in the magnetic field is

described by the Hamiltonian [27]

H = J

⎡
⎣∑

i, j

SiS j+R
∑
k,l

SkSl

⎤
⎦ − gμBB

N∑
i=1

Sz
i , (1)

where the parameter J > 0 stands for the Heisenberg an-
tiferromagnetic exchange coupling Jintrachain, JR represents
Jinterchain, and the anisotropy parameter R ranges from 0
to 1. The first and second summations involve the interaction

(a) (b)

(c) (d)

FIG. 3. (a) Temperature dependence of the specific heat of the spin-1/2 HAF on the spatially anisotropic zig-zag square lattice [Eq. (1)]
with R = 0.2 and L = 64 in constant magnetic fields. Temperature dependence of (b) the reduced susceptibility, (c) the reduced magnetization,
and (d) the m/h ratio, calculated for the aforementioned model. For clarity, in the high field h = 3.5, only specific heat is shown.

134416-4



INTERPLAY OF MAGNETIC FIELD AND INTERLAYER … PHYSICAL REVIEW B 100, 134416 (2019)

(a) (b)

(c) (d)

FIG. 4. Temperature dependence of the specific heat and susceptibility of the spin-1/2 HAF on the spatially anisotropic zig-zag square
lattice (L = 64) in constant magnetic field [Eq. (1)] with R = 0.8 (a), (b) and R = 1 (c), (d).

between nearest neighbors within the same zig-zag chain and
between the nearest neighbors from different zig-zag chains,
respectively. The last term in Eq. (1) is the usual Zeeman term
(g is the Landé factor; μB is the Bohr magneton).

Following the procedures developed in Ref. [27], all cal-
culations were conducted using a directed loop algorithm in
the stochastic series expansion representation of the quantum
Monte Carlo method [29] from Algorithms and Libraries
for Physics Simulations project [30]. The QMC simulations
were performed on finite-size lattices with a linear size L,
which involve under the periodic boundary conditions in
total N = 4L × L spins. The comparative studies with L = 32
and 64 found no finite-size effects. The adequate numerical
accuracy was achieved through 8 × 105 Monte Carlo steps
used for a statistical averaging in addition to 1.5 × 105 steps
for thermalization.

The calculations of thermodynamic quantities were per-
formed for R = 0.1, 0.2, 0.4, 0.6, 0.8, and 1. For each R, tem-
perature dependences of the specific heat C, susceptibility χ ,
and uniform magnetization m = M/(NgμB) were calculated
in the constant magnetic field h = gμBB/J , nominally ranging
from 0 to 5. (The value h = 4 corresponds to the satura-
tion field of the isotropic square lattice.) Temperature de-
pendences of the thermodynamic quantities for R = 0.2, 0.8,
and 1 in various magnetic fields are depicted in Figs. 3
and 4.

The specific heat of the model [Eq. (1)] has a few charac-
teristic features, which persist in the whole range of the spatial
anisotropies. One feature is the nonmonotonic development of
the height of the round maximum Cmax with growing h, which
appears in the vicinity of the saturation field. For the model
[Eq. (1)], the mean-field theory provides the estimate [27]

hsat = 2(1 + R). (2)

Another feature is the formation of a second rather sharp
peak at the low-temperature side of the aforementioned round
maximum which becomes clearly distinguishable at h = 1.5
(when considering the density of the h sampling used in the
QMC studies) for all anisotropies including R = 0 and 1. In
the theoretical studies [21,22] of the spin-1/2 HAF chain [i.e.,
the model given by Eq. (1) for R = 0] the sharp maximum
was ascribed to the spinon excitations forming particle-hole
continua which split in the external magnetic field. At suf-
ficiently strong fields the bandwidths become considerably
different, resulting in the two maxima in the specific heat at
different temperatures [21]. In the studies of the square lattice
in magnetic field, the sharp low-temperature peak has been
associated with the binding process of the topological excita-
tions and vortex-antivortex pairs, resulting in the Berezinskii-
Kosterlitz-Thouless phase transition [23].

It should be noted that in parallel with the low-temperature
specific-heat peak, a sharp anomaly develops also in the
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FIG. 5. Temperature dependence of the specific heat of the spin-1/2 HAF on the rectangular and spatially anisotropic zig-zag square
lattices with the same number of spins n = 16384, calculated for R = 0.4 in constant magnetic fields h = 1.0 (a) and h = 2.0 (b).

susceptibility in the same temperature region for all R values
(Figs. 3 and 4). Apparently, some kind of a magnetic-field-
induced crossover between 1D and 2D character of excitation
spectra may occur, which deserves further studies and is out
of the scope of the present paper.

B. Spin-1/2 HAF on the rectangular lattice

Concerning the RL, it has the same coordination number
z = 4 as the aforementioned ZZL with two pairs of equivalent
nearest-neighbor bonds. Both lattices with HAF interactions
possess collinear Néel ground states and within the mean-field
theory the same saturation fields [1,27]. Therefore, the aim of
further numerical studies was to find whether the properties of
the two lattices remain equivalent also at finite temperatures
and magnetic fields. In the first step, the comparison of avail-
able thermodynamic data of RL and ZZL in zero magnetic
field was performed and it was found that the temperature
dependences of the uniform susceptibilities [3,27] and specific
heats [25,27] are the same for both models. In the next step,
the thermodynamic quantities of the rectangular lattice with
the total number of spins n = 128 × 128 were investigated
in magnetic field using the Hamiltonian (1), which can be
applied for the rectangular lattice if the first and second
summations in Eq. (1) refer to the interaction between nearest
neighbors within the same linear chain and the nearest neigh-
bors from different linear chains, respectively.

The comparison of the data for both lattices with the same
number of spins suggests that finite-temperature properties
remain the same within QMC errors even in the external
magnetic field. For illustration, Fig. 5 provides a comparison
of RL and ZZL specific heats for R = 0.4 in two magnetic
fields. Apparent equivalence between both considered models
indicates the presence of some sort of hidden symmetry (see
the Appendix).

The QMC studies of the temperature dependence of the
correlation length ξ in the spin-1/2 HAF on the rectangu-
lar lattice revealed growing differences between ξ || (within
chains) and ξ⊥ (between the chains) for R → 0. Due to large
differences (ξ || > ξ⊥), the 2D behavior in the RL with small
R is observed only at low temperatures and a 2D-1D crossover
occurs at higher temperatures [24]. The studies confirmed the

reduction of the spin stiffness ρs(R) for the increasing spatial
anisotropy (i.e., R → 0) and it was found that at intermediate
temperatures the QMC data of the correlation length can be
described by the relation [31]

ξ = A exp[2πρs(R)/kBT ]/{1 + 0.5kBT/[2πρs(R)]}. (3)

Besides the spatial anisotropy, the external magnetic field
can also reduce the spin stiffness [32,33]. Since a dimensional
crossover occurs when the correlation length in one direction
becomes of the order of the lattice spacing [24], it can be
expected that sufficiently large magnetic field can effectively
magnify the spatial anisotropy of the exchange coupling.

Thus, considering the effects of the magnetic field and
thermal fluctuations, at least one of the three inequivalent
intralayer exchange couplings expected in Cu(en)Cl2 [Fig. 1
(d)] could be neglected to some extent. Correspondingly,
experimental thermodynamic data will be analyzed within the
aforementioned models of the spin-1/2 HAF on the rectangu-
lar and the zig-zag square lattice which can be treated more
or less as effective models due to the reduction of the actual
number of the intralayer exchange interactions. Apparently,
the analysis cannot discriminate between these models since,
as was already demonstrated, both models have the same
finite-temperature properties in zero as well as nonzero mag-
netic field.

IV. RESULTS AND DISCUSSION

A. Specific heat

Temperature dependence of the specific heat of Cu(en)Cl2

single crystal and polycrystalline Cu(tn)Cl2 in zero mag-
netic field is depicted in Fig. 6. The total specific heat of
both insulating compounds is composed of the lattice Clatt

and magnetic Cmag contributions. Apparently, the behavior of
both contributions is different for each compound. At higher
temperatures, where the magnetic contribution is negligible,
the larger values of Cu(tn)Cl2 specific heat indicate that the
crystal structure is softer and Debye temperature is lower than
in Cu(en)Cl2. At low temperatures, the magnetic contribu-
tion dominates in both compounds, characterized by a round
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FIG. 6. Temperature dependence of the specific heat of the poly-
crystalline Cu(tn)Cl2 and single-crystal Cu(en)Cl2 in zero magnetic
field. Total and magnetic specific-heat data are represented by lines
and symbols, respectively. The dotted line represents the lattice
specific heat in Cu(en)Cl2.

maximum, which reflects the presence of short-range mag-
netic correlations.

In case of Cu(en)Cl2 the shift of the maximum towards
lower temperatures suggests significant reduction of the in-
tralayer exchange couplings. What is more, the presence of a
sharp λ-like anomaly at TN = 0.7 K clearly marks the onset of
the LRO in Cu(en)Cl2.

To analyze the magnetic specific heat of Cu(en)Cl2 in
more detail, the lattice contribution was subtracted us-
ing a fitting procedure in the temperature interval from
7 to 15 K. At these temperatures the Cmag was ap-
proximated by the 1/T 2 dependence, while a few terms
of the low-temperature expansion of Clatt within Debye
approximation [34] were used. The total specific heat
was fitted by the relation Ctot=a/T 2 + bT 3 + cT 5 + dT 7

with a = 11.47 J K/mol, b = 0.00158 J/K4 mol, c = –1.53
× 10−6 J/K6 mol, and d = 6.36 × 10−10 J/K8 mol (Fig. 6).
From the parameter b the value of Debye temperature was
evaluated, �D = 109 K.

After subtracting the lattice contribution, the result-
ing Cmag of Cu(en)Cl2 is depicted in Fig. 6. The total
experimental magnetic entropy Stot = 5.74 ± 0.05 J/K mol
corresponds well to the spin-1/2 system. Despite the strong
λ-like anomaly, the compound still preserves two-dimensional
character of magnetic correlations as indicated by more than
70% of the magnetic entropy removed above TN. Such a high
ratio is a typical feature of low-dimensional magnets [19].

Depending on the strength of the interlayer coupling, the
response of the quasi-low-dimensional magnets on the ap-
plied magnetic field can differ. QMC studies of the spin-
1/2 HAF on the spatially anisotropic simple cubic lattice in
the magnetic field found that for sufficiently weak interlayer
coupling the field dependence of the transition temperatures
is nonmonotonic [35]. For stronger J′, a monotonic decrease
of transition temperatures appears characteristic for three-
dimensional antiferromagnets [19].

Thus, to obtain more information about the strength of the
interlayer coupling in Cu(en)Cl2, the response of the single
crystal on the applied magnetic field was investigated.

FIG. 7. Temperature dependence of the magnetic specific heat of
Cu(en)Cl2 single crystal in magnetic fields applied along the a axis.
Triangles and circles represent B-T diagrams of powder Cu(tn)Cl2

[7] and Cu(en)Cl2 in B|a, respectively. The lines are guides for the
eyes.

More specifically, the temperature dependence of the spe-
cific heat was measured from 0.4 to 15 K in constant mag-
netic fields applied parallel to the a axis. The data were
corrected for the aforementioned lattice contribution (Fig. 7).
The mapping of the positions of the λ-like peaks enabled
the construction of a magnetic phase diagram. Its similarity
with the behavior of the 3D antiferromagnets suggests that
in Cu(en)Cl2 the influence of the interlayer coupling is much
stronger than in Cu(tn)Cl2. In the latter, the initial shift of
a field-induced specific-heat anomaly towards higher tem-
peratures [7] clearly demonstrates a good two-dimensional
character of the magnetic lattice (Fig. 7). A simple look at
both diagrams suggests a significant reduction of the satura-
tion field in Cu(en)Cl2 resulting from the reduction of 2D
magnetic correlations. On the other hand, the extrapolation
of the B-T diagrams towards zero field suggests the existence
of the same or very similar ordering temperatures for both
compounds. The relation for the transition temperature TN =
J ′(Mst )2(ξ/a)2 derived for the square lattice [36] (Mst and
ξ denote the normalized intralayer staggered magnetization
and the intralayer correlation length, respectively) suggests
that the reduction of 2D correlations indicated in Cu(en)Cl2

requires the enhancement of the interlayer coupling to obtain
the same TN as for Cu(tn)Cl2.

1. Saturation field

QMC calculations of the specific heat presented in Sec. III
showed that in the vicinity of the saturation field approached
from the low-field side, after initial decrease, the height of
a round maximum starts to grow and shift to higher tem-
peratures (Figs. 3 and 4). Such behavior observed in the
experimental data (Fig. 7) suggests that Bsat can acquire values
between 3.5 and 4 T.

Theoretical studies [20] showed that above the saturation
field the rise of the aforementioned specific-heat maximum is
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governed by the energy gap in the spin excitation spectrum

	 = gμB(B − Bsat ), (4)

developing linearly with increasing magnetic field. At tem-
peratures which are sufficiently high for thermal fluctuations
to overcome the effects of the interlayer coupling, but small
enough with respect to the energy gap (kBT < 	), the system
approaches with good approximation 2D behavior. Then the
magnon spectra acquire 2D character, resulting in the expo-
nential increase of the specific heat [37,38]

Cmag ≈ 1

T
exp(−	/kBT ). (5)

Since in the field 4 T the sharp spike in the specific heat
vanishes, in the first approximation Bsat = 4 T was chosen
for a preliminary estimate of the energy gap formed in
the highest field 9 T. Using the room-temperature value
of the g factor measured along the a axis [15] ga = 2.049,
the application of Eq. (4) provided the gap value 	a/kB =
6.86 K. The inspection of the specific heat in 9 T revealed
that nonzero contribution of the spin excitations appears above
0.5 K. Using Eq. (5) between 0.5 and 1.8 K yielded the
gap value 	a/kB = 7.3 ± 0.1 K. The corresponding Bsat =
3.7 ± 0.1 T is lower than 4 T but higher than 3.5 T, the
field in which the specific heat still shows a significant upturn
at lowest temperatures—the sign of the λ-like anomaly oc-
curring outside the experimental temperature window. Thus,
a significant reduction of the saturation field compared to
Cu(tn)Cl2 indicates substantial weakening of the intralayer
interactions (Fig. 7).

2. Short-range correlations in B = 0

Besides rather significant weakening of the intralayer in-
teractions in Cu(en)Cl2, in zero magnetic field a pronounced
λ-like anomaly overlaps the round maximum originating from
the short-range order (Fig. 6). QMC simulations of the specific
heat of the spin-1/2 HAF on the spatially anisotropic simple
cubic lattice [6] showed that the formation of the λ-like
anomaly does not lead to the reduction of the 2D round peak.
While a weak interlayer coupling has a minimal effect on the
round maximum, for the stronger J′, the contribution of the
interlayer correlations is superimposed on the 2D anomaly.

Considering the aforementioned features, the magnetic
specific heat in zero magnetic field was compared with the
theoretical predictions for the rectangular lattice with R vary-
ing from 0 to 1. The best agreement with the experimental data
was found for the models with low R, ranging from 0.1 to 0.4
and J/kB = 2.35 K (Fig. 8). The J parameter corresponds well
with the values calculated from Eq. (2). The relation provides
for Bsat = 3.7 T and R = 0.1, 0.2, 0.3, and 0.4 the intrachain
coupling J/kB = 2.31, 2.12, 1.95, and 1.81 K, respectively.
The deviations of the experimental data from the aforemen-
tioned theoretical 2D anomalies below kBT/J < 0.75 could
be ascribed to the effect of the third interaction, which was
omitted in the analysis.

As was shown in Ref. [39], the presence of the additional
NNN interaction in the spin-1/2 HAF square lattice signifi-
cantly changes finite-temperature properties. When the NNN
coupling becomes larger, the corresponding round specific-
heat anomaly decreases and shifts towards lower temperatures

FIG. 8. Temperature dependence of the magnetic specific heat
of Cu(en)Cl2 in zero magnetic field (squares) compared with the
QMC calculations [25] of the specific heat of the spin-1/2 HAF
on the rectangular lattice with R = 0.1, 0.2, 0.3, and 0.4 and J/kB =
2.35 K.

[39]. Thus, a similar effect can be expected also in the rectan-
gular lattice with the NNN coupling as expected in Cu(en)Cl2

[Fig. 1(d)].

3. Magnetic entropy and short-range correlations in B > 0

Concerning the effect of long-range correlations, the mag-
netic entropy removed below the phase transition, S3D

c , rapidly
decreases with growing magnetic field. In the reduced coordi-
nates the curves C/C3D

max vs T/Tc (C3D
max represents the height of

the λ-like anomaly at the transition temperature Tc for a given
magnetic field) fall on one universal curve below the phase
transition (Fig. 9). On the other hand, in the paramagnetic
phase, the interplay of short-range correlations and magnetic
field is apparent up to about 2–3T/Tc. At higher temperatures,
the effect of magnetic field dominates, reflected by rising
specific-heat values in higher magnetic fields.

FIG. 9. Temperature dependence of the magnetic specific heat of
Cu(en)Cl2 in reduced coordinates. Inset: Magnetic field dependence
of the magnetic entropy removed below the phase transition.
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The specific heat in zero magnetic field can be well ex-
trapolated down to zero temperature with the T 3 dependence
which enabled corresponding extrapolation of the universal
curve down to T/Tc = 0 (Fig. 9). Thus, despite the limited
experimental temperature window, the universal specific-heat
behavior below the phase transition enabled us to evaluate
the magnetic entropy S3D

c in all magnetic fields where the
λ-like anomaly is observable. The evaluation of the magnetic
entropy from the universal curve

S3DRed
c =

∫ 1

0

(
C/C3D

max

)
(T/Tc)

d (T/Tc) (6)

yielded dimensionless S3DRed
c = 0.26 ± 0.01 which enabled

us to calculate the real magnetic entropy S3D
c in the given field

S3D
c (B) = S3DRed

c C3D
max(B). (7)

Apparently, the relative change of the magnetic entropy cor-
relates with the relative change of the specific-heat maxima
at the transition temperatures (Fig. 9, inset). Within the ex-
perimental inaccuracy (about 5% at Tc), the S3D

c (B) vs B
dependence scales with the Tc vs B magnetic phase diagram
in Fig. 7.

Above the saturation field the ground state consists of all
spins up, which corresponds to a ferromagnet in the mag-
netic field [40]. In this field region, the specific heat is not
distorted by the λ-like anomaly and the analysis within the
effective 2D model [Eq. (1)] can be performed. Concern-
ing the specific heat in the field 4 T, the estimation of the
magnetic entropy in the whole temperature range provided
Smag = 5.7 ± 0.1 J/K mol, which is close to the Rln2 value
for the spin 1/2. Considering the values of the intrachain ex-
change couplings derived from the saturation field [Eq. (2)] in
Sec. IV A 2, the field 4 T corresponds to h = 2.38, 2.58, and
3.00 for R = 0.1, 0.2, and 0.4, respectively. The first two
values are close to the value 2.5, for which QMC specific-
heat data (Sec. III) are available. The comparison of the
corresponding QMC simulations and the experimental data
in the field 4 T is depicted in Fig. 10. Apparently, the best
agreement can be found for R ≈ 0.2 after rescaling J/kB to
2.35 K to fit the position of the maximum.

To verify the credibility of the Bsat estimated from the
low-temperature specific-heat data in 9 T using Eq. (5),
the experimental as well as the QMC specific-heat data for
R = 0.2 were drawn in the reduced coordinates Ch/Ch

max vs
T h/T h

max (Ch
max and T h

max represent the height and the position
of the round maximum in the field h, respectively). Naturally,
the experimental and theoretical plots were constructed only
for the fields in which the round maximum appears. For
completeness, the specific heat of the spin-1/2 paramagnet
in the magnetic field (i.e., two-level system) as a limiting
case h → ∞ has been also added (Fig. 11). The inspection
of the theoretical plots in Fig. 11(a) revealed largest deviations
from the paramagnet curve for h = 2.0 and 2.5. For increasing
fields above hsat = 2.4, a gradual shrinking of the curves
towards the paramagnet curve is observed. The same behavior
was observed for other R values and a similar tendency can
also be seen in the plot of the experimental data, where the
largest deviations from the paramagnet curve occur for the
fields 3.5 and 4 T [Fig. 11(b)].

FIG. 10. Temperature dependence of the magnetic specific heat
of Cu(en)Cl2 in the field 4 T applied along the a axis (symbols). The
lines represent QMC data for the spin-1/2 HAF on the rectangular
lattice with the linear size L = 128 for various R.

Apparently, the plot of the experimental data in the reduced
coordinates offers the alternative method for the estimation of
the saturation field even at moderate temperatures. Besides the
disappearance of the low-temperature (LRO or 2D in nature)
spike, the closeness of the saturation field is manifested by the
maximum deviations from the paramagnet curve.

In addition, the inspection of the Ch/Ch
max vs T h/T h

max plots
for all R values revealed that in the growing magnetic field,
after initial decrease and flattening, the formation of a separate
round maximum begins in the fields above ≈ 0.75hsat. This
feature could be associated with the onset of a strong-field
region theoretically predicted for the spin-1/2 HAF on the
square lattice in the fields ranging between h∗ ≈ 0.75 hsat and
hsat [33,41]. In these fields, the instability of antiferromagnetic
magnons occurs, which spreads gradually through enlarging
portions of the Brillouin zone when h approaches hsat. The
threshold field h∗ occurs in all antiferromagnets with the
ordered ground state irrespective of their dimensionality, spin
value, or the type of the order [41,42].

As a finite-temperature indicator of the strong-field region,
the reduced entropy of the 2D system described by Eq. (1) was
chosen:

S2DRed (h) =
∫ ∞

0

(
Ch/Ch

max

)
(
T h/T h

max

) d
(
T h/T h

max

)
. (8)

Applying the relation analogic to Eq. (7),

S2D(h) = S2DRed (h)Ch
max, (9)

the real magnetic entropy S2D(h) in the whole temperature
range is always equal to ln(2) for the spin 1/2. For R =
0.2, S2DRed (h) = 1.915, 1.925, 2.016, 2.358, 3.357, and 2.860
for h = 0, 0.2, 0.5, 1, 2, and 2.5, respectively. The parameter
S2DRed (h) does not achieve maximal value at h = hsat, as one
would intuitively expect. Instead, within the h sampling, the
maximal value is achieved for h = 2, which is about 0.83
hsat. A similar conclusion is valid for all other R values.
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(a) (b)

FIG. 11. (a) Temperature dependence of the specific heat of the spin-1/2 HAF on the rectangular lattice (R = 0.2) in various fields.
(b) Temperature dependence of the magnetic specific heat of Cu(en)Cl2 in various fields applied along the a axis (symbols). The solid lines
represent QMC data for the spin-1/2 HAF on the rectangular lattice (R = 0.2) in the magnetic fields h = 2 and 2.5. The dotted line corresponds
to the spin-1/2 paramagnet in the magnetic field.

For completeness, the S = 1/2 paramagnet in field is also
enclosed, with S2DRed = 1.578. The aforementioned behavior
of the specific heat and the reduced entropy suggests that these
finite-temperature properties seem to be sensitive to the onset
of the high-field regime. Further QMC calculations would be
useful to investigate the finite-temperature properties in the
strong-field region in detail.

Concerning Cu(en)Cl2, the appearance of a separate round
maximum in the specific heat at 3 T ≈ 0.8 Bsat suggests the
onset of the high-field regime. The gradual prevailing effect of
the magnetic field over the interlayer correlations can be seen
in the development of the specific heat. The comparison of
the experimental data with the 2D model of the spin-1/2 HAF
on the rectangular lattice with R = 0.2 reflects this tendency
(Fig. 12). While in the fields below 3 T the discrepancies
between the data and the theory are large, in higher fields, the
agreement improves. The values of normalized fields h0 for
the individual sets of experimental data were calculated for a
given magnetic field B and J/kB = 2.35 K and are depicted in
Fig. 12 in the frame. Subsequently, the QMC data for R = 0.2
and h values close to h0 were chosen for the comparison with
the experimental data.

B. Magnetization

1. Magnetic field dependence of magnetization

Isothermal magnetization curves were investigated at
0.45 K and magnetic fields up to 5 T applied along the a,
b, and c∗ axes [Fig. 13(a)]. In the highest fields the mag-
netization achieves nearly saturated values, which were used
for a lower estimate of g-factor values in all three directions.
The prescription for the saturation value Msat = NgμBSz

for the spin 1/2 provides ga = 2.09 ± 0.01, gc∗ = 2.08 ±
0.01, and gb = 2.21 ± 0.01. The estimates correspond to the
room-temperature values ga = gc∗ = 2.049 ± 0.010 and gb =
2.239 ± 0.010 obtained within the electron paramagnetic
resonance experiment [15]. Using the low-temperature g

factors, the rescaling of the magnetization data provided a
universal curve M/NgμB vs gμBB/J . The best agreement
with the theoretical prediction for the spin-1/2 HAF on the
rectangular lattice was achieved for R = 0.2 and J/kB =
2.20 K [Fig. 13(a)]. A slightly different J value obtained
from the analysis of the magnetization can be ascribed to the
combined effect of the interlayer correlations dominating at
low fields and the neglecting of the weakest third exchange
coupling. The discrepancy between the theory and the data
in the vicinity of the saturation field can be ascribed to the
effect of a finite temperature; the QMC data were calculated
at kBT/J = 0.1, while the experimental data were measured at
kBT/J ≈ 0.2.

Considering hsat = 2.4 for the spin-1/2 HAF on the rectan-
gular lattice with R = 0.2 and using J/kB = 2.20 K and the g
factors estimated from the magnetization, the saturation fields
were evaluated for the individual field orientations, Ba

sat ≈
Bc∗

sat = 3.77 ± 0.05 T and Bb
sat = 3.57 ± 0.05 T.

Concerning the strong-field region, the exact diagonaliza-
tion studies of the spin-1/2 HAF on the square lattice [33]
at zero temperature revealed that high-energy magnons in the
vicinity of the (π , π ) point in the Brillouin zone become
unstable when the uniform magnetization achieves the value
mc ≈ 0.3 which corresponds to the aforementioned h∗. The
inspection of the experimental data in [Fig. 13(a)] revealed
that the reduced magnetization achieves the value m ≈ 0.3 at
h ≈ 1.9. For the rectangular lattice with R = 0.2 the value
corresponds to 0.79 hsat, which is rather close to h∗. Thus,
considering easy access to the strong-field region, Cu(en)Cl2

can potentially serve as a good candidate for the investigation
of the instabilities of the one-magnon spectra.

Besides the strong-field region, a closer look at the mag-
netization data revealed anomalous behavior in low fields
h < 0.2 manifested by slight deviations from the initial lin-
ear dependence [Fig. 13(b)]. The deviations occur at about
100–150 mT in the field oriented along the a axis, while
some indications appear also along the c* direction in the
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(a) (b)

(c) (d)

FIG. 12. Temperature dependence of the magnetic specific heat of Cu(en)Cl2 in the magnetic field 1 T (a) 2 T (b) 3 T (c) and 3.5 T (d)
applied along the a axis (symbols). Solid lines represent QMC data (L = 128) for the spin-1/2 HAF on the rectangular lattice with R = 0.2 in
various fields. The values of the normalized fields h0 = gμBB/J calculated for a given field B and J/kB = 2.35 K are shown in the frame.

same field region exhibiting some features characteristic for
the spin-flop transition. The low-field anomalies are not so
noticeable as those associated with the spin-flop transitions
observed in other low-dimensional Cu(II)-based quantum
magnets [2,27,43]. Similar features characteristic of the spin-
flop transition, i.e., the observation of the anomalous mag-
netization behavior in two directions, were ascribed to the
misalignment between the magnetic field and the easy axis
[44]. The investigation of the angular dependence of the spin-
flop transition in 2D and 3D antiferromagnets revealed that
the spin-flop transition extends for large angles between the
field and the easy axis [43,45]. The room-temperature elec-
tron paramagnetic resonance and polarized electronic spectra
suggest that in Cu(en)Cl2 the local anisotropy axes x, y, and
z coincide with the symmetry of the CuN2Cl4 chromophore
[16]. While the z axis coincides with the crystallographic b
axis, x and y axes lie close to the bond directions of the chro-
mophore. In this respect, the crystallographic a and c axes are
tilted from the x and y axes by the angle ≈ 30°, respectively
[16]. Considering these facts, the slightly stronger anomaly

along the a axis suggests that the x axis should be the easy
axis, while the y axis and z axis stand for the middle and hard
axis, respectively.

To verify this conjecture, the magnetization was carefully
investigated in very low magnetic fields ranging from −20
to 20 mT to exclude any effect of the spin-flop transition.
The “hysteresis loops” in all three directions (i.e., the se-
quence 0 → 20 → −20 → 20 mT) lack any hysteresis and
are strictly linear, indicating the absence of any weak fer-
romagnetism (Fig. 14, inset). Within the mean-field theory,
it was shown that at zero temperature and magnetic fields
below the spin-flop transition the normalized magnetization
along the hard axis grows faster than that along the middle
axis, while the magnetization along the easy axis remains
zero [27]. Thus, considering finite-temperature effects and the
expected tilting, the normalized experimental magnetization
data in the mT region support the aforementioned conjecture
that the b axis corresponds to the hard axis z, while the a and
c* directions lie closer to the easy x axis and middle y axis,
respectively.
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(a) (b)

FIG. 13. (a) Magnetic field dependence of the isothermal magnetization of Cu(en)Cl2 in the field applied along the a, b, and c∗ axes at
0.45 K depicted in the reduced coordinates (symbols). The solid line represents QMC data (L = 128) for the spin-1/2 HAF on the rectangular
lattice with R = 0.2 and J/kB = 2.20 K at the constant temperature kBT/J = 0.1. Upper inset: Magnetic field dependence of the isothermal
magnetization of Cu(en)Cl2 in the field applied along the a, b, and c∗ axes at the constant temperature 0.45 K. Lower inset: Derivative of the
isothermal magnetization at 0.45 K in the field B||b. (b) The same data as in the main figure (a) shown in the low-field region (symbols). The
dashed line demonstrates the deviation of the magnetization data from the linear behavior, measured in B||a. Upper and lower inset: Derivative
of the isothermal magnetization at 0.45 K in the field B||a and B||c∗, respectively. The arrows denote the saturation and spin-flop fields
(see text).

2. Temperature dependence of magnetization

Temperature dependence of magnetization was investi-
gated at temperatures from 0.45 to 1.8 K in magnetic fields

FIG. 14. (a) Temperature dependence of the normalized mag-
netization M/B of Cu(en)Cl2 in constant fields applied along the
a, b, and c∗ axes. FC (ZFC) data are represented by full (open)
symbols. For illustration, in B|b, the data in all fields (5, 10, 15, 20,
30, and 40 mT) are included, while in B|a, c∗ for clarity only the
data in B = 40 mT are depicted. Inset: “Hysteresis loops” of nor-
malized magnetization M/(NgμB) vs B at the constant temperature
T = 0.45 K. (b) The same data as in the main figure (a) divided
by g2(M/(Bg2) ≡ χ (T )/g2) with ga = 2.12, gc∗ = 2.11, gb = 2.24.
For clarity, only ZFC and FC data at 40 mT are selected for each
orientation. The high-temperature data above 1.8 K (open squares)
are powder data taken from Ref. [17] and divided by the reported
g = 2.01. The solid line represents the QMC data (L = 128) for the
spin-1/2 HAF on the rectangular lattice in zero magnetic field with
R = 0.2 and J/kB = 2.18 K.

applied along the a, b, and c* direction, ranging from 5 to
40 mT. The measurements were performed in both ZFC
and FC regimes. The coincidence of the FC and ZFC data
even below the phase transition to the long-range magnetic
order and the aforementioned shape of the “hysteresis loops”
[Fig. 14(a)] indicate the absence of weak ferromagnetism in
Cu(en)Cl2, which could be related with the Dzialoshinkii-
Moriya interaction or some other sources. For a given orienta-
tion of the magnetic field the normalization M(T)/B provides
the same curve for all aforementioned magnetic fields. There-
fore, in further analysis the M(T)/B data were treated as the
initial magnetic susceptibility χ .

To exclude the effect of the g-factor anisotropy, the exper-
imental susceptibility data in each orientation were divided
by the square of the corresponding g factor. The values
ga = 2.12, gc∗ = 2.11, and gb = 2.24 were chosen to obtain a
universal normalized curve above the phase transition, where
the spin isotropic 2D behavior can be expected [46]. For
temperatures above 1.8 K, the powder susceptibility data
taken from Ref. [17] with the reported g = 2.01 were used
[Fig. 14(b)]. It can be seen that such normalization provides
a universal curve above the phase transition, while below
TN = 0.7 K the curve splits into three lines with the behavior
typical for the magnet with the orthorhombic spin anisotropy.
Applying the theoretical results for the susceptibility of the
spin-1/2 easy-axis XXZ model on the square lattice below
the phase transition [46], in the case of Cu(en)Cl2, χa below
TN corresponds to the susceptibility along the easy axis, while
χb behaves as the susceptibility along the hard axis, in coin-
cidence with the isothermal magnetization curves [Fig. 14(a),
inset]. The experimental data above the phase transition were
compared with the QMC data (L = 128) for the spin-1/2
HAF on the rectangular lattice with R = 0.2 in zero magnetic
field and the best agreement was found for J/kB = 2.18 ±
0.05 K.
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V. CONCLUSIONS

The interplay of the magnetic field and interlayer cor-
relations was experimentally investigated in a quasi-two-
dimensional quantum magnet Cu(en)Cl2. The analysis of
the crystal structure suggests the presence of three different
intralayer exchange interactions forming a rectangular lat-
tice with a coupling along one of the diagonals within the
rectangular plaquettes. When any of the three interactions is
neglected, the lattice transforms into the rectangular or the
spatially anisotropic zig-zag square lattice, both with nearest-
neighbor interactions.

These two models served as the effective models for the
analysis of the experimental specific heat and magnetization.
For that purpose, QMC calculations of the thermodynamic
quantities were performed for the spin-1/2 HAF on the rect-
angular and the spatially anisotropic zig-zag square lattice in
the wide range of parameters enabling detailed mapping of
finite-temperature properties of both models. The calculations
showed that within QMC errors the finite-temperature prop-
erties of both models are identical for the same parameters.
Subsequent analysis of the vertex symmetry confirmed the
equivalency of both lattices. In addition, the equivalency with
other 2D lattices with four nearest neighbors was revealed.

The comparison of the Cu(tn)Cl2 and Cu(en)Cl2 specific
heats in zero magnetic field as well as corresponding mag-
netic phase diagrams revealed that the tn → en substitution
significantly reduced the strength of the intralayer interactions
in Cu(en)Cl2 and enhanced the influence of the interlayer
correlations. This significant change was manifested by the
clear observation of a phase transition to the long-range order
at 0.7 K in zero magnetic field and a significant reduction of
the saturation field compared to its tn counterpart.

To exclude the effect of the long-range correlations, which
strongly screen the manifestation of the 2D SRO in zero
magnetic field, the specific heat in the magnetic field of
9 T was analyzed to provide the estimate Bsat ≈ 3.7 T. The
saturation field value combined with the general theoretical
conclusions about the specific-heat behavior affected by the
interlayer coupling and the next-nearest-neighbor interactions
in the spin-1/2 HAF on the square lattice served as important
constraints for the selection of a proper magnetic model for
Cu(en)Cl2. Then using the wide set of the QMC specific-heat
data for various strengths of the spatial anisotropy, magnetic
fields, and temperatures, these constraints enabled us to nar-
row the selection to the model of the rectangular and zig-zag
square lattice with R ≈ 0.2 and the intralayer coupling J/kB ≈
2.3 K. These parameters were further successfully used for
the description of the isothermal magnetization at 0.45 K and
the initial magnetic susceptibility both measured in three field
orientations.

The inspection of the isothermal magnetization data at
0.45 K in the low-field region revealed the characteristics
recalling the spin-flop transition in the field about 100 mT.
The observation of the anomalous behavior in two orientations
was ascribed to the deviation of the crystallographic axes from
the local anisotropy axes. The character of the “hysteresis
loops” investigated in the mT region at 0.45 K as well as
the magnetic susceptibility studied in the magnetic fields far
below the spin-flop transition exclude the presence of a weak

ferromagnetism originating from the Dzialoshinskii-Moriya
interaction or other sources. On the other hand, both sets of
the experimental data point tp the presence of the symmetric
spin anisotropy of the rhombic symmetry.

Despite the large influence of the interlayer coupling and
rather complicated distribution of intralayer exchange path-
ways, considering the constraints as the saturation field, the
effect of the interlayer and intralayer interactions, and the
availability of a sufficient number of various theoretical pre-
dictions, the analysis showed the possibility to extract the
main features of the low-dimensional magnetic subsystem in
Cu(en)Cl2 from rather simple and easy-accessible measure-
ments as the specific heat and magnetization.

Besides the aforementioned rather successful identification
of the 2D quantum magnet, some other issues should be
addressed in future. The behavior of the low-temperature
properties of the models in magnetic field suggests some kind
of crossover in the character of the excitation spectra when
the spatial anisotropy varied from R = 0 to 1. Last but not
least, the behavior of a reduced entropy, the special parameter
depending on the given 2D model characterized by R and the
reduced magnetic field h, suggests that the reduced entropy
achieves maximum values for the fields close to the threshold
field h∗, at least within the h sampling used in the QMC
calculations. In this respect, Cu(en)Cl2 with its low saturation
field represents a 2D system in which the strong-field regime
is easily accessible and together with the availability of quality
single crystals it can be a useful candidate for the experi-
mental investigation of the magnon instabilities as predicted
theoretically for the spin-1/2 HAF on the square lattice in the
magnetic fields above h∗.
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APPENDIX: EQUIVALENCE OF THE RECTANGULAR
AND THE SPATIALLY ANISOTROPIC ZIG-ZAG

SQUARE LATTICE

The main idea of the equivalence between the anisotropic
zig-zag lattice and the rectangular lattice shown in Fig. 15
is discussed for the spin-1/2 HAF model. On both lattices,
the model can be exactly decomposed into identical smaller
blocks, so-called local Hamiltonians, which are described by
three nearest-lying spin sites (i.e., three spins forming the right
angle). The examples of the three-spin local Hamiltonians HA

i, j

and HB
i+1, j are depicted in Fig. 16.

In this manner, the two local Hamiltonians can build up
the entire lattices, as schematically shown in Fig. 17 for both
of the lattice types. Evidently, the zig-zag lattice requires
mapping of the two local Hamiltonians HA

i, j and HB
i+1, j in

the alternating (chessboard) pattern, whereas the rectangular
lattice needs only one type of the local Hamiltonian, say HA

i, j ,
in this particular case. Notice that the middle spin of the local
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FIG. 15. (a) The zig-zag lattice is characteristic for the alter-
nating interactions J1 (red) and J3 (blue) along the vertical and
horizontal directions. (b) The rectangular lattice exhibits the vertical
J1 = J (red) and the horizontal J3 = RJ (blue) interactions being
fixed for the entire lattice.

Hamiltonians HA
i, j and HB

i+1, j specifies the lattice positions
i and j (Fig. 17).

First, let us consider a uniform decomposition of the
rectangular lattice, as in Fig. 17(b), into the identical local
Hamiltonians HA

i, j . It means that the total Hamiltonian Htot

of the HAF model, being fully specified by Eq. (1), can be
decomposed in this way:

Htot =
N∑

i=1

M∑
j=1

HA
i, j =

N∑
i=1

M∑
j=1

[
J1 
Si, j+1 · 
Si, j + J3 
Si, j · 
Si+1, j

− h
(
Sz

i, j+1 + Sz
i, j + Sz

i+1, j

)]
. (A1)

Clearly, HA
i, j coincides with the scheme depicted in Fig. 16(a).

Since each of the three spins in HA
i, j is equally shared with

the spin in the surrounding local Hamiltonians, we have to
rescale the constant magnetic field by the factor of 1/3. Then,
the magnetic field h = gμBB/3 can completely reproduce the
original Htot.

In general, the HAF model can be defined on a rectangular
lattice system of size N × M (where N and M are assumed
to be even numbers). We imposed the periodic boundary
conditions on both lattice types in order to unify the boundary
spins, which have to satisfy the cyclic condition 
SN+1, j = 
S1, j

and 
Si,M+1 = 
Si,1.
We can analogously decompose the total Hamiltonian of

the zig-zag lattice [see Fig. 17(a)] into the sum of the two

FIG. 16. The two neighboring three-spin blocks described by the
local Hamiltonians: (a) HA

i, j and (b) HB
i+1, j .

alternating local Hamiltonians HA
i, j and HB

i, j :

Htot =
∑

(HA + HB)

=
2∑

α=1

N/2∑
i=0

M/2∑
j=0

(
HA

2i+α,2 j+α + HB
2i+α,2 j+α+1

)
. (A2)

We can express the Hamiltonian (A2) in a simpler form,
in which the four neighboring local Hamiltonians are grouped
into a 3 × 3 square-lattice block of spins:

Htot =
N/2, M/2∑

i, j=0

(
HA

2i,2 j + HB
2i+1,2 j + HA

2i+1,2 j+1 + HB
2i,2 j+1

)
,

(A3)

where, after renaming 2i → i and 2 j → j, in accord with
Fig. 16(a), we get

HA
i, j = J1 
Si, j+1 · 
Si, j + J3 
Si, j · 
Si+1, j

− h
(
Sz

i, j+1 + Sz
i, j + Sz

i+1, j

)
(A4)

and [compare with Fig. 16(b)]

HB
i+1, j = J3
Si+1, j+1 · 
Si+1, j + J1
Si+1, j · 
Si+2, j

− h
(
Sz

i+1, j+1 + Sz
i+1, j + Sz

i+2, j

)
. (A5)

If replacing all the local terms HB with HA in Eq. (A3),
we recover the original rectangular lattice [Eq. (A1)]. This
replacement is equivalent to exchanging the interactions J1

and J3. In other words, we intend to analyze the exchange of
J1 and J3 in order to specify the conditions under which the
two local Hamiltonians (A4) and (A5) shown in Figs. 16(a)
and 16(b) are exchangeable. Then, we only need to compare

HA
i, j = J1(
Si, j+1 · 
Si, j ) + J3(
Si, j · 
Si+1, j ) − h

(
Sz

i, j+1 + Sz
i, j + Sz

i+1, j

)
,

HB
i, j = J3(
Si, j+1 · 
Si, j ) + J1(
Si, j · 
Si+1, j ) − h

(
Sz

i, j+1 + Sz
i, j + Sz

i+1, j

)
. (A6)

Having expressed HA
i, j in the matrix formalism, we obtain

HA
i, j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J1 + J3 − 3h 0 0 0 0 0 0 0
0 J3 − J1 − h 2J1 0 0 0 0 0
0 2J1 −J1 − J3 − h 0 2J3 0 0 0
0 0 0 J1 − J3 + h 0 2J3 0 0
0 0 2J3 0 J1 − J3 − h 0 0 0
0 0 0 2J3 0 −J1 − J3 + h 2J1 0
0 0 0 0 0 2J1 J3 − J1 + h 0
0 0 0 0 0 0 0 J1 + J3 + 3h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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FIG. 17. (a) The anisotropic zig-zag lattice and (b) the topologically equivalent rectangular lattice (see Fig. 15).

and for HB
i, j we get

HB
i, j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J1 + J3 − 3h 0 0 0 0 0 0 0
0 J1 − J3 − h 2J3 0 0 0 0 0
0 2J3 −J1 − J3 − h 0 2J1 0 0 0
0 0 0 J3 − J1 + h 0 2J1 0 0
0 0 2J1 0 J3 − J1 − h 0 0 0
0 0 0 2J1 0 −J1 − J3 + h 2J3 0
0 0 0 0 0 2J3 J1 − J3 + h 0
0 0 0 0 0 0 0 J1 + J3 + 3h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

After rewriting these two matrices into the block-diagonal form with respect to the total spin number {Sz
tot} =

{Sz
i, j+1 + Sz

i, j + Sz
i+1, j} (i.e., Sz

tot = ± 3
2 , ± 1

2 if measured at zero field), we can recognize four isolated block Hamiltonians H̃{Sz
tot}

A
on the diagonal:

HA
i, j (h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(J1 + J3 − 3h)⎛
⎝

J3 − J1 − h 2J1 0
2J1 −J1 − J3 − h 2J3

0 2J3 J1 − J3 − h

⎞
⎠
⎛
⎝

J3 − J1 + h 2J3 0
2J3 −J1 − J3 + h 2J1

0 2J1 J1 − J3 + h

⎞
⎠

(J1 + J3 + 3h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

H̃{− 3
2 }

A (h) 0 0 0

0 H̃{− 1
2 }

A (h) 0 0

0 0 H̃{+ 1
2 }

A (h) 0

0 0 0 H̃{+ 3
2 }

A (h)

⎞
⎟⎟⎟⎟⎠.
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For HB
i, j (h), we obtain another block-diagonal matrix H̃{Sz

tot}
B :

HB
i, j (h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(J1 + J3 − 3h)⎛
⎝J3 − J1 + h 2J3 0

2J3 −J1 − J3 + h 2J1

0 2J1 J1 − J3 + h

⎞
⎠
⎛
⎝J3 − J1 − h 2J1 0

2J1 −J1 − J3 − h 2J3

0 2J3 J1 − J3 − h

⎞
⎠

(J1 + J3 + 3h)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

H̃{− 3
2 }

B (h) 0 0 0

0 H̃{− 1
2 }

B (h) 0 0

0 0 H̃{+ 1
2 }

B (h) 0

0 0 0 H̃{+ 3
2 }

B (h)

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

H̃{+ 3
2 }

B (−h) 0 0 0

0 H̃{+ 1
2 }

B (−h) 0 0

0 0 H̃{− 1
2 }

B (−h) 0

0 0 0 H̃{− 3
2 }

B (−h)

⎞
⎟⎟⎟⎟⎠ ≡ HA

i, j (−h).

FIG. 18. (a) The rectangular lattice and (b) the topologically
equivalent honeycomb lattice with additional interactions.

Thus, the two local Hamiltonians satisfy the condition of the
equality provided that

HA
i, j (h) ≡ HB

i, j (−h). (A7)

This condition states that the equivalency between the zig-
zag square lattice and the rectangular lattice is completely
satisfied for the ground-state as well as finite-temperature
properties such as energy, magnetization, specific heat, and
susceptibility. The equivalence of the local Hamiltonians (A7)
leads to the topological equivalence of all 2D lattices with the
coordination number 4 with the constraint that two nearest
neighbors are coupled by the interaction J and the other two
nearest neighbors are coupled via RJ interaction (R varies
between 0 and 1). Examples of such lattices are already given
in Figs. 2(b)–2(e). Apparently, there exist other possibilities
of how to modify the geometry of the three-spin blocks in
Fig. 16 described by the local Hamiltonians (A4) and (A5))
by changing the angle at the middle spin or the bond length
as in Figs. 2(b) and 2(d). In this respect, some other lattices
(Fig. 18) can be constructed as a rectangular lattice with
one interaction along a diagonal of the rectangular plaquette
while the neighboring plaquette is shifted by half of the
bond length. Another example is a honeycomb lattice with
one interaction along a diagonal within the hexagon and
others. All the aforementioned lattices look differently, but
they topologically represent the identical system.
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