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Effective theories for quantum spin clusters: Geometric phases and state selection by singularity
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Magnetic systems with frustration often have large classical degeneracy. We show that their low-energy
physics can be understood as dynamics within the space of classical ground states. We demonstrate this mapping
in a family of quantum spin clusters where every pair of spins is connected by an XY antiferromagnetic bond.
The dimer with two spin-S spins provides the simplest example—it maps to a quantum particle on a ring
(S1). The trimer is more complex, equivalent to a particle that lives on two disjoint rings (S1 ⊗ Z2). It has
an additional subtlety for half-integer S values, wherein both rings must be threaded by π fluxes to obtain a
satisfactory mapping. This is a consequence of the geometric phase incurred by spins. For both the dimer and the
trimer, the validity of the effective theory can be seen from a path-integral-based derivation. This approach
cannot be extended to the quadrumer which has a nonmanifold ground-state space, consisting of three tori
that touch pairwise along lines. In order to understand the dynamics of a particle in this space, we develop a
tight-binding model with this connectivity. Remarkably, this successfully reproduces the low-energy spectrum of
the quadrumer. For half-integer spins, a geometric phase emerges which can be mapped to two π -flux tubes that
reside in the space between the tori. The nonmanifold character of the space leads to a remarkable effect—the
dynamics at low energies is not ergodic as the particle is localized around singular lines of the ground-state
space. The low-energy spectrum consists of an extensive number of bound states formed around singularities.
Physically, this manifests as an order-by-disorder-like preference for collinear ground states. However, unlike
order-by-disorder, this “order by singularity” persists even in the classical limit. We discuss consequences for
field theoretic studies of magnets.
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I. INTRODUCTION

A guiding principle in physics is to seek effective low-
energy theories. Apart from describing the system at low
temperatures, this can reveal “emergent” properties that may
not resemble the gross system or its microscopic constituents.
This approach has a long and successful history in magnetism.
Examples include Haldane’s field theory for spin chains [1–3],
spin ice physics [4], Luttinger liquid theory [5–7], and so
on. To build such a theory for a macroscopic system (e.g.,
a three-dimensional magnet), an appropriate starting point is
its smallest building block or motif. This is exemplified in
triangle-motif-based Heisenberg antiferromagnets. A single
triangle, at low energies, maps to a rigid rotor described by
an SO(3) matrix [8]. Starting from this insight, an SO(3) field
theory can be constructed to describe macroscopic magnets
[9,10]. In this paper, we derive effective theories for a class
of clusters/motifs with frustration. Even at the level of a
single cluster, we find surprising results that suggest broadly
applicable principles.

A characteristic feature of frustrated magnets is large clas-
sical degeneracy. Treating each spin as a classical vector,
there are multiple ways to orient spins so as to minimize the
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energy—the set of all such states is the classical ground-state
space (CGSS). Using this notion, we may state a general
principle: the low-energy dynamics of a cluster of quantum
spins is equivalent to the problem of a particle moving in the
CGSS. Heuristically, this equivalence is expected to hold in
the semiclassical limit, i.e., when S, the spin quantum number,
is large. Below, we examine this principle in clusters with
increasing complexity. We find this principle to hold true in
all cases, as long as S is not too small. Two subtleties emerge
from our analysis: (a) an appropriate Aharonov-Bohm flux
must be threaded through the CGSS to incorporate Berry
phase effects. (b) If the CGSS forms a smooth manifold, the
equivalence can be readily derived using a path integral ap-
proach. In some systems, the CGSS may have a nonmanifold
structure due to singularities. We empirically find that the
principle still holds. Remarkably, such singularities can give
rise to a localizing effect, which we call “order by singularity.”

This phenomenon shares similarities with the well-
established notion of “order by disorder” [11]. The central
idea here is that fluctuations can stabilize ordered phases
[12–14]. This plays a key role in frustrated systems which typ-
ically have large classical degeneracies that are “accidental,”
i.e., unrelated to symmetries of the Hamiltonian. In this work,
we will focus on quantum fluctuations, regulated by 1/S,
that can break this degeneracy, e.g., by contributing differing
zero-point contributions to the ground-state energy. We do not
expect such selection effects to survive in the classical limit
(S → ∞) where, by definition, all fluctuations are suppressed.
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FIG. 1. Clusters studied here (from left to right): dimer, trimer,
asymmetric quadrumer and quadrumer. In each case, every pair of
spins is coupled by an XY bond. The bond strengths respect the
symmetries of the corresponding cluster.

We re-express this notion of order by disorder as follows.
In the limit of large S, assuming zero temperature, a magnetic
cluster samples every point on the CGSS. Equivalently, it
maps to a particle whose low-energy states are uniformly
supported in the CGSS. Weak quantum (finite S) fluctuations
introduce a potential on the CGSS so that the particle is local-
ized near the potential minima (see, for instance, Ref. [15]).
This effect becomes progressively weaker as we approach the
classical limit (S → ∞).

We distinguish this from order by singularity, a stronger
effect that persists even in the classical limit. The defining
feature of the latter is the formation of low-energy bound
states around singularities. The low-energy dynamics of a
particle on the CGSS becomes nonergodic, tied down to these
bound states. Unlike order by disorder which is ubiquitous in
frustrated magnets, order by singularity is a rare effect requir-
ing the presence of singularities as a necessary condition.

In this paper, we study the clusters shown in Fig. 1. The
dimer, trimer and quadrumer consist of 2, 3, and 4 spins at
the vertices of a rod, triangle, and a tetrahedron, respectively.
They share the property that each pair of spins has the same
spatial separation. Consequently, we assume that each pair
of spins experiences the same coupling. We also study the
asymmetric quadrumer which has reduced symmetry. We take
all the bonds to be XY -like and antiferromagnetic, with the
Hamiltonian

H =
∑
i< j

Ji j
[
Sx

i Sx
j + Sy

i Sy
j

]
, (1)

where i, j sum over N spins, with N = 2, 3, and 4. We
set h̄ = 1 in all cases. In the dimer, trimer and quadrumer,
the couplings are all equal, i.e., Ji j = J > 0. In the asym-
metric quadrumer, we have J12 = J34 = (1 + λ)J and J13 =
J14 = J23 = J24 = J , with J > 0 and λ > 0. The symmetric
members of this family (dimer, trimer and quadrumer) are
well-studied for the case of Heisenberg-like couplings. The
Heisenberg dimer maps to a unit-vector field, or equivalently,
a particle on a sphere [1–3]. The trimer maps to a rigid
rotor, i.e., a particle in SO(3) space [8–10,16]. The quadrumer
maps to a particle in a five-dimensional space with singular
subspaces; this can be approximated as a rigid rotor and an
emergent free spin [17].

The remainder of this paper is structured as follows. In
Sec. II, we derive the effective model for a system with an
arbitrary CGSS manifold. This brings out the mapping to
the picture of a particle moving on the CGSS. In Sec. III,
we discuss the XY dimer and show that its CGSS is a ring.
We derive its effective low-energy theory and compare with

the numerically obtained spectrum. In Sec. IV, we discuss
the XY trimer whose CGSS forms two disjoint rings. We
present its effective theory which explains the numerically
obtained spectrum. We consider the asymmetric quadrumer
in Sec. V which has a two-dimensional manifold as the
CGSS. It provides a useful reference point for a discussion
of the quadrumer and its nonmanifold CGSS in Sec. VI. In
Secs. VI A–VI D, we propose a tight-binding analog to ex-
plain the quadrumer spectrum, discussing the cases of integer
and half-integer spins separately due to different Berry phase
effects. Section VII discusses the role of order by disorder,
showing that it is insufficient to explain the observed low-
energy spectrum. Section VIII gives evidence for order by
singularity from the spin model. In Sec. IX, we discuss order
by singularity from the tight-binding point of view, demon-
strating that the low-energy spectrum consists exclusively
of bound states. We end with a summary and discussion in
Sec. X.

II. EFFECTIVE LOW-ENERGY THEORY FOR AN
ARBITRARY CGSS MANIFOLD

The mapping between a magnet and a particle moving
in the CGSS can be seen as follows. We use the well-
known semiclassical path integral formulation for spin sys-
tems [18,19]. In this scheme, the path integral is over all
trajectories of classical spin vectors of length S. The action,
written as an expansion in 1/S, consists of a Berry phase term
and an energy term. The former can be given a geometric
interpretation as the area swept out by each spin on the
sphere. The latter, at leading order, is simply the classical
energy. For large S, paths within the CGSS dominate the path
integral. Low-energy excitations can be taken into account as
small fluctuations out of this space, taking the form of 1/S
corrections. This paradigm can provide physical insight into
the nature of the low-energy spectrum, e.g., the stationary
states of a single spin with easy axis anisotropy are analogous
to a particle tunneling between two potential wells [20].
We provide a generic derivation here that is applicable to
systems wherein the CGSS is a smooth manifold. We apply
it to specific cases in Secs. III–V below. We note that the
arguments here do not extend to the case of the symmetric
quadrumer, discussed in Sec. VI.

Consider a zero-dimensional system (a cluster) with N
spins. This corresponds to a (2N )-dimensional classical con-
figuration space, as each spin can be described by two vari-
ables (namely, polar and azimuthal angles). We assume a
d-dimensional CGSS, described by coordinates pi, where i =
1, . . . , d; we will assume that the CGSS is a d-dimensional
manifold, where the p coordinates can be defined in a smooth
manner. At any point on the CGSS, we have “hard” fluctua-
tions that cost energy, given by ql , where l = 1, . . . , 2N − d .
The spins take the form

�Sk = S
n̂k (p1, . . . , pd ) + �m(q1, . . . , q2N−d )/S√

1 + �mk · �mk/S2
. (2)

Here, k = 1, . . . , N labels the spins. We have introduced n̂k ,
a unit vector for each k. It orients spins so as to give rise to
the ground state specified by the p coordinates. The vector
�mk , determined by q coordinates, introduces a deviation from
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the ground-state space. In order to preserve normalization, we
must have n̂k · �mk = 0. This fixes the length of the spin to
S + O(1/S). This definition is suitable for low energies and
large S values, where each spin has length S, but with O(1)
fluctuations out of the ground-state space.

Parametrizing spins using Eq. (2), the leading order energy
term in the action generically takes the form∫ β

0
dτE (p, q) = βEcl +

∫ β

0
dτ

2N−d∑
l,m=1

Almqlqm, (3)

where Ecl is the classical ground-state energy. This can be
deduced as follows. We first note that linear terms are not
allowed due to the extremum nature of the classical ground
states. Further, there can be no explicit dependence on the pi’s
as all points in the CGSS are degenerate. In the spirit of a
low-energy theory, we consider the ql ’s to be small, keeping
only quadratic terms. This can alternatively be seen as an
expansion in 1/S, keeping O(S0) terms. The coefficients Alm

can be determined for any specific case, as discussed in the
following sections.

The Berry phase term in the action takes the form

SB = iS
∫ β

0
dτ

N∑
i=1

�A(�̂i ) · ∂τ �̂i

= i2πSQ +
∫ β

0
dτ

d∑
i=1

2N−d∑
l=1

Bil ṗiql . (4)

Here, �A is the vector potential of a unit monopole charge at the
center of a unit sphere, while �̂i(τ ) is a unit vector oriented
along the ith spin at time τ [18,19]. We have a quantized
contribution, i2πSQ, where Q is an integer. This arises from
trajectories within the ground-state space, when spins sweep
out nonzero areas in a closed loop. Its quantized nature arises
from the planar nature of the ground states in the systems
studied here (due to the XY nature of couplings). Moving
along a loop within the ground-state space, each spin can
move around the equator an integer number of times. Each
pass covers an area corresponding to one hemisphere, 2π . The
sum of contributions for all N spins has the form i2πSQ.

In addition, we have terms of the form ṗq when hard
fluctuations are present. Here, in the spirit of a low-energy
theory, we consider the time derivatives, ṗi’s, to be small.
Derivatives of the hard modes, q̇i’s, will be taken to be doubly
small. With these assumptions, the leading order single-time-
derivative terms are of the form ṗiql . The coefficients Bil can
be worked out for specific cases, as discussed below.

The combined action for the cluster is given by the sum
of Eqs. (3) and (4). We may integrate out ql ’s, the hard
fluctuations, to obtain

S = i2πSQ +
∫ β

0
dτ

d∑
i, j=1

Ci j ṗi ṗ j . (5)

This can be interpreted as the path integral action of a particle
moving on the CGSS, parametrized by p’s. The quadratic
term, Ci j ṗi ṗ j represents kinetic energy on the CGSS. The
coefficients Ci j can be determined in terms of Alm and Bil .
A quantized Berry phase emerges when QS takes half-integer

1
2

φ

FIG. 2. (Left) Classical ground state of a dimer with both spins
lying in the x-y plane and pointing in opposite directions. Each
ground state is parametrized by one angle φ. (Right) A particle
moving on a circle.

values (1/2, 3/2, 5/2, . . .). This can be interpreted as π -flux
tubes that are threaded through the space (see examples be-
low), imbuing the particle with Aharonov-Bohm phases.

III. XY DIMER

The simplest cluster in our family consists of two spins
coupled by an XY bond, with no frustration. The spins are
quantum objects with spin quantum number S. In the classical
limit, in order to minimize energy, the two spins must lie in
the x-y plane and point in opposite directions. This ground
state is depicted in Fig. 2. Any such state can be specified by
one angle, φ, representing the position of the first spin. The
set of all ground states forms a circle, φ ∈ [0, 2π ), with φ ≡
φ ± 2π . Below, we show that this system maps to a particle
moving on a circle as shown in Fig. 2 (right).

A. Low-energy semiclassical description

We parametrize the ground states as �S1 = Sn̂(φ) and �S2 =
−Sn̂(φ), where n̂ represents a unit vector in the x-y plane. The
angle φ represents a dynamical variable that can vary with
time. To describe the low-energy physics, we introduce small
fluctuations, in line with Eq. (2),

�S1,2 = S
n̂1,2 + �r1,2/S√

1 + �r1,2 · �r1,2/S2
, (6)

with n1,2 = ±n̂(φ) and �r1,2 = �l ± m ẑ. Here, �l is a three-
dimensional vector, representing the magnetization of the
dimer. It is constrained to be perpendicular to n̂, i.e., n̂ · �l = 0.
In addition, we have a staggered moment in the ẑ direction,
given by mẑ. Both �l and m represent hard modes.

Berry phase. The expression in Eq. (4) takes the form

2π iSQ + iS
∫ β

0
dτ (2�l · (∂τ n̂ × n̂)) = 2i

∫ β

0
dτ lzφ̇. (7)

Here, the integer Q takes even integer values for any S. As the
resulting phase is a multiple of 2π , it can be discarded.

Energy. Using Eq. (6), the O(S0) term in the energy is

E = J
(
l2
z + m2 + 2l2

x + 2l2
y

)
. (8)

Combining the Berry phase and energy terms, after integrating
out the hard modes, the action takes the form

SD
eff = 1

J

∫ β

0
dτ φ̇2. (9)
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FIG. 3. (Top) Energy spectrum of the XY spin-S dimer obtained
numerically, for various S values. The energies have been shifted by
Egs (ground-state energy) and scaled by 	 (energy gap to the first
excited state). Energy levels expected for a particle on a ring are
marked on the ŷ axis and shown by dashed lines. (Bottom) Effective
mass μ (in units of 1/J) is plotted as a function of S. The data
are fit by the plotted curve given by μ(S) = 2.0103 − 0.80653/S.
Ground-state energy Egs (in units of J) is plotted as a function of
S (squares). The data are fit by the curve Egs(S) = −1.00049 S2 −
0.285 S − 0.1177.

This is a well-known form, describing a particle moving on a
ring. Here, we interpret J ≡ 2/(μa2), where μ is the mass of
the particle and a is the radius of the ring (we will set a = 1).

B. Comparison with full quantum description

In order to quantitatively demonstrate the mapping to a
particle on a ring, we compare the spectra obtained in the
two cases. For a particle on a ring, the eigenstates are labeled
by angular momentum, n = 0,±1,±2, . . . , with the energy
being given by n2/(2μa2). For the spin problem, we numer-
ically diagonalize the Hamiltonian to obtain the spectrum.
For a spin-S dimer, the Hilbert space dimension is (2S + 1)2.
The spectrum, for various S values, is shown in Fig. 3. We
find excellent agreement with the particle picture. The low-
lying energies scale as n2 with (n = 0,±1,±2, . . . ), with a
nondegenerate ground state and doubly degenerate excited
states. For example, with S = 10, we find agreement with this
form for the lowest eight levels (15 states after accounting for
degeneracies).

From the numerical data, we extract two quantities for each
value of S.

(i) Egs, the ground-state energy (the lowest eigenvalue
of the Hamiltonian): in the S → ∞ limit, we expect this
quantity to give the classical ground-state energy, Ecl = −JS2.

2π/3
2π/3

1

2

3

2π/3
2π/3

1

2

3

φ φ

FIG. 4. Classical ground states of the trimer.

In Fig. 3 (bottom), we plot the numerically obtained values
of Egs versus S. The plot shows a fit to a functional form,
Egs = E2S2 + E1S + E0. The leading term is Egs � −JS2, as
expected in the classical limit. We find a significant semiclas-
sical correction in the form of an O(S) term. We can quan-
titatively account for this correction using an analysis based
on the Holstein-Primakoff (HP) transformation [21–23] (see
Appendix B). The HP calculation predicts the O(S) correction
to the ground-state energy to be −(1 − 1√

2
)S � −0.2928S,

which is remarkably close to −0.285 S, the value obtained
from the fitting function Egs(S), given in the caption of Fig. 3.

(ii) The scaling factor, 	, which is the gap to the first
excited state: for a particle on a ring, the spacing between
energy levels is (n2

2 − n2
1)/(2μa2). The scale is the inverse

of 2μa2, twice the moment of inertia of the particle. We
extract this quantity from the data in the form of 	, the gap
to the first excited state. From the preceding path integral
derivation, we see that the magnetic coupling J can be inter-
preted as 2/(μa2). This equivalence i.e., 1/(2μa2) � J/4, is
also seen in the HP analysis presented in Appendix B, which
predicts a low-lying spectrum given by Jm2/4, where m =
0,±1,±2, . . . . However, this is a leading order result that
agrees with the numerics at large S. We find that 	 depends
on S, indicating that the moment of inertia renormalizes with
decreasing S (see the fitting function for the effective mass
μ(S) in the caption of Fig. 3).

IV. XY TRIMER

With three spins, it is not possible to have every pair
of spins antialigned. The lowest energy state is obtained by
restricting all spins to lie in the x-y plane, with each pairs of
spins subtending an angle of ±120◦. This can be achieved in
the two ways shown in Fig. 4—with spins arranged as (1,2,3)
or (1,3,2) in the clockwise direction. In each case, we may
perform global spin rotations, captured by the parameter φ

in the figure. Global rotations preserve the handedness of the
configuration, i.e., they do not change (1,2,3) to (1,3,2) or vice
versa. Thus the set of all ground states is equivalent to two dis-
joint circles with a Z2 parameter labeling the circles. An inde-
pendent parameter, φ, parametrizes points within each circle.

A. Low-energy semiclassical description

We parametrize the ground states as S1,ν = n̂, S2,ν =
TνR

2π
3

z n̂, and S3,ν = T ′
ν R

4π
3

z n̂. Here, ν = 1, 2 is the Z2 order
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parameter that specifies the circle, and n̂ is a unit vector in the
x-y plane. We have introduced two rotation operators about

the ẑ axis, R
2π
3

z and R
4π
3

z , by angles 2π/3 and 4π/3, respec-
tively. The ground states on the two circles are distinguished

by the operators T1 = I, T2 = R
2π
3

z and T ′
1 = I, T ′

2 = R
4π
3

z . We
parametrize the spins as

�Sν
1,2,3 = S

n̂ν
1,2,3 + �r ν

1,2,3/S√
1 + �r ν

1,2,3 · �r ν
1,2,3

/
S2

, (10)

where n̂ν
1 = n̂, n̂ν

2 = T νR
2π
3

z n̂, and n̂ν
3 = T ν ′

R
4π
3

z n̂. Hard modes
are introduced via the vectors �r ν

1 = �l + m1ẑ, �r ν
2 = Mν

1
�l +

m2ẑ, and �r ν
3 = Mν

2
�l − (m1 + m2)ẑ. As with the dimer prob-

lem, the net magnetization of the trimer is captured by
�l . To preserve normalization, we have introduced tensors

(Mν
1 )αβ = δαβ − (TνR

2π
3

z n̂)α (TνR
2π
3

z n̂)β and (Mν
2 )αβ = δαβ −

(T ′
ν R

4π
3

z n̂)α (T ′
ν R

4π
3

z n̂)β . These project the �l vector in each spin
onto the plane perpendicular to the ground-state vector, in
order to satisfy the spin length constraint.

The Berry phase term for the trimer, for each value of ν in
the parametrization, comes out to be

SB = 6iπSQ + 3i
∫ β

0
dτ lz · φ̇. (11)

As the Berry phase only contains the lz hard mode, we look
for lz terms in the energy. Other hard modes do not contribute
in the effective action. For each choice of ν, the energy of the
trimer is E ∼ (3J/2)l2

z . Thus, after integrating out lz, we find
the effective action for each ν,

ST
eff = 6π iSQ + 3

2J

∫ β

0
dτ φ̇2. (12)

This is readily identified as the action of a particle on two
disjoint rings, due to the two possible values of ν.

The quantized term in the Berry phase can play a signif-
icant role here. To form a closed loop in the ground-state
space, the three spins must rotate around the equator (about
the ẑ axis) an integer Q number of times. This corresponds to
sweeping out an area equal to 6πSQ, with Q ∈ Z. For integer
values of S, this phase is always a multiple of 2π that can be
discarded. However, for half-integer values of S, it gives an
odd multiple of π when Q is odd. This phase can be adapted
to the particle picture as a π flux that pierces each ring. When
the particle goes around a ring an odd number of times, it picks
up an Aharonov-Bohm phase of π .

B. Comparison with full quantum description

To quantitatively test the mapping to a particle on two
rings, we numerically study the trimer spectrum as a function
of S. The Hilbert space dimension is (2S + 1)3. For integer
spins, the mapping is to a particle on two disjoint rings.
This has eigenstates labeled by a Z2 variable and n, the
angular momentum quantum number. The energy levels are
n2/(2μa2), with n = 0,±1,±2, . . . Due to the presence of
two disjoint rings, the ground state is doubly degenerate while
all excited states are fourfold degenerate. As shown in Fig. 5,

(a)

(b)

(d)

(c)

(e)

π π

FIG. 5. (a) Particle on two disjoint rings. (b) The spectrum of the
trimer obtained numerically for different integer S values. Energies
have been shifted by the ground-state energy (Egs ) and scaled by 	

(energy gap to the first excited state). Energy levels for a particle
on two disjoint rings are shown by the dashed lines from the ŷ
axis. (c) Particle on two disjoint rings with one π flux threaded
through each ring. (d) Numerically obtained spectrum for the trimer
for several half-integer S values. The spectrum has been shifted by
E ′ and scaled by 	. E ′ is chosen to fix the ground-state energy at
unity, while 	 is chosen to fix the gap to the first excited state at
8. (e) Effective mass μ (in units of 1/J) for various (integer and
half-integer) S values shown by circles. The data are fit using the
μ(S) = 3.00414 − 0.653104/S. Ground-state energy (Egs ) (in units
of J) for each S is shown using squares. The corresponding fitting
function is, Egs(S) = −1.5002 S2 − 0.2701 S − 0.0583.
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the numerically obtained energies show excellent agreement
with this picture.

For half-integer spins, the mapping is to a particle on two
rings threaded with π fluxes. This has eigenenergies (n −
1/2)2/(2μa2), with n ∈ Z being the angular momentum. In
addition, we have a Z2 quantum number that picks one of two
circles. All low-lying states (including the ground state) are
fourfold degenerate. Figure 5 shows the numerically obtained
energies which agree well with this picture.

As with the dimer, we extract two quantities from the data,
as a function of S.

(i) Egs, the ground-state energy (the lowest eigenvalue
of the Hamiltonian): the data are described by a fit of the
form Egs = E2S2 + E1S + E0. The leading order term is Egs �
−(3/2)JS2, consistent with the classical energy of three spins
in a 120◦ state. The fit reveals a non-negligible subleading
O(S) correction, emerging from quantum fluctuations. We
provide a quantitative explanation for this correction using a
HP analysis (see Appendix C). This gives the O(S) correction
to the ground-state energy to be −(1.5 − √

1.5)S � −0.275 S,
close to −0.2701 S, the O(S) correction from the fitting
function for Egs given in the caption of Fig. 5.

(ii) 	. This is taken to be the gap to the first excited level
for integer spins, and one-eighth of the gap for half-integer
spins. The path integral derivation above gives the leading
order contribution, 	 ∼ J/6 for integer S and 	 ∼ J/24 for
half-integer S. In the particle picture, this is inversely related
to the moment of inertia. We extract this from the 	 values.
The numerical data show strong S dependence, indicating
that the effective mass of the particle (or more precisely, the
moment of inertia) is renormalized by quantum fluctuations
for finite S values. The S dependence can be read off from
the fitting function, μ(S), given in the caption of Fig. 5. The
leading order value, μ � 3 [i.e., 1/(2μa2) � 1/6], agrees well
with the HP analysis given in Appendix C. The HP low-energy
spectrum is given by Jm2/6, where m = 0,±1,±2, . . . for
integer S and m = ±1/2,±3/2, . . . for half-integer S.

V. ASYMMETRIC XY QUADRUMER

With four spins on a distorted tetrahedron, we have two
pairs that have a stronger coupling compared to the others.
The classical ground state is obtained by antialigning these
pairs independently. To see this, we consider the Hamiltonian
given by

H = J
∑
i< j

�Si · �S j + λJ[�S1 · �S2 + �S3 · �S4]

= J

2

⎡
⎣(

4∑
i=1

�Si

)2

‖
−

4∑
i=1

(�Si )
2
‖

⎤
⎦ + λJ[�S1 · �S2 + �S3 · �S4].

(13)

Here, �A · �B ≡ AxBx + AyBy denotes an XY dot product and
( �A)2

‖ ≡ AxAx + AyAy. The first term is minimized when the
in-plane components of the spins add to zero, while the second
term forces all spins to lie in the x-y plane. Taken together
with the λ term, we deduce that classical ground states are
as shown in Fig. 6 (left). Pairs of spins, (1,2) and (3,4), are

2

4
φ1

φ1

φ3

φ3

1

3

FIG. 6. (Left) Classical ground states of the asymmetric
quadrumer parametrized by two angles, φ1 and φ3. (Right) The space
of all ground states, forming a torus.

antialigned. The relative angle between the two pairs (e.g.,
between �S1 and �S3) is not constrained. The set of all such states
can be described by two angles, φ1 and φ3. The former denotes
the position of the first spin. This immediately specifies the
second spin, which is antialigned with respect to the first. The
latter fixes the third spin, and thereby the fourth as well. These
two parameters are angle variables, periodic with domain
[0, 2π ).

The CGSS is equivalent to a torus as shown in Fig. 6
(right). This is a two-dimensional manifold, with greater
complexity than the dimer and trimer discussed above. This
represents a qualitative change as the dimer and trimer have
ground states that are related by global rotations about the
ẑ axis, a symmetry of the Hamiltonian. For the asymmetric
quadrumer, the CGSS (2D) is bigger than the space of sym-
metries (1D). This represents an “accidental degeneracy” that
is not protected by symmetry, a classic feature of frustrated
magnets. As a consequence, we have the possibility of order
by disorder. We discuss this using a HP approach below. As
order by disorder effects are negligible for sufficiently large
S, we first describe an effective theory considering the full
CGSS. We present numerical data which are found to be in
agreement with our analysis.

A. Low-energy semiclassical description

The classical ground states are given by

�S1 = n̂1(φ1), �S2 = −n̂1(φ1),

�S3 = n̂2(φ3), �S4 = −n̂2(φ3). (14)

Here (�S1, �S2) and (�S3, �S4) form two separate rods, composed
of oppositely aligned spins. We parametrize the hard fluctua-
tions as follows:

�S1 = n̂1 + �l1+m1 ẑ
S√

1 + (�l1+m1 ẑ)2

S2

, �S2 = −n̂1 + �l1−m1 ẑ
S√

1 + (�l1−m1 ẑ)2

S2

,

�S3 = n̂2 + �l2+m2 ẑ
S√

1 + (�l2+m2 ẑ)2

S2

, �S4 = −n̂2 + �l2−m2 ẑ
S√

1 + (�l2−m2 ẑ)2

S2

. (15)

The magnetization of the first rod is �l1 and that of the second
is �l2. The staggered z-magnetization of the rods is denoted
by m1/2.
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Berry phase. Using the parametrization given in Eq. (15),
the Berry phase is found to be

SB = 4π iSQ1 + 4π iSQ2 + 2i
∫ β

0
dτ (l1zφ̇1 + l2zφ̇3)

= 2i
∫ β

0
dτ (l1zφ̇1 + l2zφ̇3). (16)

Here, Q1 and Q2 are integers. The quantized Berry phase is a
multiple of 2π for any S, and can be discarded.

Energy. As in the trimer, we look for terms which include
l1z or l2z. We find that the energy is E = (1 + λ)J

∫ β

0 dτ (l2
1z +

l2
2z ). After integrating out l1z and l2z, the effective action is

found to be

SasymQuad
eff = 1

(1 + λ)J

∫ β

0
dτ

(
φ̇2

1 + φ̇2
3

)
. (17)

This is precisely the action for a particle moving on a torus.
We find no distinction between half-integer and integer cases.

B. Comparison with full quantum description

We obtain the spectrum of the asymmetric quadrumer
numerically. The Hilbert space dimension is (2S + 1)4, which
grows rapidly with S. To perform diagonalizations for large
values of S, we use the symmetry under spin rotations about
the ẑ axis. A particle moving on a torus is known to have the
spectrum (n2

1 + n2
2)/(2μa2), where a is the radius of the torus

in both directions. The ground state is nondegenerate, while
excited states are typically degenerate. The numerically ob-
tained spectrum shows excellent agreement with this picture.
This is shown in Fig. 7. The ŷ axis labels (marked by dashed
lines) are the known energy levels for a particle on a torus. The
expected degeneracy of each level is shown in parentheses.
The numerical data show excellent agreement. For instance,
with λ = 2, we find nine levels (45 states) in agreement for
S = 3.5. The agreement improves for larger spins with 14
matching levels (81 states) for S = 8.

FIG. 7. Energy spectrum of the XY asymmetric quadrumer ob-
tained numerically for different S values with λ = 2. Energies are
given a shift by the ground-state energy (Egs ) and scaled by 	 (so
as to fix the gap to the second excited level to 2). The energies of a
particle on a torus are marked on the ŷ axis and shown by the dashed
lines. The degeneracy of each level is given in parentheses.

C. Holstein-Primakoff analysis

As discussed above, the asymmetric quadrumer allows for
the possibility of order by disorder. To see this, we undertake
a HP analysis [21–23]. We consider small fluctuations about a
classical ground state described by �S j = S(cos φ j, sin φ j, 0).
In line with Fig. 6, we take φ2 = φ1 + π and φ4 = φ3 + π .
We introduce Holstein-Primakoff creation and annihilation
operators:

cos φ jS
x
j + sin φ jS

y
j = S − a†

j a j,

− sin φ jS
x
j + cos φ jS

y
j �

√
S

2
(a j + a†

j ),

Sz
j � −i

√
S

2
(a j − a†

j ). (18)

We have ignored O(1/S) and higher-order terms, assuming
a large value of S as appropriate for the semiclassical limit.
We now introduce dimensionless and canonically conjugate
operators x j and p j (satisfying [x j, pk] = δ jk), such that

a j = 1√
2

(x j + ip j ) and a†
j = 1√

2
(x j − ip j ). (19)

In this language, Eqs. (18) take the form

cos φ jS
x
j + sin φ jS

y
j = S − 1

2

(
p2

j + x2
j − 1

)
,

− sin φ jS
x
j + cos φ jS

y
j =

√
Sx j, (20)

Sz
j =

√
Sp j .

Taking the values of the φ j angles appropriate for a classical
ground state, we write the Hamiltonian in terms of x j’s and
p j’s. Keeping terms only up to second order in these opera-
tors, we obtain an expression which contains terms up to or-
der S. Diagonalizing this Hamiltonian gives the ground-state
energy and the low-energy (HP) spectrum. The HP spectrum
typically has two parts: free particles and simple harmonic
oscillators (SHO’s). The ground-state energy is obtained by
including the leading quantum correction, namely, the zero-
point energies of the SHOs. We find

H = −2JS2(1 + λ) − 2JS(1 + λ)

+ JS

2

[
(1 + λ)

(
p2

1 + p2
2 + p2

3 + p2
4

)
+ (1 + λ)

(
x2

1 + x2
2 + x2

3 + x2
4 − 2x1x2 − 2x3x4

)
+ 2 cos φ31(x1 − x2)(x3 − x4)

]
, (21)

where φ31 = φ3 − φ1. We diagonalize this by defining the
following linear combinations:

P = (p1 + p2 + p3 + p4)/2,

pa = (p1 + p2 − p3 − p4)/2,
(22)

pb = (p1 − p2 + p3 − p4)/2,

pc = (p1 − p2 − p3 + p4)/2,

and the corresponding canonically conjugate variables
X, xa, xb and xc. The operator P is related to the total Sz ≡∑4

j=1 Sz
i , as P = Sz/(2

√
S). The Hamiltonian then takes the
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form

H = −2JS2(1 + λ) − 2JS(1 + λ)

+ JS

[
(1 + λ)

2

(
P2 + p2

a + p2
b + p2

c

)

+ (1 + cos φ31 + λ)x2
b + (1 − cos φ31 + λ)x2

c

]
. (23)

We thus have two free particles described by P2 and p2
a, and

two SHOs described by (pb, xb) and (pc, xc). The latter have
frequencies

ωb,c = JS
√

2(1 + λ)(1 ± cos φ31 + λ). (24)

The ground-state energy is given by

E0 = −2JS2(1 + λ) − 2JS(1 + λ) + 1
2 (ωb + ωc). (25)

The complete energy spectrum is given by

E = E0 + nbωb + ncωc + JS

2
(1 + λ)(r2 + s2), (26)

where nb, nc = 0, 1, 2, . . . are SHO quantum numbers and
r, s are eigenvalues of P and pa respectively. To find the
possible values of r and s, we note that P = Sz/(2

√
S) and

pa = (Sz
1 + Sz

2 − Sz
3 − Sz

4)/(2
√

S). From the rules of addition
of quantum spins, we see that the eigenvalues of P and pa will
be of the form m/(2

√
S) and n/(2

√
S), respectively, where

m, n = 0,±1,±2, . . . , regardless of whether S is an integer
or a half-integer. Hence, the energy spectrum is

E = E0 + nbωb + ncωc + J

8
(1 + λ)(m2 + n2). (27)

The lowest branch of excitations corresponds to nb = nc =
0, with both SHOs in their ground states. The energy then
reduces to the spectrum of a particle moving on a direct
product of two circles, i.e., a torus T 2.

This analysis agrees with the effective theory derived above
in that it maps to a particle on a torus. However, there is
a crucial difference. In the HP approach, the ground-state
energy includes a zero-point correction that depends on φ31, a
parameter that is not a symmetry variable. This is a manifes-
tation of order by disorder. Notably, the lowest zero-point en-
ergy is achieved when φ31 = 0 or π , representing two distinct
collinear ground states. Taking the HP results at face value, we
would conclude that the system is confined to two collinear
sectors. In this case, the variable pa would not correspond to a
true free particle as it moves the system away from collinearity
(presumably, a potential energy term in xa may emerge from
higher-order terms). We would then expect the low-energy
spectrum to resemble a particle on two disjoint rings (two
collinear states corresponding to φ31 = 0 or π ). This would
lead to twofold degeneracies in each low-lying level.

However, our numerical results show that this is not the
case. For reasonably large S (e.g., for S = 3.5 as shown
in Fig. 7), the spectrum shows excellent agreement with a
particle on a torus. We conclude that the order by disorder
potential, being a 1/S correction, does not play a role for
sufficiently large S. We provide further evidence for this in
Sec. VIII below. The irrelevance of the order by disorder po-
tential is intimately tied to the zero-dimensional character of

(a)

(b)

(c)

(d)

FIG. 8. Ground-state space of symmetric quadrumer. (a) Three
possible ways to minimize classical energy, each with two pairs of
spins antialigned. Each configuration is specified by two angles as
shown. (b) The space of classical ground states forming three tori.
Each torus corresponds to one of the configurations shown above.
(c) Collinear states that appear as lines on the tori, with each line
shared by two tori. (d) Cross-section view of the ground-state space.
We have three tori, with each pair of tori touching along a line.

our problem. Order by disorder is usually discussed for mag-
nets in the thermodynamic limit, where the zero-point energy
receives contributions from a large number of modes. This can
amplify the quantum correction and “select” certain ground
states. Here, as shown by our numerics, a good description of
the low-energy physics is obtained by neglecting this effect.

VI. XY QUADRUMER

The classical ground-state space of the (symmetric)
quadrumer is qualitatively different from the preceding cases.
To minimize the classical energy, we must have all spins lying
in the x-y plane, with the vector sum of the spins being zero.
This is directly seen by setting λ = 0 in Eq. (13). In order for
four coplanar vectors to add to zero, we must necessarily have
two pairs of antialigned spins. This can be seen by placing the
four vectors in a head-to-tail arrangement. As the vectors have
uniform length and lie on the same plane, their sum can only
be zero if they form the sides of a rhombus. The opposite sides
of the rhombus correspond to antialigned spins. This leads
to three distinct possibilities as shown in Fig. 8(a). Consider
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the first spin, �S1. It can be antialigned with respect to �S2, �S3,
or �S4. We denote these three possibilities as (1, 2) − (3, 4),
(1, 3) − (2, 4), and (1, 4) − (2, 3).

States in (1, 2) − (3, 4) have �S1 = −�S2 and �S3 = −�S4. To
represent a state from this particular family, we need two
independent parameters. We first fix �S1 using an angle φ1,
defined with respect to an arbitrary reference point. Clearly,
φ1 ∈ (0, 2π ] is an S1 variable, with the periodicity of a circle,
i.e., φ1 + 2nπ ≡ φ1, where n is an integer. This immediately
fixes �S2 to be opposite to �S1. We introduce a second parameter,
φ31 to fix the deviation of �S3 from �S1. We assume that this
angle is measured in the clockwise direction. Once again,
φ31 ∈ (0, 2π ], with the periodicity of S1. Thus all states in
(1, 2) − (3, 4) can be represented by two parameters, φ1 and
φ31. This space forms a torus, S1 ⊗ S1. In Fig. 8(b) (left), we
represent this as a square with periodic boundary conditions
in the horizontal and vertical directions.

Similarly, the space (1, 3) − (2, 4) is also a torus,
parametrized by φ1 and φ21. Here, φ21 is the angular displace-
ment from �S1 to �S2. This is depicted as the central square in
Fig. 8(b). The third space, (1, 4) − (2, 3), is likewise a torus
parametrized by φ1 and φ21. It is shown as the square on the
right in Fig. 8(b).

Naively, the ground-state space appears to be three distinct
tori. However, there is a subtlety. In each of the three tori, there
are two special subsets which contain collinear states. For
example, in (1, 2) − (3, 4), φ31 = 0, π correspond to collinear
states. These are shown as the black solid line and the red
dotted line in the left square in Fig. 8(b). We see that each
torus similarly has two special lines. A deeper inspection
reveals that the line with φ31 = 0 in (1, 2) − (3, 4) is, in fact,
the same as that with φ21 = π in (1, 4) − (2, 3) in Fig. 8(b)
(right). These are both shown as black solid lines in the figure.
Similarly, we note that there are two other pairs of lines
that are identical. These lines correspond to three possible
collinear states as shown in Fig. 8(c). Apart from these lines,
there is no state in one torus which also exists in another torus.

From these arguments, we are able to see the deeper struc-
ture of the ground-state space. It is composed of three tori,
with each pair of tori overlapping along a circle (a line with
periodic boundary conditions). This leads to the geometry
shown in Fig. 8(d) as a cross-section. We have embedded the
tori in three dimensions to bring out the connectivity of the
space. We see that two tori are enclosed within a third larger
torus such that each one touches the larger torus along a circle.
The two tori themselves touch along a circle, as shown in the
figure.

This ground-state space is qualitatively different from the
cases discussed in the sections above. It is a nonmanifold,
as it does not have a well-defined dimensionality at the
common lines where two tori touch. In other words, we cannot
define derivatives at the singular lines. This crucial difference
precludes a path integral-based low-energy effective theory as
laid out in Sec. II and applied to the dimer, trimer and the
asymmetric quadrumer. Nevertheless, we conjecture that the
general principle applies here as well, i.e., the low-energy
physics of the XY quadrumer maps to that of a particle
moving on the nonmanifold CGSS. As discussed below, we
find strong numerical evidence that this is indeed true.

0
0

0
0 0

0

2π 2π 2π

2π 2π 2πφ1

φ31 φ21

φ1 φ1

φ21

FIG. 9. Tight-binding mesh that provides a discretization of the
quadrumer ground-state space. The figure shows an 8 × 8 mesh on
each torus. The dashed lines enforce periodic boundary conditions.

To study a particle in this space, we use a tight-binding
approach with a suitable discretization. We discuss the case
of integer S and half-integer S separately, due to differences
in the Berry phase structure. In Appendix E, we provide a
rigorous discussion of the nature of the CGSS and its tangent
spaces at different points. This brings out the nonmanifold
character of the space and the suitability of the tight-binding
model discussed below.

A. Tight-binding approach for integer spins

We discretize the CGSS using the mesh shown in Fig. 9.
This allows for a tight-binding description with the particle
hopping from one node to another. We allow hopping along
vertical and diagonal bonds with equal amplitudes, with no
hopping in the horizontal direction. The bonds connect nodes
that are closest to each other in terms of the displacements of
the four spins in the quadrumer (see Appendix A). We have
two free parameters: L, the linear size of each torus, and t , the
hopping strength. In order to capture the connectivity of the
space, we identify common lines between tori. For example, in
Fig. 9, the central lines of the left and center tori are assumed
to have the same physical nodes. A particle on such a node
can hop to either torus. With this identification, the number
of distinct lattice points is 3L(L − 1). This sets the size of
the Hilbert space for the tight-binding problem. The numeri-
cally obtained low-energy tight-binding spectrum is shown in
Fig. 10 for (t, L) = (0.954419, 12) and (2.954755,22).

B. Comparison with full quantum description for integer spins

We solve the spin problem for the quantum XY quadrumer
using exact diagonalization. The Hilbert space is (2S + 1)4-
dimensional, intractably large even for intermediate values of
S. We use two symmetries to reduce the size of the Hamilto-
nian: (a) spin rotations about ẑ, and (b) cyclic permutations,
i.e., symmetry under �S1 → �S2 → �S3 → �S4 → �S1. The former
divides the Hilbert space into sectors with fixed total Sz. The
latter reduces it further into angular momentum sectors. These
symmetries allow us to work with large spins, up to S � 19.

Remarkably, the numerically obtained low-energy spectra
show excellent agreement with tight-binding results using two
fitting parameters: L (torus size) and t (hopping amplitude).
This can be seen from Fig. 10 which shows the spectra for
S = 4 and 12. We use the following fitting procedure for
each S. We first fix L (torus size) at an arbitrary value. The
hopping t sets the overall energy scale in the tight-binding
problem. We fix this scale by fitting the energy gap to the
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FIG. 10. Comparison of the spin (empty squares) and tight-
binding spectra (solid diamonds) for integer S. Spin spectrum has
been given a shift such that the ground-state energies of spin and
tight-binding spectra become the same.

third excited level, comparing the tight-binding value to that
from exact diagonalization of the spin Hamiltonian. The
choice of the third level provides a large numerical value of
the gap, allowing for a robust fit. We now compare the full
tight-binding spectrum with that from exact diagonalization.
We count the number of low-energy states that match—we
say a state matches if it has the same degeneracy in both
approaches, even if the numerical energy values differ. For
instance, for S = 3 with L = 10, we find that the lowest seven
levels (24 states after accounting for degeneracies) match.
We repeat this procedure for many L’s, choosing the value
which gives us the highest number of matching states. This
procedure gives reasonable values for the fitting parameters
as well as good quantitative agreement between spectra. The
obtained fit parameters are shown in Table I.

We find that the number of matched levels increases with
S, indicating that the mapping to the tight-binding problem
improves when approaching the classical limit. Both L and
t increase with S. Larger L suggests that more semiclassical
orbits are accessed by the particle. At the same time, we find
reasonable agreement even for small values of S, starting from
S = 1.

C. Tight-binding approach for half-integer spins

The spectral degeneracy pattern of the quadrumer for
half-integer spins is different from that of integer spins. We

TABLE I. Comparison of spin and tight-binding spectra for inte-
ger S. The columns show the L and t parameters as obtained by our
fitting procedure. The last column shows the number of low-energy
levels (and states, after accounting for degeneracies) that match in
the two approaches.

Spin Hopping Levels matched
S L t (No. of states)

1 6 0.327719 3 (9)
2 8 0.445006 4 (13)
3 10 0.662232 7 (24)
4 12 0.954419 7 (24)
5 12 0.891563 7 (24)
6 14 1.23335 8 (30)
7 16 1.643835 8 (30)
8 18 2.110122 8 (30)
9 20 2.649102 8 (26)
10 20 2.518818 8 (26)
11 22 3.084026 9 (30)
12 22 2.954755 9 (30)

have seen this distinction earlier in the trimer problem. This
suggests a role for the Berry phase term, with a nonzero phase
accruing along certain paths in the ground-state space. There
are several types of closed paths on the quadrumer CGSS
consisting of three touching tori. We find that paths within
a single torus (with or without winding in either direction)
accrue trivial phases that are multiples of 2π . Likewise, paths
lying on two tori are also trivial. Nontrivial phases emerge
only in paths that traverse all three tori, with a net π -winding
in the vertical direction on each torus. An example is shown
in Fig. 11 (top), consisting of three segments, P-Q, Q-R, and
R-P, one on each torus. This describes a closed path that
crosses from one torus to another at common lines. All three
segments correspond to a fixed value of φ1, so that the first
spin remains stationary. Each of the other three spins rotates
by 2π , subtending an area of 2π at the north pole. This
corresponds to a net Berry phase of 6πS. For integer spins,

FIG. 11. (Top) Example of a nontrivial path that incurs a π Berry
phase for half-integer values of S. (Bottom) Cross-section view, with
π -flux tubes inserted to account for the geometric phase that arises
for half-integer values of S.
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this is a trivial phase as it is a multiple of 2π . However, for
half-integer spins, we have a physically relevant π phase.

In the “particle in the CGSS” description, this can be
understood as an Aharonov-Bohm phase. It corresponds to
two π -flux tubes threaded in the space between tori, as shown
in Fig. 11 (bottom). As seen from the figure, a closed loop on
any one torus does not incur a net phase; e.g., a path along
the outer torus encloses a net flux of 2π , equivalent to no flux
at all. The only paths that are sensitive to the fluxes lie on all
three tori, effectively traversing half of each torus.

We can modify our earlier tight-binding prescription from
Sec. VI A to take these flux tubes into account. The flux tubes
lead to a vector potential on the torus surfaces. This adds a
complex phase to the hopping amplitudes, via the well-known
Peierls’ substitution prescription [24]. We assume a simple
form of the vector potential that gives rise to the required
Aharonov-Bohm phase. We take it to be nonzero on one torus
alone, say the torus on the left in Fig. 9. We take it to have the
form �A = 2π ŷ/L, pointing in the vertical direction. When the
particle goes around this torus in the vertical direction, it gains
a phase of 2π . It can be easily be checked that this provides the
required Aharonov-Bohm phase. For instance, the nontrivial
path shown in Fig. 11 (top) accumulates a π phase. We solve
this tight-binding model numerically and compare it with the
half-integer spin spectrum below.

D. Comparison with full quantum description
for half-integer spins

As with integer spins, we solve the half-integer-spin XY
quadrumer problem by exact diagonalization. We use total Sz

and cyclic permutation symmetries. The resulting spectrum
shows a doubly degenerate ground state, unlike integer spins.
We fit the spectrum to the tight-binding model with π fluxes,
treating L and t as fitting parameters as described in Sec. VI B.
The results, presented in Table II, show excellent quantitative
agreement. The number of matched states/levels increases
with S, indicating that the mapping to the tight-binding model
becomes more accurate as S increases. Fig. 12 compares the

TABLE II. Comparing spin and tight-binding spectra for half-
integer S values. L and t parameters shown are obtained by our fitting
procedure. The last column shows the number of low-energy levels
(and states) that match in the two approaches.

Spin Hopping Levels matched
S L t (No. of states)

0.5 6 0.5864 2 (8)
1.5 10 0.83687 4 (11)
2.5 10 0.72868 5 (15)
3.5 10 0.60952 5 (15)
4.5 12 0.90943 5 (15)
5.5 14 1.24024 5 (15)
6.5 16 1.62682 6 (21)
7.5 16 1.55958 6 (21)
8.5 18 1.99109 6 (21)
9.5 18 1.92926 6 (21)
10.5 20 2.40964 6 (21)
11.5 22 2.92317 8 (27)

FIG. 12. Comparison of spin (empty squares) and tight-binding
(solid diamonds) spectra for half-integer S. Spin spectrum is shifted
in order to achieve the same ground-state energy as that of the tight-
binding spectrum.

spectra from exact diagonalization of the spin system and the
tight-binding model for two half-integer spins, S = 2.5 and
9.5.

VII. DOES ORDER BY DISORDER DETERMINE
THE QUADRUMER SPECTRUM?

The CGSS for the symmetric quadrumer is much larger
than the symmetries of the problem, indicating an accidental
degeneracy. We may expect low-energy states to sample a
‘selected’ subset of the CGSS. Indeed, this is consistent with
our numerical results. For instance, the spectrum for S =
12 shown in Fig. 10 resembles that of a particle on three
disjoint rings. The ground state is nearly threefold degenerate,
while excited states are approximately sixfold degenerate. In
addition, the energies vary as ∼n2, where n is an integer.
This is in reasonably good agreement with the spectrum of
a particle on three disjoint rings (S1 ⊗ S1 ⊗ S1). This pattern
appears for half-integer spins as well, as seen in Fig. 12 for
S = 9.5. We may deduce that the particle is localized around
the three collinear lines in the CGSS. Naively, this appears to
be consistent with order by disorder as quantum fluctuations
tend to favor collinear states over coplanar states. We argue
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FIG. 13. Symmetric quadrumer spectrum for S = 19. The en-
ergies have been shifted downwards by −737.686J and scaled by
0.129083. The spectrum closely resembles that of a particle on three
disjoint rings.

that this is not the case. Rather, a more subtle mechanism
operates to select collinear lines.

To argue against order by disorder, we compare the selec-
tion effect for different S values. Figure 13 shows the spectrum
for a large spin value, S = 19, obtained by exact diagonaliza-
tion. This shows near perfect agreement with the picture of
a particle on three disjoint circles. Comparing Figs. 10 and
13, we see that the selection effect becomes stronger with
increasing S. While order by disorder vanishes in the classical
limit, our results suggest that the selection effect is strongest
when S → ∞. This cannot be the result of a 1/S correction
term as stipulated by the order by disorder paradigm.

Holstein-Primakoff analysis

We now present a HP analysis to examine how order by
disorder may be induced by quantum fluctuations; we will
then argue that order by disorder does not play a role in
this problem. The symmetric quadrumer is a special case of
the asymmetric quadrumer. We can adapt the HP analysis
of Sec. V C to this case by setting λ = 0. We choose the
reference state to have �S1 = −�S2 and �S3 = −�S4, with the state
described by two angles, φ1 and φ31 (the angular distance
between the third and first spins).

Substituting λ = 0 in Eqs. (23) and (24), we again find two
free particles and two SHOs for a generic value of φ31. The
ground-state energy is given by

E0 = −2JS2 − 2JS + JS

[
cos

(
φ31

2

)
+ sin

(
φ31

2

)]
. (28)

As in the asymmetric case, this has minima at φ31 = 0 and π .
If we assume that order by disorder occurs and thereby set

φ31 = 0, we find that the frequency of the SHO corresponding
to (pc, xc) vanishes. This is in contrast to the asymmetric
quadrumer where the two SHO frequencies take nonzero
values for any φ31. Here, we obtain three free particles and
one SHO with frequency 2JS, corresponding to (pb, xb).
This is a manifestation of the nonmanifold character of the
CGSS. At generic points, it is two-dimensional (with two free
particles in the HP description). In contrast, at collinear states

where two tori touch, we have additional degrees of freedom
allowing for motion onto a different torus. This is reflected as
an additional free particle in the HP analysis.

Taking the HP result at face value, we may expect collinear
states to be selected with the lowest branch of excitations
corresponding to

Hfree = JS

2

(
P2 + p2

a + p2
c

)
, (29)

corresponding to a particle moving on a three-dimensional
torus, T 3. We note that the pa and pc take the system
away from collinearity. Treating them as free particles is not
consistent with our assumption of order by disorder. It is
conceivable that higher-order terms will introduce confining
potential energy terms in xa and xc. We may expect to see the
spectrum of a particle on three disjoint circles, with threefold
degeneracy arising from the three possible ways of choosing
a collinear configuration. Notably, as the zero-point energy is
a 1/S effect, the selection effect should weaken as S increases
(see the discussion of the asymmetric quadrumer in Sec. V C).
However, this is not consistent with our numerical results
which show stronger selection for larger S.

A second piece of evidence against order by disorder
comes from the nature of our tight-binding model. We find
excellent agreement between the tight-binding spectrum and
exact diagonalization, with the agreement improving with
increasing S. This agreement is achieved without including
a potential-like term that would arise from Eq. (28). Apart
from hopping between nodes, the particle would experience
a local potential which has minima at collinear lines. The
irrelevance of this zero-point potential energy indicates that
order by disorder is not applicable here.

While the HP approach does not explain the full spectrum
(as compared to the tight-binding model), we note that it
brings out the nonmanifold character of the CGSS, with a
SHO turning into a free particle for collinear reference states.

VIII. ORDER BY SINGULARITY: EVIDENCE FROM
EXACT DIAGONALIZATION

Our numerical results show that at large S, the symmetric
quadrumer resembles a particle moving on three disjoint
circles. In the above discussion, we have surmised that this
indicates selection of collinear states over others within the
CGSS. We demonstrate here that: (a) such selection does
not occur in the asymmetric quadrumer which has a 2D
manifold as CGSS, (b) the symmetric quadrumer, with its
nonmanifold CGSS, shows a preference for collinear states
even in the S → ∞ limit. We provide two pieces of evidence
from the numerical solution of the spin problem using exact
diagonalization.

A. Measuring collinearity

We consider a diagnostic operator of the form

Ôcoll. = ((�S1 · �S2)H (�S3 · �S4)H + (�S1 · �S3)H (�S2 · �S4)H

+ (�S1 · �S4)H (�S2 · �S3)H )/(S(S + 1))2. (30)

Here, (�Si · �S j )H ≡ Sx
i Sx

j + Sy
i Sy

j + Sz
i Sz

j , a Heisenberg dot

product. We call this operator Ôcoll. as it provides a measure
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FIG. 14. Expectation value of Ôcoll. vs S. Data for the asymmet-
ric quadrumer are shown as blue dots. The corresponding fitting
curve (blue line) is fasym(S) = 2.09584 − 2.48505/S + 3.654/S2 −
1.87011/S3. Data for the symmetric quadrumer are shown using
violet squares. The fitting function (violet line) is given by fsym(S) =
2.96877 − 9.45947/S + 29.6598/S2 − 45.1815/S3 + 23.7693/S4.

of collinearity as discussed below. All the terms in Eq. (30)
are quartic in spin operators. We empirically find that scaling
by S2(S + 1)2, rather than S4, allows for a smooth fit as a
function of S. For a given S, we calculate the “quantum”
expectation value of this operator in the numerically ob-
tained ground state. We also find its “classical expectation
value” defined as follows. This operator is evaluated in each
classical ground state by replacing spin operators with the
corresponding classical vectors. This result is averaged over
all classical ground states, i.e., all points in the CGSS. We
compare the quantum and classical expectation values. We
may naively expect these two to coincide in the semiclassical
limit by the following argument. In the “particle in the CGSS”
picture, at low energies, we expect the particle to sample all
points in the CGSS equally. This can also be argued from a
path integral based evaluation of expectation values, with all
classical ground states contributing with equal weight. The
quantum expectation value must be the average over all points
in the CGSS.

Figure 14 shows the quantum expectation value of Ôcoll.

versus S for two problems: the asymmetric quadrumer with
λ = 2 and the symmetric quadrumer (λ = 0). In the former,
we see that 〈Ôa.quad

coll. 〉quantum → 2 as S → ∞ (see the fitting
function in the caption of Fig. 14). To obtain the classical
expectation value, we note that the CGSS for the asymmetric
quadrumer is a single torus as shown in Fig. 6. In terms of φ1

and φ3, we find

〈
Oa.quad.

coll.

〉
class.(φ1, φ3) = 1 + 2 cos2(φ3 − φ1). (31)

The first term is unity, as (�S1 · �S2)H/(S(S + 1)) and (�S3 ·
�S4)H/(S(S + 1)) both take the value −1 in all the classical
ground states. The other two terms evaluate to cos2(φ3 − φ1).
In order to average over the CGSS, we average over all values
of φ3 − φ1. This gives 〈Oa.quad

coll. 〉CGSS = 2. Our numerical result
for the quantum expectation value coincides with this value as
shown in Fig. 14. This provides evidence that the asymmetric

quadrumer maps to a particle that samples every point on the
CGSS.

For the symmetric quadrumer, the CGSS consists of three
copies of the asymmetric quadrumer CGSS. The classical
expectation value on each torus has the same form as that
for the asymmetric quadrumer given above. Averaging over
the three tori, we expect to find 〈Os.quad

coll. 〉CGSS = 2. However,
this does not agree with the numerically obtained quantum
expectation value. As seen in Fig. 14, the latter extrapolates
to 〈Ôs.quad

coll. 〉quantum → 3 as S → ∞ (see fitting curve). Notably,
this saturates an upper bound, being the maximum possible
classical value for Ôcoll.. This maximum value is only reached
in collinear states where each term in Ôcoll. gives 1. In the
“particle in the CGSS” picture for S → ∞, we conclude that
the particle only samples collinear states and not the entire
CGSS.

B. Spin correlations

The quantum ground-state wave function contains infor-
mation about spin correlations. However, a direct evaluation
of correlations functions cannot distinguish between uniform
sampling on the CGSS and the selection of collinear states.
We have devised the following diagnostic that we apply to the
asymmetric and symmetric quadrumers.

We take the numerically obtained ground state in the Sz

basis, given by

|GS〉 =
∑

m1,m2,m3,m4

am1,m2,m3,m4 |m1, m2, m3, m4〉, (32)

where Ŝz
i |mi〉 = mi|mi〉. We act with a projection operator P̂4,x

on this state to project the fourth spin �S4 along the x̂ direction,
i.e., we pick out the component of the ground state with Sx

4 =
S. After normalization, this gives

|GS〉proj. = P̂4,x|GS〉
|〈GS|P̂4,x|GS〉|1/2

= 〈S4, S4x = S|GS〉
||〈S4, S4x = S|GS〉|| .

We write this as

|GS〉proj. =
∑

m1,m2,m3

bm1,m2,m3 |m1, m2, m3〉. (33)

We now note that any Ŝx/y
j operator eigenstate can be written

as a linear combination of Ŝz
j eigenstates,

∣∣S j, Sx/y
j = μ

〉 =
∑
m′

j

cx/y
μ,m′

j
|m′

j〉. (34)

We resolve the (projected and normalized) wave function
|GS〉proj. into different Sx/y

j components. For example, an Sx/y
1

component is given by

〈
S1, Sx/y

1 = μ
∣∣GS

〉
proj.

=
∑

m2,m3

(∑
m1

(
cx/y
μ,m1

)∗
bm1,m2,m3

)
|m2, m3〉. (35)
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FIG. 15. Probability distributions in the numerical ground state projected to fix Sx
4 = S. See text for details.

We deduce that the probability of having Sx/y
1 = μ is

∑
m2,m3

∣∣∣∣∣
(∑

m1

(
cx/y
μ,m1

)∗
bm1,m2,m3

)∣∣∣∣∣
2

. (36)

We find these probabilities for different spin components.
Figure 15 shows the resulting probability weights for S = 6.
We interpret the results as follows.

Figure 15 (left and center) show the results for the asym-
metric quadrumer. In this problem, �S3 and �S4 are strongly
antiferromagnetically coupled. As a result, �S3 is antialigned
with �S4 in the classical ground state. However, �S1 does not
have a fixed orientation with respect to �S4; the CGSS includes
states with all possible relative orientations between �S1 and
�S4. This is reflected in Fig. 15, where �S4 has been fixed along
the x̂ direction by a projection operation. The probability
weights for Sx/y

1 are shown in the left panels. We see peaks at
Sx

1 = ±S and Sy
1 = ±S. This is consistent with the spins lying

in the x-y plane with no preferred orientation; if we consider
a semiclassical picture with Sx

1 = S cos φ and assume that all
values of φ are equally likely, then the probability distribution
of Sx

1 would be given by

P
(
Sx

1

) =
∫ 2π

0

dφ

2π
δ
(
Sx

1 − S cos φ
)

∼ 1√
S2 − (

Sx
1

)2
, (37)

which has peaks at Sx
1 � ±S. (A similar argument works for

Sy
1.) In contrast, the middle panels in Fig. 15 show that the

probability weight for Sx
3 is sharply peaked at mx = −S while

the probability weight for Sy
3 does not indicate a preference for

direction. Taken together, they indicate that �S3 is pinned along
the −x̂ direction. This allows for an elegant interpretation
in the semiclassical limit: the quantum ground state can be
thought of a uniform sampling of the CGSS. In other words,
the particle on the CGSS has a ground-state wave function that
is uniformly weighted on the space.

The panels on the right in Fig. 15 show the results for
the symmetric quadrumer. As above, we have projected the
wave function to fix �S4 along the x̂ direction. We only show
the probability weights for Sx/y

1 as �S2 and �S3 show the same
results due to symmetry. Remarkably, the probability weight
is peaked at Sx

1 = −S, with a subdominant peak at Sx
1 = S.

Semiclassically, this can be understood as arising from the
average over collinear states. We note that there are three
distinct collinear states. One collinear state has �S1 parallel to
�S4 while two have it antialigned. Averaging over these three,
we expect Sx

1 = −S to have a probability weight of ≈0.66,
while Sx

1 = S should have ≈0.33. Our numerical results are
close to this expectation, in that the ratio of the two probability
weights is close to 2. The agreement may improve for larger
values of S.

IX. ORDER BY SINGULARITY: INSIGHT FROM THE
TIGHT-BINDING MODEL

The mechanism behind the selection of collinear states is
best understood from the tight-binding model. In Figs. 10 and
12, we demonstrated that the tight-binding model provides
excellent quantitative agreement with the spectrum. We have
also shown that the agreement improves as S increases. On
the strength of this agreement, we take the tight-binding wave
functions to be an accurate representation of the spin states.

The wave functions obtained from the tight-binding model
clearly reveal the mechanism underlying the selection of
collinear states. We recapitulate that the space consists of
three tori that touch along singular lines. Remarkably, we find
that all low-lying wave functions are localized with domi-
nant weight around the singular lines. Figure 16 shows the
probability weights extracted from the tight-binding ground
state. The wave function is symmetric among the different
tori. Hence the figure shows only a single torus, as the same
weights are repeated on the other two tori. Surprisingly, the
weights are sharply peaked on the common singular lines.
We find the same localization pattern in all low-lying states.

134411-14



EFFECTIVE THEORIES FOR QUANTUM SPIN CLUSTERS: … PHYSICAL REVIEW B 100, 134411 (2019)

FIG. 16. Ground state obtained using the tight-binding approach.
The tight-binding mesh has 22 × 22 sites on each torus with com-
mon lines being identified. The size of the circle at each point is
proportional to the local probability density in the ground-state wave
function.

Below, we explain this observation using an analytic study of
bound states in the tight-binding model.

Bound state wave functions

We consider the tight-binding model in the limit of large
system size, L. The set up is shown in Fig. 17, with two
sheets intersecting along a line. We are interested in bound
states localized along this singular line. The sheets themselves
are tori with periodic boundaries. For large L and sharply
localized bound states, we may ignore the periodicity and
work with open sheets.

The tight-binding Hamiltonian is given by

H = −t
∑

m

∑
n(m)

c†
mcn, (38)

FIG. 17. Set up for calculating bound states in the tight-binding
model. (Left) A zoomed out view of two sheets intersecting along a
line. We assume periodic boundary conditions with the intersection
line closing on itself to form a circle. (Center and right) Tight-binding
mesh on two sheets that share a line of points. We have diagonal
and vertical bonds. Note that there are no horizontal bonds, either
along the central line or elsewhere. A generic site is connected to four
nearest neighbors. However, sites on the common line are connected
to eight neighbors, four on each sheet.

where the index m runs over all sites in our mesh over the
two sheets shown in Fig. 17. The sum over n(m) represents
a sum over sites that are connected to m by a bond. A
generic point has neighbors within the same sheet. However,
points on the singular lines have neighbors on two tori. The
hopping amplitude is a constant, −t . In this single-particle
Hamiltonian written in the site basis, an eigenfunction is given
by |ψ〉 ≡ ∑

m ψm|m〉, where |m〉 denotes a state localized at
site m which is occupied with amplitude ψm. In this language,
an eigenstate with eigenvalue E satisfies

−t
∑
n(m)

ψn = Eψm. (39)

We first consider a nonlocalized state that is not bound to
the singular lines. Such a state is largely weighted away from
the collinear lines, which are a 1D subset of the full 2D space.
Away from the collinear line, the space looks very much
like two independent sheets. A particle freely moving on this
space can be thought of as having eigenstates characterized
by two momenta, kx and ky. The energy is given by Etor =
−2t[cos(ky) + cos(ky − kx )]. As kx and ky can take any value
between 0 and 2π (assuming periodic boundaries), the energy
falls within a range, Etor ∈ [−4t, 4t]. Below, we will consider
an ansatz for the bound states. If a candidate bound state has
energy lying within the range [−4t, 4t], it will hybridize with
the “free” states that are not localized. Thus it is unlikely to
be bound. However, if we find a candidate state with energy
below −4t , it will remain localized.

We consider a bound state ansatz given by

ψp,q,T =
{

ei2π�p/L, q = 0

e−α|q|ei2π�(p+q/2)/L, q �= 0
. (40)

Here, T = 1, 2 represents the two sheets in the problem. The
indices p and q are integers that label sites on each sheet, in the
horizontal and vertical directions respectively. In particular,
q = 0 corresponds to the line shared between the two sheets.
Its horizontal extent is assumed to be L. On this line, the
T index loses its meaning as the sites are shared by both
sheets. By construction, the ansatz wave function is symmetric
between the two sheets and is localized along the shared
line, decaying exponentially as we move away from it. We
have introduced a parameter � ∈ Z (to guarantee periodicity
along the horizontal direction). This represents an angular
momentum index. It indicates the degree of phase winding
as we move along the line.

We now consider (p, q, 1) with q �= 0, i.e., a site that is
not on the shared line. It has four neighbors, given by (p, q −
1, 1), (p, q + 1, 1), (p + 1, q − 1, 1) and (p − 1, q + 1, 1).
The eigenvalue equation Eq. (39) with reference to this site,
after a few simplifications, gives

E = −2t [eα + e−α] cos

(
π�

L

)
. (41)

We obtain the same equation from a generic point on the
second sheet (T = 2) as well, providing a consistency check.

We now consider a site on the line, (p, 0, T = 1/2).
This site has eight neighbors: (p,−1, T ), (p,+1, T ), (p +
1,−1, T ), and (p − 1,+1, T ), with T = 1, 2. The eigenvalue
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equation with reference to this site gives

E = −8t e−α cos

(
π�

L

)
. (42)

Comparing Eqs. (41) and (42), we obtain

α = ln 3

2
. (43)

This fixes the decay length in the bound state ansatz. Remark-
ably, we find the same decay length for any value of �. From
Eq. (42), we obtain the energy,

E = − 8t√
3

cos

(
π�

L

)
� −4.6188t cos

(
π�

L

)
. (44)

The energy naturally depends on �, the angular momentum
quantum number. The lowest energy occurs for � = 0, giving
rise to a real wave function without any phase winding. As �

is increased from zero, the energy increases.
We have identified bound state solutions. However these

represent true bound states only if their energies lie outside
the range of energies of the delocalized states. We define a
critical angular momentum �c, where the bound state energy
enters the delocalized continuum. We then obtain

− 8t√
3

cos

(
π�c

L

)
� −4t ⇒ �c � L

6
. (45)

This is a remarkable result that indicates that we have true
bound states for � = 0,±1,±2, . . . ,±L/6. In other words,
we have about L/3 true bound states localized along the
shared line.

In the full CGSS of the symmetric quadrumer, we have
three distinct singular lines. Each of them can host bound
states independently. When L is not too small, the bound states
on one line decay well before a second line is approached.
This indicates that the bound states do not hybridize. As we
have three shared lines and ∼L/3 bound states per line, we
have ∼L bound states in the system, a macroscopic number.
We conclude that the low-energy spectrum consists solely of
bound states, with the number of bound states scaling as the
linear size of the system.

The requirement of large L corresponds to large values of
S in the quantum problem (see Tables I and II). For smaller
values of S, we have a tight-binding problem with a small L.

This leads to hybridization between bound states on different
shared lines. This is responsible for the degeneracy pattern
seen in the tight-binding dispersion. For instance, for S = 19
in Fig. 13, we find a nearly threefold degenerate ground
state. For smaller (integer) S values shown in Fig. 10, this
is broken down into a nondegenerate ground state and two
excited states.

Having established that the low-energy states of the tight-
binding model are all bound to singular lines, we revisit the
conjecture described in Sec. VI, viz., that the low-energy
physics of the symmetric quadrumer maps to a single parti-
cle moving on its CGSS. We have subsequently shown that
the tight-binding model faithfully reproduces the low-energy
exact diagonalization spectrum of the quadrumer. If the agree-
ment were only restricted to bound states, this would cast
doubt on the tight-binding model as a true effective model. For
example, it could be construed that some selection mechanism
(perhaps a stronger version of order by disorder) operates
to pick collinear states. This binds low-energy states to the
collinear lines, with tunneling processes on the surface of the
tori. However, a closer examination of our results allows us
to refute this contention. As seen from Tables I and II, the
number of matching states (when comparing the tight-binding
and exact diagonalization spectra) is always larger than L.
As L is the number of tight-binding-bound-states, we see
that the agreement between the models extends to unbound,
delocalized states as well. We also see this directly from the
spatial profiles of the matching tight-binding eigenfunctions.
This gives us confidence that the tight-binding model on the
CGSS indeed provides a true effective theory of the symmetric
quadrumer.

X. SUMMARY AND DISCUSSION

We have discussed a paradigm for finding low-energy
effective theories of quantum spin clusters. The interacting
spin problem maps to a single particle moving on the space of
classical ground states. We have established this equivalence
in qualitative and quantitative terms, using various clusters
with XY antiferromagnetic bonds as test cases. Table III
presents a summary of our results. Geometric phases can play
an important role, appearing as Aharonov-Bohm fluxes seen
by the particle. Using this paradigm, magnetic clusters can be

TABLE III. Summary of results for the various clusters studied here. In each case, a particle moving on the “space of effective dynamics”
provides an effective description of the low-energy states.

Space of effective dynamics Nature

Integer S Half-integer S of CGSS

Dimer A ring (S1) 1D manifold

Trimer Two disjoint Two disjoint rings 2 copies of a
rings (S1 ⊗ Z2) with π -fluxes threaded 1D manifold

Asymmetric A torus (T 2) 2D manifold
quadrumer

Symmetric Three tori touching Three touching tori with Nonmanifold
quadrumer along lines two π -flux tubes threaded
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viewed as realizations of toy quantum models. This suggests
a new route to test theoretical ideas in contexts such as driven
rotors [25], coupled rotors [26], and rotors with Aharonov-
Bohm fluxes [27]. Our results also serve as a starting point
for the study of frustrated molecular and lattice magnets. Our
paradigm can be tested in larger magnetic clusters where tools
such as the irreducible tensor operator method can be used
to evaluate the spectrum [28,29]. This could be compared
with the appropriate single particle problem. Among lattice
systems, Er2Ti2O7 is a pyrochlore antiferromagnet with U(1),
a circle, as its classical ground-state space [30]. This is analo-
gous to the dimer problem that we have discussed above.

We have proposed a new selection phenomenon, “order by
singularity,” a consequence of nonmanifold structure, wherein
the low-energy spectrum consists exclusively of bound states
localized around singularities. Perhaps, the most significant
aspect of this new mechanism is that it is strongest in the
classical S → ∞ limit. In this light, it provides a counterpoint
to early studies of the symmetric quadrumer by Chalker and
Moessner [11,31]. Working with the classical XY quadrumer
at low temperatures, they showed that thermal fluctuations
“select” collinear states. The selection is sharp with a δ-
function-like effective probability distribution. Our results
offer a quantum analog with collinear states being sharply
selected by quantum fluctuations. As this selection is strongest
at S → ∞, it is plausible that this has consequences for the
purely classical model as well. This is an interesting direction
for future studies. We present a plausibility argument in Ap-
pendix D. We show that the delta-function-like selection effect
in the classical model disappears when the quadrumer is made
asymmetric, as in Sec. V above. This removes the singularities
in the CGSS. As it also kills the sharp selection effect, it is
plausible that singularities play a role in state selection.

Our study has strong parallels with the notion of sponta-
neous symmetry breaking. It is well-known that finite systems
cannot break symmetries to develop order. Rather, they de-
velop low-lying excitations that form an Anderson tower [22],
characteristic of the space of symmetries that will be broken
in the thermodynamic limit. In our language, this constitutes
a mapping to a particle moving on the classical ground-state
space. Our analysis shows that geometric phases may have
to be taken into account to obtain a satisfactory description.
Our analysis also extends this notion to frustrated systems,
wherein the space can be larger than the symmetry of the
problem. In particular, we find interesting effects that arise
when the space has singularities.

Our analysis of the XY quadrumer resonates strongly with
the problem of the Heisenberg quadrumer. Two of the current
authors have shown that the Heisenberg quadrumer possesses
a nonmanifold ground-state space [17]. It is generically five-
dimensional. However, it has three singular subspaces corre-
sponding to collinear states. At these points, the space appears
to be six-dimensional. The current XY problem also has the
same flavor with a two-dimensional space and three singular
lines, corresponding to collinear states. In fact, the XY CGSS
is a slice of the Heisenberg ground-state space. Remarkably, in
the Heisenberg problem, the low-energy states do not consist
of bound states, and a good effective description is obtained
by neglecting singularities [17]. This suggests that not all
nonmanifolds can induce bound states. The dimensionality of

the space and co-dimensionality of the singularities must play
an important role. This opens an exciting direction for future
studies.

The experimental consequences of order by singularity
also throw up interesting challenges. In the quadrumer cluster,
we have shown that order by singularity is a much stronger
effect as compared to order by disorder. The latter only gives
rise to small quantitative corrections while the former operates
over a large range of values of S. The irrelevance of order
by disorder comes from the finiteness of our cluster. With
only four spins, the quantum zero-point energy does not differ
significantly over the classical ground-state space (see the
discussion of the asymmetric quadrumer above). However,
this may change in a macroscopic magnet with a nonmanifold
ground-state space. The consequences of order by singularity
and its competition with order by disorder are interesting open
questions.

Our analysis in the context of quantum magnetism has
similarities with studies motivated by nonmanifold geometries
and black hole horizon states [32–34]. These studies identify
bound states by suitably defining boundary conditions. Our
work provides a realistic example where such bound states
dominate the low-energy physics. We have used a tight-
binding approach on a nonmanifold space, an approach with
strong parallels to quantum graph studies [35–39].
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APPENDIX A: DISTANCES ON QUADRUMER
GROUND-STATE SPACE

We have discussed the ground-state spaces of the asym-
metric and symmetric quadrumers above. The discussion in
the main text brings out the topology or the connectivity of
these spaces. Here, we discuss the local structure, or loosely
the metric, on this space.

Consider the CGSS of the symmetric quadrumer as shown
in Fig. 8. We have three tori that touch along lines. Each
torus is described by two coordinates, e.g., the torus on the
left is described by φ1 and φ31. Here, φ1 corresponds to
global in-plane spin rotations, a symmetry of the problem. In
contrast, φ31 = φ3 − φ1 is invariant under rotations. Given a
point on the CGSS, we can make small displacements in both
variables. If we change φ1 → φ1 + δ while keeping φ31 fixed,
this corresponds to rotating each of the four spins by an angle
δ. The “total displacement,” the sum of displacements of all
four spins, is 4δ. However, keeping φ1 fixed and changing
φ31 → φ31 + δ displaces �S3 and �S4 by an angle δ. It keeps �S1

and �S2 fixed. This corresponds to a shorter total displacement
of 2δ.
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FIG. 18. Distances on the quadrumer CGSS.

Similarly, moving along diagonals, we find that the shortest
total displacement occurs when moving in the north-west
or south-east direction. This corresponds to changing φ1 →
φ1 − δ and φ31 → φ31 + δ. The total displacement is 2δ as �S3

and �S4 remain stationary.
Thus we identify the vertical and north-west/south-east

directions as “nearest” distances, as shown in Fig. 18. Dis-
placement along these directions leads to short total dis-
placements. Moreover, a fixed displacement along either of
these directions corresponds to the same total displacement.
We use this information to construct a tight-binding model.
We include bonds in the vertical and north-west/south-east
directions with the same hopping amplitude for both.

APPENDIX B: HOLSTEIN-PRIMAKOFF
THEORY FOR THE DIMER

We describe the HP analysis of the dimer problem here. We
note that the Hamiltonian commutes with the z component of
the total spin, Sz ≡ Sz

1 + Sz
2. The eigenvalues of Sz, denoted

by m, are given by 0,±1,±2, . . . ; this is true regardless
of whether S is an integer or a half-integer. The classical
ground states are of the form �S1 = S(cos φ, sin φ, 0); �S2 =
−S(cos φ, sin φ, 0), where the angle φ can take any value
from 0 to 2π . As our reference state, we take the state with
φ = 0. We define Holstein-Primakoff operators as described
in Eqs. (18). Switching to canonically conjugate variables
(x1, p1) and (x2, p2) as in Eq. (19), we find the Hamiltonian

H = −JS2 + JS

2

[
p2

1 + p2
2 + x2

1 + x2
2 − 2x1x2 − 2

]
, (B1)

up to order S. Defining the linear combinations

P = p1 + p2√
2

, X = x1 + x2√
2

,

p = p1 − p2√
2

, x = x1 − x2√
2

, (B2)

which form canonically conjugate pairs, we find

H = JS2 + JS

2
[P2 + p2 + 2x2 − 2]. (B3)

In the above expression, the term P2 describes a free particle
since there is no term which depends on X . We also have an
SHO given by (JS/2)(p2 + 2x2), with frequency ω = JS

√
2.

The SHO has a zero-point energy ω/2 = JS/
√

2. The ground-
state energy is therefore equal to

E0 = −JS2 − JS

(
1 − 1√

2

)
. (B4)

The complete energy spectrum is given by

E = E0 + nJS
√

2 + JS

2
r2, (B5)

where n = 0, 1, 2, . . . represents the state of the SHO, and r
denotes the eigenvalue of P. To find the possible values of r,
we note from Eq. (B2) that P = Sz/

√
2S, where Sz = Sz

1 + Sz
2

is a good quantum number. Denoting the eigenvalues of Sz by
m, we see that the allowed values of (JS/2)r2 are given by
m2/4. The energy spectrum is therefore

E = E0 + nJS
√

2 + Jm2

4
. (B6)

This is the sum of the spectra of an SHO and a particle
on a circle. Eq. (B6) is found to agree well with the nu-
merical results obtained by exact diagonalization. Note that
the spectrum consists of different branches corresponding to
n = 0, 1, 2, . . . ; these branches are separated from each other
by a gap equal to JS

√
2. In the lowest branch given by n = 0,

energies are given by Jm2/4, values of order unity or O(S0).
The excitations corresponding to m can be though of as

describing the Goldstone mode which appears in this system
because the classical ground-state energy does not depend on
the angle φ. This mode corresponds to a uniform rotation of
both the spins by the operator given by P = Sz/

√
2S.

APPENDIX C: HOLSTEIN-PRIMAKOFF THEORY
FOR THE TRIMER

We now present the HP analysis of the trimer problem.
We first note that the Hamiltonian commutes with the z
component of the total spin, Sz ≡ ∑3

j=1 Sz
j . The eigenvalues

of Sz, denoted by m, take values 0,±1,±2, . . . if S is an
integer, and ±1/2,±3/2,±5/2, . . . if S is a half-integer.

As described in the main text, the classical ground-state
space consists of two circles. We consider a reference state
with φ1 = 0, φ2 = −2π/3, and φ3 = −4π/3. Using HP op-
erators as described in Appendix B, we find the Hamiltonian

H = −3JS2

2
+ S

2

(
p2

1 + p2
2 + p2

3 + x2
1 + x2

2 + x2
3

− x1x2 − x2x3 − x3x1 − 3
)
, (C1)

up to order S. This is diagonalized by defining Jacobi coordi-
nates,

P = p1 + p2 + p3√
3

,

pa = p1 − p2√
2

, (C2)

pb = p1 + p2 − 2p3√
6

,

134411-18



EFFECTIVE THEORIES FOR QUANTUM SPIN CLUSTERS: … PHYSICAL REVIEW B 100, 134411 (2019)

and the corresponding canonically conjugate variables X, xa,
and xb. In terms of these variables, we find

H = −3JS2

2
− 3JS

2
+ JS

2

[
P2 + p2

a + p2
b + 3

2

(
x2

a + x2
b

)]
.

(C3)

We thus have a free particle described by P2 and two SHO’s
described by (pa, xa) and (pb, xb), which have the same fre-
quency ω = JS

√
3/2. The ground-state energy is therefore

given by

E0 = −3JS2

2
− JS

(
3

2
−

√
3

2

)
. (C4)

The complete energy spectrum is given by

E = E0 + (na + nb)JS

√
3

2
+ JS

2
r2, (C5)

where na, nb = 0, 1, 2, . . . represent the different states of the
SHO’s, and r denotes eigenvalues of P. The operator P is
related to the total Sz as

P = Sz

√
3S

. (C6)

Hence, the allowed values of (JS/2)r2 are related to the eigen-
values of Sz = m as Jm2/6. The energy spectrum therefore
takes the form

E = E0 + (na + nb)JS

√
3

2
+ Jm2

6
. (C7)

The lowest branch of excitations is given by na = nb = 0. In
this branch, the spectrum is that of a particle moving on a
circle. The difference between the energies of the ground state
and first excited state is (J/6)(12 − 02) = J/6 if S is an integer
and (J/6)[(3/2)2 − (1/2)2] = J/3 if S is a half-integer. We
again find that these results agree with those obtained by exact
diagonalization.

The excitations corresponding to m describe the Goldstone
mode which appears because the classical ground-state energy
does not depend on the angle φ1. This mode corresponds to a
uniform rotation of the three spins by the operator in Eq. (C6).

APPENDIX D: ORDER BY SINGULARITY IN
THE CLASSICAL QUADRUMER

In the main text, we have discussed the notion of order by
singularity for quantum spins. We have presented evidence
that the effect survives even in the classical limit, i.e., when
S → ∞. Here, we discuss state selection in a purely classical
setting, following the approach of Chalker and Moessner [40]
and Chalker [11] to the classical quadrumer problem. Working
in the limit of low temperatures (weak thermal fluctuations),
they evaluate the probability distribution for the angular sep-
aration between two particular spins. Surprisingly, when the
quadrumer is taken to have XY couplings, this probability
distribution shows δ-function-like peaks for relative angles
equal to 0 and π (corresponding to collinear configurations as
discussed below). In the light of our analysis in the main text,
we revisit this problem with respect to the role of singularities
in the CGSS.

We consider the classical quadrumer with asymmetry as a
tuning parameter. Its Hamiltonian is given by

H = J

2

(∑
i

Si

)2

+ λJ

2
{(S1 + S2)2 + (S3 + S4)2}. (D1)

Since we are working with purely XY spins, we define
(�)2 ≡ �x�x + �y�y. At low energies, we may restrict our
attention to classical ground states and their vicinities. The
classical ground states here have S1 = −S2 and S3 = −S4. We
parametrize the spins as (see Fig. 19)

S1 = (− sin(α/2), cos(α/2)),

S4 = (sin(α/2), cos(α/2)),

S2 = (sin(α/2 + β ),− cos(α/2 + β )),

S3 = (− sin(α/2 + γ ),− cos(α/2 + γ )). (D2)

Here, β and γ represent small fluctuations that take us away
from the ground-state space. The energy takes the form

H = JS2

2
((1 + λ)β2 + (1 + λ)γ 2 − 2βγ cos(α))

= JS2

2
(1 + λ)

[(
β − cos(α)

1 + λ
γ

)2

+
(

1− cos2(α)

(1+ λ)2

)
γ 2

]
.

FIG. 19. Low-temperature configuration of the classical XY
quadrumer. The angle α can be arbitrary. The configuration is a
ground state as long as β = γ = 0. At low temperatures, we can
assume that β and γ are small. The figure is reproduced here from
Fig. 1.8 in Ref. [11].
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In order to integrate out fluctuations, we make the following
variable change:

δ1 = β − cos(α)

1 + λ
γ ,

(D3)
δ2 = γ ,

a transformation for which the Jacobian is unity. In terms of
the new variables, the Hamiltonian is

H = JS2

2
(1 + λ)

[
δ2

1 +
(

1 − cos2(α)

(1 + λ)2

)
δ2

2

]
. (D4)

We now integrate out the δ’s. Setting kB to unity, we obtain the
probability distribution for α, the angle between spins S1 and
S4, as

P(α) =
∫

δ1

∫
δ2

exp(−H/T )

∼ T ×
√

1

(1 + λ)2 − cos2(α)
. (D5)

We see that the probability is finite for all α as long as
λ > 0. When λ = 0, we recover the results of Chalker and
Moessner, with nonintegrable divergences at α = 0, π . An
infinitesimal asymmetry suffices to remove the sharp selection
associated with divergences. As discussed in the main text, a
small asymmetry term also removes singularities in the CGSS.
This suggests that singularities could play a role in sharp state
selection.

APPENDIX E: TANGENT SPACE ON
THE NONMANIFOLD CGSS

In the main text, we have shown that the CGSS of the
symmetric quadrumer is not a manifold due to the presence of
singular lines. Here, we discuss its tangent space to explicitly
bring out the nonmanifold character.

We denote the position of the ith spin as Si = (Six, Siy, Siz ),
with i = 1, 2, 3, 4. A generic state of a quadrumer is rep-
resented by a twelve-dimensional vector (S1, S2, S3, S4). In
order to represent a genuine spin configuration, we must
have

S2
ix + S2

iy + S2
iz = 1 for i = 1, 2, 3, 4. (E1)

(We have taken the spin length to be unity.) This amounts to
four constraints on the twelve-dimensional vector.

As discussed in the main text, the minimum energy config-
urations must have (a) spins lying in the x-y plane and (b) zero
total spin. This is equivalent to the following six constraints:

Siz = 0, for i = 1, 2, 3, 4,

4∑
i=1

Six =
4∑

i=1

Siy = 0. (E2)

Ground-state configurations must necessarily have two pairs
of antialigned spins. We consider a generic ground state with
�S1 = −�S3 and �S2 = −�S4. In the twelve-dimensional configu-
ration space, this corresponds to

�P = (cos φ1, sin φ1, 0, cos φ2, sin φ2, 0,

− cos φ1,− sin φ1, 0,− cos φ2,− sin φ2, 0). (E3)

We have chosen �S1 and �S2 to make angles φ1 and φ2 with the
x̂ axis, respectively.

We now analyze all the independent fluctuations about this
ground state. The fluctuation modes fall into the following
three categories.

(1) Soft deformations. These modes preserve the spin
lengths as well as the ground-state conditions. We enumerate
them as

σ̂1 = 1
2 (sin φ1,− cos φ1, 0, sin φ2,− cos φ2, 0,

− sin φ1, cos φ1, 0,− sin φ2, cos φ2, 0),

σ̂2 = 1
2 (sin φ1,− cos φ1, 0,− sin φ2, cos φ2, 0,

− sin φ1, cos φ1, 0, sin φ2,− cos φ2, 0). (E4)

These are orthogonal to each other as well as to the reference
state �P. Here, orthogonality is defined using the dot product
in the twelve-dimensional embedding space. Physically, the
mode σ̂1 represents overall rotation in the x-y plane. The mode
σ̂2 describes a scissor-like deformation between two rods, one
consisting of (�S1, �S3) and the other composed of (�S2, �S4). The
soft nature of these modes can be seen by constructing �Ps,δ =
�P + ∑2

i=1 δiσ̂i, where δi � 1 represent small deviations from
the reference state. To linear order in the δi’s, �Ps,δ satisfies
the spin length constraints. In addition, it readily satisfies
the ground-state conditions. Thus �Ps,δ represents the local
neighborhood of a point on the ground-state space, i.e., it
represents the tangent space to the CGSS at �P.

(2) Hard deformations. We next consider modes that pre-
serve the spin lengths but not the ground-state energy. We
enumerate them as

ĥ1 = 1
2 (sin φ1,− cos φ1, 0,− sin φ2, cos φ2, 0,

sin φ1,− cos φ1, 0,− sin φ2, cos φ2, 0),

ĥ2 = 1
2 (− sin φ1, cos φ1, 0,− sin φ2, cos φ2, 0,

− sin φ1, cos φ1, 0,− sin φ2, cos φ2, 0),

ĥ3 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

ĥ4 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

ĥ5 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0),

ĥ6 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). (E5)

These are orthogonal to each other, to the soft modes as well
as to the reference state �P. We consider �Ph,η = �P + ∑6

i=1 ηiĥi,
with the ηi’s representing small amplitudes. We find that �Ph,η

preserves spin lengths to linear order in the ηi’s. However,
it violates the ground-state conditions with energy increasing
quadratically in the ηi’s. We conclude that these modes are
physically allowed fluctuations that take the system out of the
ground-state space.

(3) Unphysical deformations. As the embedding space is
twelve-dimensional, we must have twelve fluctuation modes
about any configuration. We have enumerated two soft modes
and six hard modes above. The remaining four modes rep-
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resent unphysical deformations that violate the spin length
constraints. They are

û1 = (cos φ1, sin φ1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

û2 = (0, 0, 0, cos φ2, sin φ2, 0, 0, 0, 0, 0, 0, 0),

û3 = (0, 0, 0, 0, 0, 0,− cos φ1,− sin φ1, 0, 0, 0, 0),

û4 = (0, 0, 0, 0, 0, 0, 0, 0, 0,− cos φ2,− sin φ2, 0). (E6)

These modes are orthogonal to each other as well as to the soft
and hard modes. The spin lengths are not preserved to linear
order in these fluctuations—making them unphysical.

The above analysis shows that, about a generic ground
state, there are two soft modes, six hard modes and four
unphysical modes. The tangent space to the CGSS is
two-dimensional, spanned by the two soft deformations.
However, a different picture emerges in the vicinity of
collinear ground states. To see this, we consider φ1 =
φ2 = 0 in Eq. (E3). This corresponds to �S1 = �S2 = −�S3 =
−�S4 = (1, 0, 0). The σ̂ modes given in Eq. (E4) retain their
soft mode character. However, among the ĥ modes, ĥ1 =
1
2 (0,−1, 0, 0, 1, 0, 0,−1, 0, 0, 1, 0) changes its character. It
‘softens’ as it no longer violates the ground-state conditions.
This is reminiscent of excitations in the triangular XY antifer-
romagnet wherein a hard mode softens at a critical magnetic

field [41]. Here, in the vicinity of collinear states, we have
three soft modes, five hard modes and four unphysical modes.
The tangent space is now three-dimensional, represented by
�Ps,coll.,μ,η = �P(φ1 = φ2 = 0) + μ1σ̂1 + μ2σ̂2+η1ĥ1.

The tangent space cannot be defined smoothly on the
CGSS due to differing dimensionalities. This marks the
CGSS as a nonmanifold space. Our tight-binding model
is designed to take this into account. To see this, we refer
to the three-torus geometry of the CGSS as discussed in
the main text. Each torus is discretized with two local
directions as shown in Fig. 18, corresponding to a global
rotation and a “scissor” deformation. These are precisely the
deformations induced by σ̂1 and σ̂2 above. At the singular
lines, the tight-binding particle is allowed to move in a
third direction, corresponding to motion away from one
torus onto a second torus. In the example with φ1 = φ2 = 0
discussed above, this corresponds precisely to the softened
ĥ1 mode. To see this, we examine �P(φ1 = φ2 = 0) + 2η1ĥ1 =
(1,−η1, 0, 1, η1, 0,−1,−η1, 0,−1, η1, 0). This deformed
state has (�S1 = −�S4; �S2 = −�S3). Note that this configuration
of alignments is different from (�S1 = −�S3; �S2 = −�S4)
that was assumed in Eq. (E3). By our definition, these
correspond to two different tori. In summary, the softened
mode at collinear lines corresponds to motion from one torus
to another—a possibility that is explicitly allowed in our
tight-binding model.
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