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Phase diagram for ensembles of random close-packed Ising-like dipoles as a function of texturation
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We study random close-packed systems of magnetic spheres by Monte Carlo simulations in order to estimate
their phase diagram. The uniaxial anisotropy of the spheres makes each of them behave as a single Ising dipole
along a fixed easy axis. We explore the phase diagram in terms of the temperature and the degree of alignment (or
texturation) among the easy axes of all spheres. This degree of alignment ranges from the textured case (all easy
axes pointing along a common direction) to the nontextured case (randomly distributed easy axes). In the former
case, we find long-range ferromagnetic order at low temperature but, as the degree of alignment is diminished
below a certain threshold, the ferromagnetic phase gives way to a spin-glass phase. This spin-glass phase is
similar to the one previously found in other dipolar systems with strong frozen disorder. The transition between
ferromagnetism and spin glass passes through a narrow intermediate phase with quasi-long-range ferromagnetic
order.
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I. INTRODUCTION

The study of ensembles of magnetic nanoparticles (NPs) is
an active field of research due to their potential application in
areas as disparate as biomedicine, data storage, or nanofluids
[1,2]. Current technology allows us to synthesize NPs with
a wide variability of sizes and shapes, in addition to coating
them with nonmagnetic layers. Moreover, they can be pro-
duced in nearly monodisperse ensembles so as to enjoy good
control of their spatial distribution [3]. This know-how opens
the possibility to realize densely packed ensembles of NPs that
behave as systems of interacting dipoles. It is the magnetic
order of such structures that stirs a renewed interest in their
use in technological applications [4,5].

NPs with diameters dp up to a few tens of nanometers
have a single domain (typical values are 15 nm for Fe, 35 nm
for Co, 30 nm for maghemite γ -Fe2O3) that behaves as a
magnetic dipole [6]. Even when they are spherical, such NPs
can have anisotropies that oblige the dipole to lie along a
local easy axis and to surmount an anisotropy energy barrier
Ea whenever the magnetic moment is inverted, resulting in
a blocking temperature Tb � Ea/30kB [2,4]. When the NPs
are closely packed, their dipolar interaction energies Edd are
not negligible but typically larger than Ea/10, leading to
Edd/kBTb � 3. Consequently, low-temperature signatures of
collective order induced by the dipolar interaction can be (and
have indeed been) observed experimentally [7]. This is to
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be compared with the super-paramagnetism observed in very
diluted systems for which Edd/kBTb � 1 [2,8].

Dilute dispersions of NPs gather into highly ordered three-
dimensional (3D) supercrystals on account of their ability to
self-assemble after the evaporation of the solvent [9,10]. Such
crystals exhibit dipolar super-ferromagnetism in fcc, bcc of
I-tetragonal lattices. This behavior was predicted to exist in
such lattices by Luttinger and Tisza [11].

Less ordered (noncrystalline) dense packings may be ob-
tained by pressing powders to obtain a granular solid [12], or
in concentrated colloidal suspensions by freezing the carrier
fluid [13]. The frozen disorder on the positions of the NPs and
on the orientation of the anisotropy axes in those systems may
induce frustration resulting in super spin-glass (SG) behavior
[14,15]. This behavior, originated by dipolar interactions, has
been observed experimentally in random close-packed (RCP)
samples of dipolar spheres [7] with volume fractions φ about
64% [16]. An equilibrium SG phase for nontextured RCP
ensembles of dipolar spheres has recently been found by
numerical simulations [17].

Nevertheless, the role of positional and orientational disor-
der in noncrystalline ensembles is far from being completely
understood. Numerical simulations have shown that frozen
amorphous densely packed systems with volume fractions
as high as φ = 0.42 order ferromagnetically provided they
are textured [18,19]. This texturation shows up in colloidal
suspensions by freezing the solution in the presence of large
magnetic fields h [20]. Even when h = 0, ensembles of dipo-
lar spheres moving in a nonfrozen fluid with volume fractions
as low as 42% tend spontaneously to become textured by
aligning their axes, exhibiting nematic order (i.e., with no
positional long range order) [21,22].

The picture that emerges is that the ordering of dense non-
crystalline systems may change from ferromagnetic (FM) to
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SG as the anisotropy-axes alignment dwindles from textured
[i.e., parallel axes dipoles (PAD)] to nontextured [random
oriented axes dipoles (RAD)].

The purpose of the present work is to depict the phase
diagram of noncrystalline dense packings of Ising dipoles
with different degrees of texturation by employing Monte
Carlo (MC) simulations (see Fig. 2). In this effort, special
attention will be paid to (i) examine whether a SG phase exists
comparable to the one previously found for very diluted as
well as RAD systems of Ising dipoles, and (ii) explore the
transition between FM and SG in order to look for possible
intermediate phases. We will pursue this investigation on
ensembles of Ising dipoles placed at the center of RCP spheres
that occupy a 64% fraction of the entire volume. Given
that here we do not focus on time-dependent properties, we
concede to the Ising dipoles (i.e., dipoles with large anisotropy
energies) all the necessary time to flip up and down along
their easy axes and reach equilibrium, which is tantamount to
saying that we choose Tb = 0. Such a model may be relevant
for experimental situations in which one expects Ea ∼ 10Edd

[7]. To investigate the effect of the easy axes alignment,
we will introduce a parameter σ that interpolates from the
textured to the completely random axes cases. The nature of
the low-temperature phases is investigated by measuring the
spontaneous magnetization, the SG overlap parameter, and the
associated fluctuations and probability distributions.

The paper is organized as follows. In Sec. II we carefully
define the model, give the details of the MC algorithm, and
introduce the observables that will be measured. The results
are presented in Sec. III, and some concluding remarks are
given in Sec. IV.

II. MODEL, METHOD, AND OBSERVABLES

A. Model

We study RCP systems of N identical NPs that behave as
single magnetic Ising dipoles. The NPs are labeled with i =
1, . . . , N . We will regard each NP as a sphere of diameter d
carrying a permanent pointlike magnetic moment �μi = μsîai

at its center, where the unit vector âi is the local easy axis and
si = ±1.

The Hamiltonian governing the interaction is

H =
∑
〈i, j〉

εd

(
d

ri j

)3(̂
ai · â j − 3(̂ai · �ri j )(̂a j · �ri j )

r2
i j

)
sis j, (1)

where εd = μ0μ
2/(4πd3) is an energy and μ0 is the magnetic

permeability in vacuum. �ri j is the vector position of dipole j
viewed from dipole i, and ri j = ‖�ri j‖. The summation runs
over all pairs of dipoles i and j, with i 	= j. The particles’
positions as well as their easy axes âi remain fixed during the
simulations.

The spheres are placed in frozen RCP configurations in a
cube of edge L assuming periodic boundary conditions. As
in previous work [17], these configurations are obtained by
using the Lubachevsky-Stillinger algorithm [23,24], in which
the spheres, which are initially very small, are allowed to
move and collide while growing in size at a sufficiently high
rate until the sample gets eventually stuck in a noncrystalline
state with volume fraction φ = 0.64 [16,24]. We shall specify

the size of the system by the number N of spheres inside it, or,
equivalently, by the lateral size of the cube they fill to capacity,

L =
(

Nπ

6φ

)1/3

d, (2)

where d is the final diameter attained by the spheres after they
stopped growing.

To investigate the effect of texturation, we consider that
the alignment of the vectors âi with the direction ẑ follows a
Gaussian-like distribution,

p(θi ) ∝ {
e−θ2

i /2σ 2 + e−(θi−π )2/2σ 2}
sin θi, (3)

where θi is the polar angle of the ith dipole, while each
azimuthal angle is chosen at random. The variance σ controls
the degree of texturation, intended as the amount of alignment
of the easy axes along the Cartesian axis ẑ. σ ranges from
σ = 0 for textured systems (PAD) to σ = ∞ for nontextured
samples with axes completely oriented at random (RAD).

We let each Ising dipole flip up and down along its easy
axis âi, assuming that the dipoles are able to overcome the
local anisotropy barriers. In what follows, distances and tem-
peratures will be given in units of d and εd/kB, respectively,
where kB is Boltzmann’s constant.

B. Samples

We define a sample J as a given, arbitrary realization
of disorder that, for the systems under study, comes from
two sources: from the randomness of the positions of the
spheres, and from the degree of texturation or of alignment
of their easy axes âi. This disorder does not participate in the
dynamics but remains frozen during MC simulations. Only
the signs si evolve during a simulation.

As a consequence of the above definitions, we shall use
the word configuration for any set of N signs {si}i=1,...,N .
In Figs. 1(a) and 1(b), two statistically independent config-
urations obtained from a given sample by MC simulation
are depicted. Dark blue (red) spheres in the figures denote
dipoles pointing up (down) along axes âi nearly parallel to
ẑ, while light grayish spheres denote those whose axes deviate
significantly from ẑ.

Results susceptible to being compared with empirical data
require an average over Ns independent samples. The need for
this average is crucial at large σ due to the sizable sample-to-
sample fluctuations that appear in this regime, where SG order
is expected. Moreover, because of the lack of self-averaging
associated with SG order, we have not made Ns smaller
with increasing N . However, for large systems (the largest
ones contain N = 1728 dipoles) we could employ no more
than 3000 samples because of computer time limitations. The
number of samples Ns is listed in Table I for the values of N
and σ explored in the simulations.

C. Method

Since by decreasing the degree of texturation the system
could end up in a SG phase, we have performed parallel
simulations with the tempered Monte Carlo (TMC) algorithm,
as this algorithm has proved to be satisfactorily efficient in
beating slowing down [25]. Indeed, the TMC method allow
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FIG. 1. Parts (a) and (b) show two statistically independent
configurations of a sample with 1728 magnetic nanospheres with
σ = 0.6 at the temperature T = 0.55. The position of the spheres and
the orientation of their local easy axes are both frozen. The color of
each sphere i stands for the value of the z component of the magnetic
moment �μi/μ = sîai, where âi is the local easy axis and si = ±1.
Part (c) represents the overlap between the configurations (a) and
(b). Black (white) spheres in (c) means s(a)

i s(b)
i = +1 (−1).

replicas to overcome energy barriers within which the system
could sink and remain confined at low temperatures. These
potential wells are minima of the rough energy landscapes that
characterize glassy phases. Concretely, for each sample J , we
run in parallel n + 1 identical replicas at temperatures T =
Tmin + k�, where k = 0, 1, 2, . . . , n. We have found it useful
to choose the highest temperature, Tmax = Tmin + n�, larger
than twice the transition temperature from the paramagnetic
(PM) phase to the ordered one. The TMC algorithm involves
two steps. In the first one, 10 METROPOLIS sweeps [26] are
applied separately to all n + 1 replicas in order to make
them evolve independently from each other. Dipolar fields
are updated whenever a sign s j flip is accepted. After that
step, we give to any pair of replicas evolving at neighboring
temperatures (T, T ± �) a chance to be exchanged, according
to tempering rules that satisfy detailed balance [25]. We
choose � such that at least 30% of all attempted exchanges
are accepted. Due to limitations in computer time, we simulate
systems containing up to N = 123 = 1728 dipoles and choose
Tmin larger than half the transition temperature.

We have imposed periodic boundary conditions in the sim-
ulations. That means that each dipole i is allowed to interact
with all dipoles within an L × L × L box centered at i; see (2).
Due to the long-range nature of the dipolar-dipolar interaction,
we need to take into account contributions from beyond this
box by using Ewald’s sums [27]. Details on the use of Ewald’s
sums for dipolar systems are given in Ref. [28]. In these sums,
the use of neutralizing Gaussian distributions with standard

TABLE I. The values taken by the parameters utilized in the
TMC simulations. σ is the degree of texturation, N is the number
of dipoles, Ns is the number of samples with different realizations of
disorder, and Tmax and Tmin are the highest and lowest temperatures,
respectively. � = 0.05 is the temperature step in all simulations.
The number of MC sweeps for equilibration is t0 = 106 in all cases.
Measurements are taken during the MC sweeps comprised in the
interval [t0, 2t0].

σ = 0 (Tmax = 4.5, Tmin = 1.55)

N 216 512 1000 1728
Ns 2100 500 500 500

σ = 0.1 (Tmax = 4.5, Tmin = 1.55)

N 216 512 1000
Ns 1000 500 500

σ = 0.2 (Tmax = 4, Tmin = 1.05)

N 216 512 1000
Ns 1000 500 500

σ = 0.3 (Tmax = 4, Tmin = 1.05)

N 216 512 1000 1728
Ns 1000 2900 2100 2000

σ = 0.4 (Tmax = 3.5, Tmin = 0.55)

N 216 512 1000
Ns 2000 2000 2000

σ = 0.45 (Tmax = 3.5, Tmin = 0.55)

N 216 512 1000 1728
Ns 10000 2000 2000 2500

σ = 0.50 (Tmax = 3.5, Tmin = 0.55)

N 216 512 1000 1728
Ns 10000 8400 6000 2000

σ = 0.53 (Tmax = 3.5, Tmin = 0.55)

N 216 512 1000 1728
Ns 9800 9600 6500 2000

σ = 0.55 (Tmax = 3.5, Tmin = 0.55)

N 216 512 1000 1728
Ns 10700 8000 4000 2000

σ = 0.57 (Tmax = 3.5, Tmin = 0.55)

N 216 512 1000 1728
Ns 11600 10300 5000 3000

σ = 0.60 (Tmax = 3.5, Tmin = 0.55)

N 216 512 1000 1728
Ns 11000 8000 8400 8200

σ = 0.70, 0.80 (Tmax = 3.5, Tmin = 0.55)

N 216 512 1000
Ns 10000 8000 4800

deviation α/2 allows us to split the computation of the dipolar
fields into two rapidly convergent sums: a first sum in real
space with a cutoff rc = L/2, and a second sum in reciprocal
space with a cutoff kc. We have used kc = 10 and α = 7.9/L
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as a good compromise between accuracy and computational
speed [28]. More importantly, given that textured systems in
our model are expected to exhibit spontaneous magnetization
at low temperatures, we have chosen the so-called conducting
external conditions using surrounding permeability μ′ = ∞
in order to eliminate shape-dependent depolarizing effects
[21,29].

The thermal equilibration times t0 are assessed by the same
procedure of Ref. [17]. The overlap q(t ) of configurations
created from two replicas of the same sample J are obtained
by evolving the replicas independently after having started
from random configurations. Then t0 is the average over
samples of the value of t at which q(t ) attains a plateau
q0 for each sample. To test the value thus obtained for t0,
we observed that a second overlap q̃(t0, t0 + t ) calculated for
pairs of configurations of a single replica taken at times t0 and
t0 + t remains stuck to q0 as t increases [30]. It is found that
the less textured the system is, the longer the equilibration
time appears. This is due to the large roughness of the free-
energy landscapes for nontextured systems. For these hard-
to-equilibrate systems, the overlap distributions pJ (q) exhibit
numerous spikes associated with the existence of several pure
states [31]. In the simulations, we have examined the ±q
symmetry of the overlap distributions pJ (q) as an additional
indication that all samples are well thermalized [17].

A double average, the thermal one for each sample J and
the above-mentioned average over the Ns samples, is needed
to achieve physical results. The first average is taken within
the time interval [t0, 2t0]. Given an observable u, the result of
both averages will be symbolized by 〈u〉. For simplicity, 〈|u|p〉
will often be denoted by up. The values of all the simulation
parameters are listed in Table I.

D. Observables

The observables that have been measured in the course of
the work are the following:

(i) The specific heat c from the fluctuations of the energy
e ≡ 〈H〉/N .

(ii) The mz component of the magnetization vector

�m ≡ 1

N

∑
i

âisi, (4)

as a way to characterize the FM behavior. Note that for a given
sample, �m does not rotate during the MC simulation. Rather,
it aligns along the nematic director [21,29] λ̂J that, for the
model under study, is the eigenvector corresponding to the
largest eigenvalue of the tensor QQQJ ≡ 1

2N

∑
i(3̂ai ⊗ âi − III).

Since QJ is constant in time, λ̂J remains frozen during the
simulation.

We find that, for the values of σ considered here, λ̂J
practically coincides with ẑ. Then, it makes sense using mz

as the FM order parameter instead of ‖ �m‖. In fact, we have
also computed ‖ �m‖ and their related quantities and found that
they provide the same qualitative results that mz provides.

(iii) The moments mp = 〈|mz|p〉 for p = 1, 2, 4, that prove
useful to calculate the magnetic susceptibility

χm ≡ N

kBT

(
m2 − m2

1

)
, (5)

FIG. 2. Phase diagram on the temperature degree of texturation
plane for the dipolar Ising model. Symbols ♦ indicate the PM-FM
transition, and they have been obtained from the data of Bm vs T .
Symbols ◦ stand for PM-FM and PM-SG transitions, and they were
obtained from the Bq vs T plots. Symbols � represent the FM-SG
transition, and they follow from the Bm vs σ plots. The error bars
for the data marked with ◦ and � are smaller than the size of these
symbols. FM quasi-long-range order cannot be discarded in the gray
region.

and the dimensionless Binder cumulant

Bm ≡ 1

2

(
3 − m4

m2
2

)
. (6)

(iv) As a useful tool to look for SG behavior, we calculate
the overlap parameter [32],

q ≡ 1

N

∑
i

s(1)
i s(2)

i , (7)

given a sample J . s(1)
j and s(2)

j in this expression are the signs
at site j of two replicas of the given sample, denoted (1) and
(2), that evolve independently in time at the same temperature.
Similarly to what has been done for mz, we also measure qp ≡
〈|q|p〉 for integer p, and the corresponding Binder parameter
Bq ≡ 1

2 (3 − q4

q2
2
).

(v) Finally, for each sample J we compute the probability
distributions pJ (m) and pJ (q), as well as their average over
samples, which will be denoted by p(m) and p(q).

Errors for all quantities are obtained from the mean-
squared deviations of the sample-to-sample fluctuations.

III. RESULTS

A. The FM phase

The main result of the paper is the phase diagram on
the plane temperature-degree of texturation shown in Fig. 2.
It displays regions with FM, PM, and SG phases. The FM
order arises at low temperatures in the range 0 � σ � 0.53.
A thermally driven second-order transition takes place at the
phase boundary between the PM and FM phases. Next we give
the numerical evidence that supports this interpretation.

FM phases are defined by the presence of a nonvanishing
magnetization. In Fig. 3(a) we show the behavior of the
moment m2 with the temperature for σ = 0.3 in a number of
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FIG. 3. (a) Plots of the squared magnetization m2 vs temperature
T for σ = 0.3. �, �, �, and ◦ stand for N = 216, 512, 1000, and
1728 dipoles, respectively. Lines are guides to the eye. (b) Log-log
plots of m2 vs N for different temperatures at σ = 0.3. From top to
bottom: •, �, ♦, �, �, �, and ◦ stand for T = 1.6, 2.2, 2.4, 2.5, 2.6,
2.8, and 3.4, respectively. Dotted lines are guides to the eye. The
dashed line separates two regimes and stands for a 1/N0.35 decay.
The dot-dashed line shows the N−1 decay expected for paramagnets
in the thermodynamic limit.

system sizes. We obtain similar results for the magnetization
for all values of σ below 0.53. This is evidence of the
existence of the FM phase. Figure 4(a) shows plots of the
specific heat c versus T . The sharp variation of c near T = 2.5
suggests the presence of a singularity as N increases, as is
expected for a second-order PM-FM phase transition. The
same happens with the plots of the magnetic susceptibility χm

versus T shown in Fig. 4(b). The data are consistent with a
logarithmic divergence of c, and with an approximate power-
law divergence of χm with N p (up to logarithmic corrections
ln N) where p ∼ 2/3.

Next we examine the dependence of m2 on the number N
of dipoles. Figure 3(b) shows log-log plots of m2 versus N for

χ

FIG. 4. (a) Plots of the specific heat vs T for σ = 0.3. �, �, �,
and ◦ stand for systems with N = 216, 512, 1000, and 1728 dipoles,
respectively. (b) Plots of the magnetic susceptibility χm vs T for σ =
0.3. Same symbols as in (a). Lines in both panels are guides to the
eye.

FIG. 5. (a) Plots of the Binder cumulant Bm vs T for σ = 0.3.
�, �, �, and ◦ stand for systems with N = 216, 512, 1000, and
1728 dipoles, respectively. The dashed vertical line indicates the
Curie temperature at which the curves cross. (b) Plots of the Binder
cumulant for the overlap parameter Bq vs T . Same symbols as in (a).
Solid lines in both panels are guides to the eye.

several temperatures. The data at T below Tc = 2.55(5) reflect
that m2 does not vanish in the N → ∞ limit. On the contrary,
the plot of m2 versus N for T > Tc shows a faster than power-
law decay with a T -dependent exponent, and consequently the
slope of the curves is steeper for increasing T and approaches
a 1/N trend, which is the expected trend in PM phases. The
dashed line in Fig. 3(b) separating the two regimes represents
a 1/N0.35 decay. Although we are aware that these graphs do
not allow a precise determination of Tc, we have followed
this criterion as a first rough approach for establishing the
boundary of the FM phase.

The Binder parameter Bm grants a more precise determina-
tion of the transition temperature. It follows from its definition
in (6) that Bm → 1 as N → ∞ in the FM phase. On the other
hand, from the law of large numbers it follows that, in the PM
phase, with short-range FM order, Bm → 0 as N increases.
Finally, at a critical point, Bm becomes size-independent, as
must occur for every scale-free observable (recall that Bm is
dimensionless). The latter is also true in the case of a marginal
phase with quasi-long-range magnetic order. Then, curves of
Bm versus T for various values of N should cross at Tc if it is a
second-order transition. Note, however, that when a marginal
phase exists, these curves should collapse rather than cross for
all the critical region [33].

The plots of Bm versus T are shown in Fig. 5(a) for
different values of N at σ = 0.3. It is apparent that all curves
intersect at a precise temperature, allowing us to extract the
Curie temperature Tc(σ ), and permitting us to establish a
clear-cut boundary between the PM and FM phases. The
relatively modest system sizes that we have used (a limitation
due to the long-range nature of the dipolar interaction) does
not allow a precise determination of the critical exponents.

However, from finite-size scaling relevant for dipolar Ising
models, we get acceptable data-collapse plots of Bm versus
L3/2 ln1/6 L (T/Tc − 1) + v (ln L)−1/2 that provide a more re-
liable determination of Tc (see Fig. 6). This finite-size scaling
behavior corresponds to the mean-field one and agrees with
the fact that the upper critical dimension of the dipolar Ising
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FIG. 6. Finite-size scaling plots for Bm vs L3/2 (ln L)1/6 (T/Tc −
1) + v (ln L)−1/2 for σ = 0.3 using TC = 2.57(2) and v = −1.83(8).
�, �, �, and ◦ stand for systems with N = 216, 512, 1000, and 1728,
respectively.

model is du = 3 [34,35]. For σ = 0.3, we get Tc = 2.57(2).
Likewise, precise determinations of Tc(σ ) can be obtained for
σ � 0.53, the overall result being shown in Fig. 2.

For σ = 0.55 and 0.57, the curves Bm versus T merge
rather than cross at low temperatures, giving a less precise
determination of Tc. We will return to this point in Sec. III C.
Given that for our model �m does not rotate, mz and the overlap
q are expected to give similar information in the FM phase.
Thus, crossing points in the plots of Bq versus T , like the ones
shown in Fig. 5(b), may in principle provide an additional way
to obtain Tc. This is true for σ � 0.53 for which clean crossing
points are obtained. For smaller values of σ , see Fig. 5(b),
a characteristic dip near the transition temperature makes it
difficult to accurately locate the critical point [36].

B. The SG phase

This subsection is devoted to the study of small textura-
tions, which quantitatively entails large values of σ . As σ

grows, we observe large sample-to-sample fluctuations, which
obliges us to increase the number of samples up to roughly
10 000 (see Table I) in order to attain trustworthy averages.
Also large relaxation times are observed, a typical feature
of SG behavior. Indeed, we are going to report numerical
data that evidence the absence of magnetic order and the
existence of an equilibrium SG phase for systems with σ �
0.6. With the aim of exploring this low-temperature ordered
phase within a reasonable amount of computer time, we have
performed the TMC simulations at temperatures no less than
T = 0.55 and system sizes no larger than N = 1728, to the
detriment of the accuracy.

Plots of the moment m2 versus T are shown in Fig. 7(a)
at σ = 0.6. m2 decreases as N increases at all temperatures.
In the inset of the figure, we show the plots of the specific
heat c/kB versus T . They display a gentle variation, and no
signature of any possible singularity is seen. Similar graphs
follow if the study is repeated at larger values of σ . These are
pieces of evidence that point to the nonexistence of FM order
and of any PM-FM transition for σ � 0.6.

In Fig. 7(b) we show log-log plots of m2 versus N .
They exhibit a decay faster than 1/N1/2 for all available

FIG. 7. (a) Plots of the squared magnetization m2 vs T for σ =
0.6. Inset: the specific heat vs T . �, �, �, and ◦ stand for N = 216,
512, 1000, and 1728 dipoles, respectively. All lines in this panel are
guides to the eye. (b) Log-log plots of m2 vs N for σ = 0.6. From top
to bottom: ◦, •, �, �, and � stand for temperatures T = 0.55, 0.85,
1.25, 1.55, and 2.55, respectively. The arrow marks the onset of the
PM phase. Dotted lines are guides to the eye. The dashed line shows
the N−1 decay expected for a paramagnet in the thermodynamic
limit.

temperatures. At low temperatures T � 1 the results are in
principle consistent with quasi-long-range magnetic order. We
will further discuss this point in the next subsection. For the
PM phase (with short-range magnetic order), we expect to
observe m2 ∼ 1/N for large enough systems. For the available
system sizes, we discern such a trend only for extremely large
temperatures (see, for example, the data at T = 2.55).

A definite signature of the presence of a SG phase is the
divergence of the magnetic susceptibility at low temperatures.
The plots of χm versus T for σ = 0.6 showing an increase
with N , see Fig. 8(a), are consistent with that scenario. Notice
that this is in clear contrast with the behavior shown in
Fig. 4(b) for σ = 0.3. Log-log plots of χm versus N for low
temperatures show a power-law increase χm ∼ N p with an

χ χ

FIG. 8. (a) Plots of the magnetic susceptibility χm vs T for σ =
0.6. �, �, �, and ◦ stand for systems with N = 216, 512, 1000, and
1728 dipoles, respectively. Solid lines are guides to the eye. (b) Log-
log plots of χm vs N for σ = 0.6. ◦, �, and � stand for temperatures
T = 0.55, 1.25, and 1.55, respectively. As stressed by the dotted lines
connecting the points, data cease to grow linearly (the solid lines) at
large temperatures. The arrow marks the onset of the PM phase.
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FIG. 9. (a) Plots of Bm vs T for σ = 0.6. �, �, �, and ◦ denote
N = 216, 512, 1000, and 1728 dipoles, respectively. The solid lines
are guides to the eye. (b) Plots of Bq vs T . Same symbols as in
(a). The curves cross at the SG transition temperature, marked in
the figure with a vertical dashed line. The inset contains plots of Bm

and Bq vs 1/L for the lowest temperature available, T = 0.55. ◦ (�)
stands for Bm (Bq). The dashed lines in the inset are extrapolations.

exponent p that changes slightly with T but that is never
greater than p = 0.55 [see Fig. 8(b)]. For T � 1.25, the
curves detach from an algebraic growth and bend downward
indicating a nondiverging χm in the macroscopic limit, as
expected for a PM phase.

The most convincing evidence for the absence of FM order
at low temperatures for σ = 0.6 is given in Fig. 9(a). The
Bm versus T plots show that Bm diminishes as N increases
for all temperatures. As a consequence, curves for different
system sizes do not cross, in contrast with the behavior found
in Fig. 5(a). Recall that, in the case of short-range FM order,
Bm should vanish in the thermodynamic limit. In the inset of
Fig. 9(b), we have represented Bm versus 1/L for T = 0.55,
showing that that is indeed the case. We obtain a similar trend
for all σ � 0.6 and temperatures. This finding, consistent with
short-range FM order, seems to be in contradiction with the
effective power-law decay of m2 with N observed for low T
for the system sizes we have used [see Fig. 7(b)]. Some clues
could be obtained by inspecting the two independent magnetic
configurations displayed in Fig. 1. These are thermalized
configurations at σ = 0.6, T = 0.55 in the largest system size
considered in this work, N = 1728. The sample appears to be
broken into large magnetic domains whose frontiers appear to
be frozen. The large size of the domains explains the effective
power-law decay found in the m2 versus N plots in Fig. 7(b).
In striking contrast, the overlap between the two configu-
rations covers practically the whole system [see Fig. 1(c)],
suggesting a diverging SG overlap correlation length.

Provided that the magnetic correlation length (i.e., the size
of the magnetic domains) does not diverge, then mz would be
expected to be normally distributed, as follows from the law
of large numbers. In Fig. 10(a) we represent the distribution
p(mr ) where mr ≡ mz/m1 averaged over all samples for σ =
0.6 and the lowest temperature available, T = 0.55. Clearly,
p(mr ) tends to (1/π ) exp(−m2

r /π ) as N → ∞, in agreement
with short-range magnetic order. We obtain qualitatively sim-
ilar results for all σ � 0.6 and T , a fact that leads us to

FIG. 10. (a) Plots of the probability distribution p(mz/m1) for
σ = 0.6 and T = 0.55. �, �, �, and ◦ stand for N = 216, 512, 1000,
and 1728, respectively. The thick solid line is the typical Gaussian
distribution for paramagnets in the N → ∞ limit. (b) Same as in
(a) but for σ = 0.55. The thin lines connecting data in both panels
are guides to the eye.

discard the existence of a critical FM phase with quasi-long-
range order at low temperature. For this to be the case, we
should have seen a non-Gaussian broad distribution p(mr ) that
behaves as a scaling function that does not change with the
system size [37]. It seems to be the case, within errors, for a
bit larger texturation (σ = 0.55), as shown in Fig. 10(b) for
T = 0.55. More details on this point will be discussed in the
next subsection.

Finally, we report numerical evidence in favor of the
positive existence of a SG phase for σ � 0.6 by studying
the overlap parameter q2 and Bq. Plots of q2 versus T are
shown in Fig. 11(a) for σ = 0.6. It is worth comparing this
figure with its counterpart for m2, Fig. 7(a), to appreciate
the qualitative differences between the behavior of q2 and
m2 at low temperature. Note, however, that q2 also decreases

FIG. 11. (a) Plots of the squared overlap parameter q2 vs T for
σ = 0.6. �, �, �, and ◦ stand for N = 216, 512, 1000, and 1728,
respectively. The dashed vertical line indicates the SG transition
temperature. Solid lines are guides to the eye. (b) Log-log plots of
q2 vs the number of dipoles N for σ = 0.6. From top to bottom: •,
�, ♦, �, �, ◦, and � stand for T = 0.55, 0.85, 1.0, 1.05, 1.25, 1.55,
and 2.55, respectively. The arrow marks the onset of the PM phase.
Dotted lines are guides to the eye. The dot-dashed line shows the N−1

decay expected for the PM phase.
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appreciably as N increases for all temperatures. This fact
raises the question on whether or not q2 vanishes as L → ∞.
To clarify this, we have prepared the log-log plots of q2 versus
N shown in Fig. 11(b). Data are consistent with q2 ∼ 1/N p

for low temperatures, and with a T -dependent exponent p.
The N−1 trend, expected for PM phases, shows up only at
large temperatures. All of this suggests the presence of a
phase with quasi-long-range SG order. We draw additional
evidence on this point from the behavior of Bq. Recall that
in the thermodynamic limit, Bq → 1 in the case of strong
long-range order, it vanishes in the PM phase, and it tends
to some intermediate value at criticality. In Fig. 9(b), plots of
Bq versus T for σ = 0.6 show that curves of different system
sizes cross at a precise temperature Tsg that delimits the extent
of the region with SG order. These crossings permit us to
obtain the points Tsg(σ ) of the PM-SG transition line in Fig. 2
[38]. Note that Tsg does not vary strongly with σ . The results
agree well with the limiting value Tsg = 0.8 found in previous
work for the RAD case (σ = ∞) [17]. It is important to stress
that the fact that the Bq curves cross at Tsg does not imply
the existence of strong long-range order for T < Tsg [39].
Indeed, plots of Bq versus 1/L for T � Tsg(σ ) show that Bq

stays below 1 [see the inset in Fig. 9(b)]. Then, the Bq curves
should collapse in the N → ∞ limit when T � Tsg(σ ), which
is consistent with the algebraic decay found for q2.

In summary, the data for σ � 0.6 point to the existence of
a SG phase delimited by Tsg(σ ) for which quasi-long-range
SG order occurs, like in the 2D XY model [40,41]. A similar
SG phase has been previously found for other dipolar systems
with strong frozen disorder, namely for systems of parallel
Ising dipoles with strong dilution [30,39] as well as in dense
arrays, both crystalline and noncrystalline, of nontextured
systems of Ising dipoles with the axes oriented completely at
random [17,42]. However, given the moderate range of system
sizes considered here, our data cannot rule out completely
the so-called replica symmetry-breaking scenario in which q2

does not vanish in the N → ∞ limit, but there are long-range
SG order fluctuations that provoke Bq < 1 [43,44].

C. The FM-SG transition

From the previous sections, we expect to find a transition
within the narrow region 0.53 < σ < 0.6. To identify it, we
have carried out TMC simulations for several values of σ

in the interval [0.45, 0.6] and a range of temperatures in
the TMC between Tmax = 3.5 and Tmin = 0.55. The highest
temperature has been chosen well into the PM phase in order
to refresh configurations and ensure equilibrium results for
Tmin = 0.55, which is, in turn, a temperature very deep in
the low-temperature phase. This procedure facilitates the ex-
ploration of the FM boundary along several isothermal lines,
allowing us to investigate whether there is an intermediate
phase between this boundary and the SG phase determined in
the previous section. In addition, the slope of the FM boundary
line may discern between a forward or a reentrant behavior.

The magnetization m2 versus σ in Fig. 12(a) for a low
temperature, T = 0.55, shows that m2 decreases with N for
σ > 0.5. Log-log plots of m2 versus N in Fig. 12(b) show that
the m2 curves deviate from an algebraic decay to bend upward
at σ = 0.53, indicating also a nonvanishing magnetization. In

σ

FIG. 12. (a) Semilog plots of the squared magnetization m2 vs
σ for the lowest available temperature, T = 0.55. �, �, �, and ◦
stand for N = 216, 512, 1000, and 1728, respectively. Solid lines are
guides to the eye. (b) Log-log plots of m2 vs the number of dipoles N
at T = 0.55. From top to bottom: �, �, ◦, �, ♦, •, �, �, and � stand
for σ = 0.4, 0.45, 0.5, 0.53, 0.55, 0.57, 0.6, 0.7, and 0.8, respectively.
Dotted lines are guides to the eye. The dashed line shows the N−1

decay expected for the paramagnetic phase.

contrast, for σ = 0.55 and 0.57 we find a power-law decay,
giving some room for the existence of an intermediate region
with quasi-long-range FM order. This decay is consistent with
the behavior found for the p(mr ) distributions of Fig. 10(b)
for σ = 0.55. All p(mr ) curves tend to collapse into a non-
Gaussian broad distribution for large N , as expected when
quasi-long-range order settles. We obtain the same qualitative
results for σ = 0.57. Finally, curves for larger values of σ tend
to the N−1 decay characteristic of short-range FM order, as
discussed in the previous section.

The plots for q2 are shown Fig. 13. Similarly as for m2, q2

does not vanish for σ � 0.53, as is expected for a FM phase.

σ

FIG. 13. (a) Plots of the squared overlap parameter q2 vs σ for
the lowest available temperature, T = 0.55. �, �, �, and ◦ stand for
N = 216, 512, 1000, and 1728, respectively. Solid lines are guides
to the eye. (b) Log-log plots of q2 vs the number of dipoles N for
T = 0.55. From top to bottom: �, �, ◦, �, ♦, •, �, �, and � stand
for σ = 0.4, 0.45, 0.5, 0.53, 0.55, 0.57, 0.6, 0.7, and ∞, respectively.
Dotted lines are guides to the eye. The dashed line corresponds
approximately to an N−1/8 decay.
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σ

σ

σ

FIG. 14. (a) Plots of Bm vs σ for T = 0.8, and the values of N
indicated in the panel. Solid lines are guides to the eye. (b) Plots of
Bm vs 1/L for T = 1 for various values of σ . From top to bottom: �,
◦, �, ♦, •, �, and � stand for σ = 0.45, 0.5, 0.53, 0.55, 0.57, 0.6,
and 0.7, respectively. Dotted lines are guides to the eye. (c) Same as
in (a) but for T = 0.55. (d) Same as in (b) but for T = 0.55.

For larger values of σ we find instead a 1/N p algebraic decay
of q2. Note that the slope of the decay is small. For example,
for σ � 0.7 we find p ≈ 1/8, indicating that we are far from
a PM phase (for which p = 1 is expected).

We next examine how the cumulants Bm and Bq vary with σ

and N at low temperatures. For the FM phase both quantities
tend to 1 in the thermodynamic limit, while for the SG phase
Bm should vanish as N → ∞, and Bq should tend to a nonzero
value. Then, if there is a transition line separating the FM
and the SG phases, we expect the related Bm versus σ curves
to cross at the transition point σc(T ). As for the Bq versus
σ curve, it should merge for σ � σc and splay out only for
σ < σc.

In Fig. 14(a) we show plots of Bm versus σ for T = 0.8,
a temperature that lies below the PM boundary. Curves for
different sizes do not cross at a precise point but rather tend
to collapse in the intermediate region 0.55 � σ � 0.57 as N
increases. They only splay out for σ � 0.53 and for σ � 0.6.
Plotting instead Bm versus 1/L for several values of σ , as
shown in Fig. 14(b), we see that Bm tends to values that are
neither 1 nor 0, which is a trait of quasi-long-range order,
only in this intermediate region. Similar plots are given for a
lower temperature, T = 0.55, in panels (c) and (d) of the same
figure. We obtain the same qualitative picture found for T =
0.8, apart from the fact that finite-size effects are larger within
the intermediate region. However, 1/L extrapolations of Bm

for σ = 0.55 and 0.57 tend to nonvanishing values, which

σ

σ

σ

FIG. 15. (a) Plots of Bq vs σ for T = 0.8, and the values of N
indicated in the panel. Solid lines are guides to the eye. (b) Plots of
Bm vs 1/L for T = 1 for various values of σ . From top to bottom: �,
◦, �, ♦, •, �, and � stand for σ = 0.45, 0.5, 0.53, 0.55, 0.57, 0.6,
and 0.7, respectively. Dotted lines are guides to the eye. (c) Same as
in (a) but for T = 0.55. (d) Same as in (b) but for T = 0.55.

is consistent with marginal behavior. We have performed
averages over thousands of samples in order to improve the
statistics. However, the error bars of Bm do not allow a precise
determination of the FM boundary σc(T ). The points along
the FM boundary shown in Fig. 2 are just rough estimates
obtained by taking the mean value of the crossing points of
the pairs of curves Bm versus σ for different sizes (N1, N2) =
(83, 103) and (103, 123). We find a boundary line that is nearly
vertical with a positive slope suggesting a slight reentrance
near σ = 0.55. However, at least for the system sizes we have
employed, plots of m2 versus T for σ = 0.55 do not allow
us to discern any intermediate region with strong FM order
separating the low-temperature SG phase from the PM region
(not shown). More extensive simulations for larger systems
and for additional values of σ within the interval (0.53,0.6)
would be needed to address this issue. In summary, the results
point to the existence of a narrow intermediate region with
quasi-long-range order between the FM boundary line and the
SG phase, a phase that covers the low-temperature region for
all σ � 0.6. For σ = 0.57 and all temperatures below the PM
boundary, we obtain a nonvanishing Bm and an algebraic de-
cay of m2 with N , indicating that that region of the T -σ plane
still stays in the quasi-long-range regime. The area shaded
gray in Fig. 2 exhibits the extent of this intermediate phase.

Additional information could be gathered from a compar-
ison of the plots in Fig. 14 with their counterparts for Bq

versus σ shown in Fig. 15. Note that, in contrast to Bm, the
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curves of Bq versus σ do not splay out for σ � 0.6 but merge
for large N . This is expected for the SG phase described in
the previous section. On the other hand, for σ � 0.53 we
find that both Bm and Bq tend to 1 in the thermodynamic
limit, indicating the existence of strong FM order. Finally, for
σ = 0.55 and 0.57 (the only values we have simulated in the
intermediate region), Bq increases with the size of the system.
1/L extrapolations of Bq for T = 0.55 point to values that are
less than 1, suggesting that the intermediate phase includes
quasi-long-range FM and SG order contemporaneously. Note,
however, that the data for T = 0.8 shown in Fig. 15(b) do
not exclude the possibility of having strong SG order in this
intermediate region. Simulations for larger systems far beyond
our present CPU-time resources would be needed in order to
address this point.

IV. CONCLUSIONS

We have studied by Monte Carlo simulations the effect
of texturation on the collective behavior of disordered dense
packings of identical magnetic nanospheres that behave like
Ising dipoles along local easy axes. The local axes orien-
tations follow a probability distribution parametrized by a
single parameter σ . This allows us to vary the amount of
orientational disorder ranging from the complete textured case
(σ = 0) with all axes pointing along a common direction, to
the nontextured one with the axes oriented at random (σ =
∞).

We have obtained the phase diagram on the temperature-
σ plane (see Fig. 2) from studying the magnetization, the
spin-glass overlap parameter q, their fluctuations, as well as
some other related observables; see Sec. II D. The region σ �
0.53 contains a low-temperature ferromagnetic phase with
strong order separated by a second-order transition line from a
paramagnetic high-temperature phase. For large orientational
disorder (namely, for σ � 0.6) the ferromagnetic order gives
way to a spin-glass phase for temperatures below a nearly flat
transition line Tsg(σ ) that extends up to Tsg(∞) = 0.8. The
spin-glass phase is similar to the one previously observed in
systems of Ising dipoles with strong structural disorder, at σ =
∞. The Binder cumulants allow us to estimate the position

of the low-temperature boundary separating the ferromagnetic
and spin-glass phases. It is located near σ = 0.55 and consis-
tent with a small reentrance. Moreover, a narrow intermediate
region with quasi-long-range ferromagnetic order seems to lie
between the ferromagnetic and the spin-glass phases.

Finally, we comment on the applicability of our results to
actual experimental situations. As stated in the Introduction,
the model corresponds to the limit Tc/Tb � 1, where Tb is the
blocking temperature of the dispersed system and Tc is a dipo-
lar ordering temperature. This is, for instance, the situation of
the maghemite NP ensembles with diameters d of 6 nm <

d < 12 nm studied in Ref. [7]. In them, PM/SG freezing is
observed for randomly distributed easy axes and a volume
fraction φ ∼ 0.67 at a ratio of temperatures 4 < Tc/Tb < 12.
Moreover, the aging phenomenon used to characterize the SG
state is observable only at temperatures above Tb. We can thus
conclude that the present model applies at a qualitative level
to the latter experimental situations whenever the SG region
of the phase diagram is reached.
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