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Within a microscopic theory, we study the quantum Brownian motion of a skyrmion in a magnetic insulator
coupled to a bath of magnonlike quantum excitations. The intrinsic skyrmion-bath coupling gives rise to an
effective mass for the skyrmion, which remains finite down to zero temperature due to the quantum nature
of the magnon bath. We show that the quantum version of the fluctuation-dissipation theorem acquires a
nontrivial temperature dependence. As a consequence, the skyrmion mean-square displacement is finite at
zero temperature and has a fast thermal activation that scales quadratically with temperature, contrary to the
linear increase predicted by the classical phenomenological theory. The effects of an external oscillating drive
which couples directly to the magnon bath are investigated. We generalize the standard quantum theory of
dissipation and we show that the external drive generates a time-periodic term linear in the skyrmion velocity,
and a time-periodic magnus force correction, which are both absent in the static limit. The skyrmion response
function inherits the time periodicity of the driving field and is thus enhanced and lowered over a driving cycle.
Finally, we provide a generalized version of the nonequilibrium fluctuation-dissipation theorem valid for weakly
driven baths.
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I. INTRODUCTION

The impact of the bath fluctuations on the dynamics of
open nonequilibrium systems is commonly treated by non-
linear stochastic differential equations for the macrovariables,
known as generalized Langevin equations [1]. Within this
description, the thermal bath exerts random fluctuating forces
on the central system which eventually undergoes a Brownian
propagation [2–4]. The system-bath coupling gives rise to
non-Markovian memory dissipation terms and random forces
with a colored correlation [5]. In principle, both the noise
and the dissipation terms are determined by the system-bath
interaction, a relation which is manifested in the well-known
fluctuation-dissipation theorem [6].

Quantum stochastic dynamics are present in a variety of
physical systems, ranging from quantum optics [7], transport
processes in Josephson junctions [8], coherence effects and
macroscopic quantum tunneling in condensed matter physics
[9], and many more, which form a large body of current
active research. Here, we focus on the stochastic dynamics of
particlelike magnetic skyrmions which, similar to particlelike
solitonic textures in quantum superfluids [10,11], experience
dissipative and stochastic forces from their environmental
surroundings.

Skyrmions are spatially localized two-dimensional (2D)
magnetic textures characterized by a topologically nontrivial
charge Q0 [12,13] given by

Q0 = 1

4π

∫
dr m · (∂xm × ∂ym), (1)

where m is the normalized magnetization vector field and
x and y are the spatial coordinates of the 2D magnetic
layer. Aside from their early theoretical prediction [14,15],
magnetic skyrmions have been observed in bulk metallic

magnets [16–18], multiferroic insulators [19,20], as well as
ultrathin metal films on heavy-element substrates [21,22].
Because of their protected topology, nanoscale size, high
mobility [23–27], and controllable creation [22], they are in
the focus of current research as attractive candidates for future
spintronic devices [28].

Classically, the dynamics of a magnetic skyrmion is gov-
erned by the Landau-Lifshitz-Gilbert (LLG) equation [29,30],
which incorporates dissipation mechanisms by a phenomeno-
logical local-in-time Ohmic friction term, known as Gilbert
damping. At finite temperatures T , the skyrmion is subjected
to thermal fluctuations which will render its propagation
stochastic, similarly to the Brownian motion of a particle.
The conventional assumption for the fluctuating field acting
on magnetic particles [31] as well as skyrmions [32–39] is
that it is a Gaussian stochastic process with a white-noise
correlation function proportional to the phenomenological
Gilbert damping.

In a magnetic insulator and at low enough temperature,
the skyrmion dynamics is dominated by the unavoidable
coupling of its center of mass with the magnetic excitations
generated by the skyrmion motion itself. Magnetic excitations
are defined as fluctuations around the classical skyrmion
solution through a consistent separation between collective
(center-of-mass) and intrinsic (magnetic excitations) degrees
of freedom. A description of the dynamics of one-dimensional
(1D) domain walls [40] and 2D magnetic skyrmions [41] in
a magnetic insulator beyond the classical framework demon-
strated that the dissipation arising from the magnetic excita-
tions is generally non-Markovian with a magnon kernel that
is nonlocal in time. The quantum nature of the magnetic bath,
naturally incorporated within this approach, becomes evident
in the nontrivial temperature dependence of the magnon ker-
nel which remains finite even for vanishingly small T . A
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theory of dissipation which ignores quantum effects based on
the classical phenomenological LLG equation is expected to
be inadequate for atomic-scale skyrmions observed in state-
of-the-art experiments carried out at low temperatures of a few
K [21,42,43].

In this paper, we develop a microscopic description of the
stochastic skyrmion dynamics at finite temperatures using the
functional Keldysh formalism for dissipative quantum sys-
tems [44–46], as well as the Faddeev-Popov collective coordi-
nate approach [40,47] to promote the skyrmion center of mass
to a dynamic variable. We then arrive at a Langevin equation
of motion that includes a non-Markovian magnon kernel and
a stochastic field with a colored autocorrelation function as a
result of the coupling between the skyrmion and the magnon
bath generated by the skyrmion motion. We demonstrate that
the quantum version of the fluctuation-dissipation theorem ac-
quires a nontrivial temperature dependence. As an important
consequence, the mean-square displacement of the skyrmion
is finite at T = 0, and has a fast thermal activation being
proportional to T 2 for finite temperatures, in contrast to the
linear T increase obtained within the usual phenomenological
theory [37].

We also investigate the effects of an external oscillating
driving field which unavoidably couples with the magnon
bath in an analogous fashion to many physical situations
where the driving of the bath results in important contri-
butions to the dynamical response of the entire nanoscale
system [48–51]. We demonstrate explicitly that additional
magnon response terms are generated by the driving field via
its bath coupling, in particular a time-periodic term linear
in the skyrmion velocity and a time-periodic magnus force
correction, which are both absent in the static limit and
are known to affect the skyrmion kinematics, rendering its
propagation ratchetlike [52]. As a consequence, the skyrmion
response function inherits the time periodicity of the drive,
and it is thus enhanced and lowered over a driving cycle.
Since the magnetic excitations are driven out of equilibrium,
a generalization of the fluctuation-dissipation theorem should
not be expected in general. Quite remarkably, however, in the
weak driving regime, we find a nonequilibrium fluctuation-
dissipation relation, which reduces to the equilibrium one in
the static limit.

For the efficient manipulation of skyrmions at the
nanoscale, it is important to understand how random processes
contribute to the skyrmion propagation, especially in the pres-
ence of time-periodic microwave fields which appear to be
among the most efficient ways to induce translational motion
of skyrmions in magnetic insulators [52–54]. The microscopic
understanding of the stochastic skyrmion motion becomes
also important in view of proposed devices for stochastic
computing based on skyrmions [55,56].

The structure of the paper is as follows. In Sec. II we
present a detailed derivation of the Langevin equation for the
skyrmion collective coordinate using the functional Keldysh
formalism in the presence of a time-dependent magnetic field.
In Sec. III we evaluate and discuss the magnon kernel, while
in Sec. IV we investigate the skyrmion response function. The
quantum fluctuation-dissipation theorem and its generalized
nonequilibrium version in the presence of the oscillating field
are presented in Sec. V, together with a discussion on the

skyrmion mean-square displacement. Our main conclusions
are summarized in Sec. VI, while some technical details are
deferred to four appendices.

II. LANGEVIN EQUATION

The purpose of this section is to present a derivation of the
quantum Langevin equation for the skyrmion center-of-mass
coordinate, by making use of a functional integral approach
for the magnetic degrees of freedom at finite but low tem-
peratures, combined with the Keldysh technique to include
the effects of a time-dependent oscillating magnetic field. To
begin with, we note that the essential features of the dynamics
of a normalized magnetization field in spherical parametriza-
tion m = [sin � cos �, sin � sin �, cos �] defined in the 2D
space, are described by a partition function of the form Z =∫
D�D� eiS . Here, the functional integration is over all con-

figurations and the field � = cos � is canonically conjugate
to �. The Euclidean action S for a thin magnetic insulator in
physical units of space r̃ and time t̃ is given by

S =
∫

dt̃ d r̃
[

SNA

α2
�̇(� − 1) − NAW (�,�)

]
, (2)

where �̇ = ∂t̃� denotes the real-time derivative of field �.
The first term in Eq. (2) describes the dynamics and is known
as the Wess-Zumino or Berry phase term [40], while the
translationally symmetric energy term

W (m) = J (∇r̃m)2 + D

α
m · ∇r̃ × m − K

α2
m2

z − gμBH

α2
mz

(3)

supports skyrmion configurations with nontrivial topological
number Q0 as metastable solutions due to the presence of the
Dzyaloshinskii-Moriya (DM) interaction [57,58] of strength
D. Here, r̃ = (x̃, ỹ), S is the magnitude of the spin, NA is
the number of magnetic layers along the perpendicular z̃ axis
and α is the lattice spacing. The strength of the exchange
interaction J , the easy axis anisotropy K , and finally D are
measured in units of energy while the strength of the magnetic
field H is given in units of Tesla (T).

It is convenient to introduce dimensionless variables as
r = (D/Jα)r̃, t = D2t̃/J , and T = kBT̃ J/D2, where T̃ is the
temperature measured in Kelvin (K). Also, kB is the Boltz-
mann constant and throughout this work we use h̄ = 1. The
energy functional in reduced units is given by

F (m) = (∇rm)2 + m · ∇r × m − κm2
z − hmz, (4)

where κ = JK/D2, h = JgμBH/D2, and F (m) =
J (α)2/D2W (m). The classical skyrmion field, denoted
as �0(r) and �0(r), is found by minimizing the energy
functional F (m) [59,60]. We then arrive at the following
rotationally symmetric solution in polar coordinates
r = (ρ cos φ, ρ sin φ) given by �0(r) = φ + π/2, while
the skyrmion profile depends only on the radial coordinate
�0(r) = �(ρ). In Fig. 1 we depict the magnetization profile
of the skyrmion �0(ρ) for various values of the magnetic
field h, using the trial function �0(ρ) = A cos−1(tanh[(ρ −
λ)/�0]), where A = π/ cos−1(tanh[−λ/�0]). The parameter
λ, which denotes the skyrmion size, and �0 are calculated
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FIG. 1. Magnetization profiles �0(ρ ) of a skyrmion as function
of radial distance ρ for κ = 0.1 and three values of the magnetic
field. The colored surface in the inset represents the out-of-plane
component of the magnetization texture cos �0 of a skyrmion with
Q = −1 in the 2D xy plane for κ = 0.1 and h = 0.35.

by fitting the approximate function to the one obtained
numerically. This profile has a topological number Q0 = −1.

We next address the stochastic dynamics of the skyrmion
described by the classical fields �0 and �0 in contact with
the bath of magnetic excitations at finite temperature driven
by an external magnetic field that oscillates in time. This
is achieved by first promoting the skyrmion center of mass
to a dynamical variable R(t ), then treating the magnetic
excitations as quantum fluctuations around the classical field,
and finally obtaining an effective functional [1,40,41,61] by
integrating out the magnon degrees of freedom. At the same
time, the real-time dynamics of the external field as well
as the stochastic effects of the magnon bath at finite T are
captured by replacing the time integration by an integration
over the Keldysh contour which consists of two branches.
The upper branch extends from t = −∞ to t = +∞, while
the lower branch extends backwards from t = ∞ to t = −∞
[46]. It is worth mentioning that the formalism derived below
is applicable to any general energy functional F as long as it
satisfies the specified requirements.

We define two components of the fields as �+ ≡ �(t + i0)
and �− ≡ �(t − i0), that reside on the upper and the lower
parts of the time contour, respectively. Similarly, we define
fields �± = �(t ± i0). Moreover, quantization of the path-
integral variables implies the following form:

�±(r, t ) = �±
0 (r − R±(t )) + ϕ±(r − R±(t ), t ),

(5)
�±(r, t ) = �±

0 (r − R±(t )) + η±(r − R±(t ), t ),

where η and ϕ are the quantum fluctuations and the coordinate
R(t ) is energy independent owing to the assumed translational
invariance of the system. We therefore expect the existence of
a pair of zero modes Yi, with i = x, y, which need to be ex-
cluded from the functional integral to avoid overcounting de-
grees of freedom by imposing proper gauge-fixing conditions.

We use the following convenient spinor notation:

χ± = 1

2

(
ϕ± sin �0 + iη±/ sin �0

ϕ± sin �0 − iη±/ sin �0

)
, (6)

and we also define linear transformations of the fields by per-
forming a Keldysh rotation of the form χc,q = (χ+ ± χ−)/

√
2

as well as Rc,q = (R+ ± R−)/
√

2. Here, χc (Rc) and χq (Rq)
denote the classical and quantum fluctuations (coordinate), re-
spectively. Moreover, we introduce the field ζ = ( χc

χq
) in order

to obtain the action in a more compact form. Implementing all
the above transformations in the action of Eq. (2), taking into
account that time integration is now performed over the upper
and lower time branches denoted by the symbol s = ±1, the
partition function becomes Z = ∫

DRcDRqeiScl Z̃ , where

Z̃ =
∫

Dζ †Dζ
∏

s=±1

δ
(
F s

x

)
δ
(
F s

y

)
det(JFs )eiSQ . (7)

Here, F s
i = ∫

dr χ†
s σzYi is the gauge-fixing constraint that the

magnon modes be orthogonal to the zero modes [40,41], and
Js

F(t, t ′) = dFs(t )/dR(t ′) is the Jacobian matrix of the coor-
dinate transformation and is treated as additional perturbation
to the NA term in the action. The classical part of the effective
action reads as

Scl = NAd
∫

t,r

∑
s=±1

s
[ − SṘs�

s
0∇�s

0 − b · m
(
�s

0,�
s
0

)]
,

(8)

where b(t ) denotes a time-dependent external field, d =
(J/D)2, and we have also neglected an overall constant
from the configuration energy of the classical skyrmion
S0 = d

∫
r,t F (�0,�0). The fluctuation-dependent part of the

Keldysh action takes the form

SQ = NAd ζ † ◦ Ĝ−1ζ , (9)

where Ĝ−1 = (G−1
0 − V + 1√

2
Kc)σx + 1√

2
Kq1. The magnon

Green function is G−1
0 = iSσz∂t − H and the Hamiltonian

is defined as H = δχ†δχF |χ=χ†=0. The potential V (r, t ) =
b(t ) · D with D = δχ†δχm|χ=χ†=0 describes the coupling of
the external field with the magnons and it is treated as a time-
dependent perturbation to the magnon Hamiltonian. The mag-
netic fluctuations appear as solutions of the eigenvalue prob-
lem (EVP) H�n = εnσz�n, solved in detail in Appendix D.
Moreover, we define Ks = −iSσzṘi

s�i, assuming that repeated
indices i, j = x, y are summed over and we also introduce the
abbreviation �i = 1∂i − σx cot �0∂i�0. The circular multipli-
cation sign in Eq. (9) implies convolution of the form

ζ † ◦ G−1ζ ≡
∫

t,r

∫
t ′,r′

ζ †(r, t )G−1(r, r′, t, t ′)ζ (r′, t ′). (10)

Note that Eq. (9) assumes the absence of potentials that
break translational symmetry which will generate additional
classical response terms [41] with interesting consequences
on the skyrmion dynamics in confined geometries [52]. A
considerable simplification is also provided in the limit where
the skyrmion configuration energy S0 is much larger than
the energy SB = d

∫
r,t b(t ) · m(r, t ) added by the external

applied field S0 � SB. In this case, m(�0,�0) is a good
approximation for the skyrmion configuration, while terms
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linear in the fluctuations are negligibly small and do not
appear in Eq. (9).

To proceed, we note that the functional Z̃ is an integral with
a Gaussian form if we neglect terms O[1] in NA originating
from the Jacobian determinant det(JF). Thus, after integration,
Z̃ reduces to

Z̃ = 1

det′(−iNAdĜ−1)
= e− Tr′ log[1+G0(K̃−Ṽ )]

det′(−iNAdG−1
0 )

, (11)

with K̃ = 1√
2
Kcσx + 1√

2
Kq1, G−1

0 = G−1
0 σx, Ṽ = V σx, and

the prime notation on the determinant and the trace excludes
the zero modes. By performing an expansion retaining terms
up to the second order in Ṙ and first one in V , the effective
action for the classical and quantum coordinate is

Seff = Scl − i

2
Tr′[G0K̃G0K̃ − �G0K̃G0K̃ − G0K̃�G0K̃],

(12)

where �G0 = G0Ṽ G0. The advantage of the Keldysh rotation
is that the operator G0 is identified with the Green function of
the fluctuations

G0 =
(

GK
0 GR

0

GA
0 0

)
, (13)

where GR,A
0 = (iSσz∂t ± i0 − H)−1 are the retarded and ad-

vanced Green functions given in real time as

GR,A
0 (t, t ′) = ∓ i

S
σz�( ± (t − t ′))T±e−iσzH(t−t ′ )/S, (14)

provided that T± time orders in
chronological/antichronological order. We parametrize
the Keldysh Green function as GK

0 = GR
0 ◦ F − F ◦ GA

0 ,
where F = F (t − t ′) and in thermal equilibrium is given
by F (ω) = coth(βω/2), with β = 1/T . The representation
in frequency space ω is obtained by the usual Fourier
transformation g(t ) = (1/2π )

∫ ∞
−∞ dω g(ω)e−iωt .

The standard way to calculate the quasiclassical equation
of motion for the skyrmion coordinate Rc is to calculate the
saddle point of the action (12) by extremizing with respect
to the quantum coordinate Rq [62]. We note that terms pro-
portional to KqKc describe temperature-dependent dissipation
due to magnon modes, while we show explicitly that terms
proportional to KqKq give rise to random forces. To distin-
guish between the contributions from these terms, we rewrite
the effective action of Eq. (12) as Seff = Scl + Sdis + Sst,
where the dissipative part reads as

Sdis = − i

4
Tr′[GKKcGAKq + GRKcGKKq

+ GKKqGRKc + GAKqGKKc], (15)

where Gi = Gi
0 − �Gi with i = R, A, K , �GR,A =

GR,A
0 V GR,A

0 , and �GK = GR
0V GK

0 + GK
0 V GA

0 . Similarly,
the stochastic part is given by

Sst = − i

4
Tr′[GKKqGKKq + GRKqGAKq + GAKqGRKq]

≡ −Ri
q ◦ Ci jR

j
q. (16)

The function Ci j (t, t ′) is found by evaluating the trace
appearing in Eq. (16) with the eigenstates �ν (r, t ) of the
operator G and is given explicitly in Appendix A. To demon-
strate that Sst indeed gives rise to random fluctuating forces,
we introduce auxiliary fields ξi via a Hubbard-Stratonovich
transformation

eiSst = det[(2iC)−1]
∫

Dξ Dξ †ei[ξ †·(2C)−1ξ+ξ †·R̄q+R̄†
q·ξ ], (17)

where R̄q = ( Rx
q

Ry
q
)/

√
2 and ξ = ( ξx

ξy
)/

√
2. Minimizing the right-

hand side of Eq. (17) with respect to R j
q results in a random

force term ξ j in the equation of motion characterized by an
ensemble average of the form

〈ξ (t )〉 = 0, 〈ξi(t )ξ j (t
′)〉 = −iCi j (t, t ′), (18)

where 〈. . . 〉 = det[(2iC)−1]
∫
Dξ Dξ † . . . eiξ †·(2C)−1ξ . By min-

imizing the effective action Seff , we obtain the dynamical
Langevin equation for the classical coordinate Rc,

Q̃0εi j Ṙ
j
c (t ) +

∫ t

−∞
dt ′ Ṙ j

c (t ′)γ ji(t, t ′) = ξi(t ), (19)

with Q̃0 = −4πNAQ0Sd , εi j is the Levi-Civita tensor, and the
time of preparation of the initial state is at t → −∞. The first
term in Eq. (19) is a Magnus force acting on the skyrmion and
being proportional to the winding number [63,64], while the
nonlocal (in time) magnon kernel is given by

γ ji(t, t ′) = ∂t
[
γ RK

ji (t, t ′)+ γ KA
ji (t, t ′)+ γ KR

i j (t ′, t )+ γ AK
i j (t ′, t )

]
,

(20)

where

γ ab
ji (t, t ′) =−iS2

4

∑
ν

′
∫

r̄,r,r′
�ν (r̄)Ga(r̄, r, t, t ′)σz� j (r)

× Gb(r, r′, t ′, t )σz�i(r′)σz�ν (r′), (21)

with a, b = R, A, K .
The magnon kernel of Eq. (20) originates from the cou-

pling of the skyrmion to the quantum bath of magnetic ex-
citations and has an explicit temperature dependence through
the Keldysh Green function GK . Note that an external force
acting on the skyrmion is absent, as a direct consequence
of the spatial uniformity assumed for the external magnetic
field. The translational motion of the skyrmion would be
induced by a spatially dependent magnetic field, for example,
a magnetic field gradient [65,66], and its effect has been
studied in Ref. [52]. Here, the external time-periodic field acts
on the quantum bath of magnons and is naturally incorporated
in the stochastic Langevin equation of Eq. (19). This allows
us to generalize the quantum theory of dissipation to account
for the effects of the driven bath in several observables related
to the skyrmion dynamics.

III. MAGNON KERNEL

Our next task is to analyze the magnon kernel of Eq. (20)
in the case of a driven bath. In Appendix B we obtain the
real-time magnon kernel γ 0

i j (t − t ′) in the absence of a drive,
and thus establish agreement with earlier results derived in
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Matsubara space using the imaginary-time functional integral
approach [41]. Note that, although the Laplace transform
γ 0

i j (z) is frequency dependent, we are usually interested in
the long-time asymptotic behavior of the skyrmion dynamics
which is in turn determined by the low-frequency part of the
kernel. This low-frequency regime is specified by the con-
dition |ω| � εgap, with ω = Re(iz), εgap = 2κ + h, being the
lowest magnon gap, while at the same time the temperature is
limited to the quantum regime T � εgap.

Thus, under the assumptions specified above, the diagonal
magnon kernel, given in Eq. (B4), acquires the super-Ohmic
power-law behavior γ 0

ii (z) = zM(T ) + O[(z/εgap)2]. Follow-
ing the usual terminology [1], Ohmic friction is described by a
dissipation term of the form zγ (z) ∝ zs with s = 1, while for
s > 1 we call it super-Ohmic. In the limit of low frequency
and low temperature, ω � T � εgap, magnon-induced in-
trinsic Ohmic friction is absent, in an analogous fashion to
domain-wall dynamics [67] and quasiparticle-induced friction
of solitons in superfluids [10]. In these studies, it has been
demonstrated that a frictional force is induced by the back-
reaction of the bosonic excitations, but is nonlocal in time
and super-Ohmic s = 3 in the low-frequency regime zγ (z) ∝
e−βε0 z3, with ε0 being the energy gap of the continuum modes
of the system. The absence of Ohmic friction can be attributed
to the reflectionless potential for the quasiparticles scattering
off the central system. We should emphasize that Ohmic
dissipation could arise at T � εgap, or through several other
sources, typically a phonon bath activated at large enough
temperatures. Here, we focus on the low-temperature quantum
regime of an insulating magnet, where phonon excitations
decouple from the spins [68], rendering magnetic excitations
the only relevant low-energy degrees of freedom. In addition,
bulk magnons in 3D ferromagnets give rise to an Ohmic
dissipation process [69], but such magnons are frozen for the
sufficiently thin ferromagnets we consider.

The T -dependent mass is given by

M(T ) =
∑
ν,ν ′

′ Re
(
Bνν ′

ii

)
F̄νν ′

εν ′ − εν

, (22)

with F̄νν ′ = F (εν ) − F (εν ′ ) and F (εν ) = coth(βεν/2). Here,
the sum runs over the quantum number ν = {q = ±1, n},
where the index q distinguishes between particle states
(q = 1), solutions of the eigenvalue problem H�n = ε

q
nσz�n

with positive eigenfrequency ε1
n = +εn, and antiparticle

states (q = −1) with negative eigenfrequency ε−1
n = −εn

[41]. The matrix elements are given by Bνν ′
i j = Bn,q;n′,q′

i j =
(qq′/2)

∫
r �†

ν�iσz�ν ′
∫

r′ �
†
ν ′� jσz�ν . Note that the expression

of Eq. (22) is symmetric under the exchange of indices ν

and ν ′, and that there is no singularity for εν = εν ′ since
limεν→εν′ F̄ν ′ν/(εν − εν ′ ) = β/2 sinh2(βεν/2). The quantum
nature of the magnon bath is evident from the nonvanishing
M(T ) in the T → 0 limit. Such a nonvanishing contribution
arises from the fact that the bosonic magnon Hamiltonian
H has particle and antiparticle excitations with a nonzero
particle-antiparticle overlap |Bn,1;n′,−1

ii | > 0 [41]. Similarly, a
zero-temperature magnon kernel, and consequently an effec-
tive mass, arises from the gapped spin waves around a domain
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FIG. 2. Temperature dependence of the quantum mass M(T̃ ) of
the skyrmion given in Eq. (22) for a static magnetic field of amplitude
H = 216 mT, radius λ = 5.32 nm, and a choice of J = 1 meV,
S = 1, J/D = 4, and α = 5 Å. The dashed vertical line indicates
the value of the magnon gap in units of temperature εgap = 0.435 K,
up to which our result is valid. The inset depicts the constant W̄ii

of Eq. (30) for an oscillating magnetic field of amplitude b0 = 0.05
(27 mT), ωext = 0.32 (4.8 GHz), and ϕext = π/4.

wall [40], or from the gapped Bogoliubov excitations around
a bright soliton in a superfluid [10].

In order to emphasize that M(0) is finite and that it is
independent of the effective spin NAS, contrary to the magnus
force proportional to Q̃0 = −4πQ0NASd , we refer to the mass
of Eq. (22) as quantum mass. This terminology allows us
to distinguish M(T ) from the semiclassical mass already
calculated in Ref. [41] in the presence of spatial confinement,
which scales linearly with NAS. The T dependence of the
quantum mass M(T ) is depicted in Fig. 2 in physical units for
J = 1 meV, α = 5 Å, J/D = 4, h = 0.4 (216 mT), λ = 2.67
(5.34 nm), κ = 0.1, and S = 1. Details on the calculation
are given in Appendix D. At zero temperature we find that
M(0) = 8me, with me the electron mass. From Eq. (19) we
note that the skyrmion performs a cyclotron motion as a result
of the strong emergent magnetic field Bem = Q̃0/e = 5378 T,
with e the electron charge, at a frequency ωc = 1.24 ×
1014 Hz. Thus, the quantum effects, in terms of quantized
Landau levels, are weak. This has been pointed out already
in [70], with the additional observation that in the presence of
a pinning potential, the degenerate lowest Landau levels split
into discrete levels, which can be observed experimentally
by microwave absorption. Finally, the off-diagonal magnon
kernel, given in Eq. (B5), has a super-Ohmic low-frequency
power law γxy(z) ∝ z2, irrelevant for the skyrmion dynamics
at times t � ε−1

gap.
With this preparation, we are now in position to gen-

eralize the magnon kernel in the presence of the exter-
nal driving field turned on at time t = t0, b(t ) = b0�(t −
t0) cos(ωextt )(sin ϕext, 0, cos ϕext ), tilted in the xz plane with
the angle ϕext away from the z axis. In the presence of
b(t ), the magnons are subjected to the potential V (r, t ) =
b0�(t − t0) cos(ωextt )V (r), where V (r) is given in Eq. (D6).
The magnon kernel of Eq. (20) acquires an additional
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correction due to the time-dependent field γ ji(t, t ′) = γ 0
ji(t −

t ′) + �γ ji(t, t ′), where

�γ ji(t, t ′) = ∂tWji(t − t ′)
[
gji

ext (t ) + gji
ext (t

′)
]
. (23)

The function gji
ext (t ) carries information on the external drive

gji
ext (t ) = �(t − t0)b0 cos(ωextt − |ε ji|π/2), while Wji(t )

carries information about the magnon modes

Wji(t ) =
∑

ν1,ν2,ν3

′ Cν1ν2ν3
ji

[
wν3ν2 (t ) − wν3ν1 (t )

]
(
εν2 − εν1

)2 − ω2
ext

, (24)

where wν1ν2 (t ) = �(t )F̄ν1ν2 sin[(εν1 − εν2 )t]. We also
introduced the matrix elements

Cν1ν2ν3
ii = qν1 qν2 qν3

(
εν2 − εν1

)
Re

(
bν3ν1

i Vν1ν2 bν2ν3
i

)
/2S,

Cν1ν2ν3
yx = qν1 qν2 qν3ωextIm

(
bν3ν1

y Vν1ν2 bν2ν3
x

)
/2S, (25)

where bν1ν2
i = ∫

r �†
ν1

�iσz�ν2 and Vν1ν2 = ∫
r �†

ν1
V �ν2 . We

note that the triple summation over the magnon quantum
numbers originates from the fact that the external field induces
a finite overlap Vν1ν2 �= 0 for ν1 �= ν2. Note that Eq. (24) is
valid only away from the resonance condition ωext = εν2 −
εν1 , under the assumption that the external potential V induces
only a small overlap 0 < |Vν1ν2 | � 1 between magnon modes
carrying approximately the same energy. Thus, the energy
differences are restricted as 0 � |εν1 − εν2 | � εd and it also
holds that εd � ωext. The singularities appearing in Eq. (24)
are usually treated by a phenomenological relaxation rate,
which parametrizes mechanisms that lead to relaxation of
the magnon bath dynamics [52], for example, higher-order
magnon-magnon interactions, or the the back-action of the
skyrmion to the magnon bath.

Similarly to the equilibrium case, we consider time differ-
ences t − t ′ and inverse driving frequencies ω−1

ext longer than
the characteristic decay time of the memory magnon kernel
ε−1

gap. In order to make use of this approximation and derive a
more transparent understanding of the physics, we rewrite the
equation of motion for the classical center of mass Rc, given
in Eq. (19), in Fourier space with frequency ω as

F (t, ω) = −iω[Q̃0εi j + γ ji(t, ω)]R j
c (ω) − ξi(ω), (26)

with F (t, ω) satisfying
∫ ∞
−∞ dω e−iωt F (t, ω) = 0, and where

γ ji(t, ω) = γ 0
ji(ω) + �γ ji(t, ω). It is convenient to calculate

�γ ji(t, ω) in Laplace space z with ω = Re(iz):

�γ ji(t, z) =Wji(z)
[
zgji

ext (t ) + ∂t g
ji
ext (t )

]
+ b0

2

∑
m=±1

e−im(ωextt+ π |ε ji |
2 )

× (z + imωext )Wji(z + imωext ). (27)

The correction to the magnon kernel �γ ji(t, z) describes the
effects of the driven magnon bath on the skyrmion and is
treated as a perturbation to γ 0

ji(z). Here, Wji(z) is the Laplace
transform of Wji(t ) given in Eq. (24). In Eq. (26), we assume
that the time t0 coincides with the preparation time of the
initial state, i.e., t0 → −∞, and we therefore neglect bound-
ary terms that depend on t0. A Taylor expansion around the
origin γ ji(t, z) � γ ji(t, 0) + z∂zγ ji(t, z)|z=0 + O(z2), valid for

frequencies ω � εgap, provides the low-frequency power-law
behavior of the magnon kernel. For the diagonal part we find

�γxx(t, z) � D(T ) sin(ωextt ) + z δM(T ) cos(ωextt ), (28)

and similarly the off-diagonal corrections are

�γyx(t, z) � δQ(T ) cos(ωextt ) + z G(T ) sin(ωextt ). (29)

Explicit expressions of the T -dependent coefficients ap-
pearing in Eqs. (28) and (29) are given in Appendix C. As
expected, in the static limit ωext → 0, all the terms in Eqs. (28)
and (29), except the mass renormalization, vanish. In the spe-
cial case of εd � ωext � εgap, where 0 � |εν2 − εν1 | � εd is
the energy difference induced by the external potential V , we
find the simplified expressions D(T ) = −ωextW̄ii, δM(T ) =
W̄ii, δQ(T ) = ωextW̄yx, and G(T ) = W̄yx. The coefficient W̄ji

is given by

W̄ji =
∑

ν1,ν2,ν2

′ 2Cν1ν2ν3
ji

ω2
ext

(
F̄ν2ν3

εν3 − εν2

− F̄ν1ν3

εν3 − εν1

)
, (30)

where F̄νν ′ is given after Eq. (22). From Eq. (30) and the
structure of the matrix elements of Eq. (25) it becomes
apparent that W̄ji is symmetric under the exchange of the
indices ν1, ν2, and ν3. The temperature dependence of the
coefficient W̄ii is depicted in the inset of Fig. 2, for the choice
ϕext = π/4, b0 = 0.05 (27 mT), ωext = 0.32 (4.8 GHz), and
h = 0.4 (216 mT).

Due to the symmetries of the matrix elements we note
the relations �γxx(t, z) = �γyy(t, z) and �γxy(t, z) =
−�γyx(t, z), thus, the term δQ(T ) cos(ωextt ) can be
considered as a temperature- and time-dependent correction
to the topological charge Q̃0, induced by the external
drive. Similarly, the quantum mass acquires the correction
δM(T ) cos(ωextt ). The low-frequency linear dependence
of the quantity zγ ji(t, z) signals a super-Ohmic to Ohmic
crossover behavior, with measurable consequences on the
skyrmion trajectory [52]. More specifically, the ac driving of
the magnon bath at resonance displaces the skyrmion from its
equilibrium position and results in a unidirectional ratchetlike
propagation.

IV. RESPONSE FUNCTION

In this section, we calculate the equilibrium skyrmion
response function, which is then generalized to the nonequi-
librium case of a driven bath of magnons. The linear response
of the skyrmion to the fluctuating force ξi(t ) is encoded in the
equilibrium response function χ0

i j (t − t ′) via the relation

Ri
c(t ) =

∫ t

−∞
dt ′χ0

i j (t − t ′)ξ j (t
′), (31)

where the elements in Laplace space are

χ0
ii (z) = γ 0

ii (z)

zπ0(z)
, χ0

yx(z) = Q̃0 + γ 0
yx(z)

zπ0(z)
, (32)

with π0(z) = [Q̃0 + γ 0
yx(z)]2 + [γ 0

xx(z)]2 and χ0
xy(z) =

−χ0
yx(z). The response functions at finite frequency

χ0
i j (z) are dynamical observables carrying physical

information on the skyrmion dynamics. By employing
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(a)

(b) (c)

FIG. 3. (a) The colored surface represents the time and Laplace
frequency dependence of the diagonal response function χxx (t, z),
given in Eq. (34), for T = 0.4 (0.3 K), ωext = 0.32 (4.8 GHz), ϕext =
π/4, and b0 = 0.05 (27 mT) the amplitude of the external field. The
skyrmion is stabilized from a uniform out-of-plane magnetic field of
strength h = 0.4 (216 mT) and has a radius of λ = 2.67 (5.32 nm),
and we choose J = 1 meV, α = 0.5 nm, and J/D = 4. Insets (b) and
(c) depict the frequency dependence of χxx (t, z) at given times t ,
where Text = 2π/ωext denotes the period of the external drive.

the low-frequency power-law behavior of γ 0
i j (z), one

finds that χ0
ii (z) = M(T )/[Q̃2

0 + M(T )2z2] and χ0
yx(z) =

Q̃0/[z(Q̃2
0 + M(T )2z2)]. The expansion at z = 0 yields

χ0
ii (z) � M(T )/Q̃2

0 + O(z2). A finite static susceptibility
χ0 = M(T )/Q̃2

0 implies that a free topological particle
with Q̃ �= 0 exhibits a different dynamical behavior than
the one with Q̃0 = 0. In particular, we note that the static
susceptibility χ0 is infinite for a freely moving and finite for
a confined Brownian particle [1]. For example, χ0 = 1/ω2

0
for a damped harmonic oscillator of frequency ω0 [1].
Therefore, we see that χ0 is finite due to the nontrivial
Q̃0, and as expected, χ0 diverges for Q̃0 = 0. Moreover,
the low-frequency expansion for the off-diagonal response
function is χ0

yx(z) � (1/Q̃0z) + O(z).
The response of the classical skyrmion position Rc(t ) when

the external drive b(t ) is turned on is encoded in the response
function χi j (t, t ′) defined through the relation

Ri
c(t ) =

∫ t

−∞
dt ′χi j (t, t ′)ξ j (t

′). (33)

In an analogous fashion to the decomposition of the magnon
kernel given in Eq. (23), we generalize the response func-
tion as χi j (t, t ′) = χ0

i j (t − t ′) + δχi j (t, t ′). Starting from the
equation of motion given in Eq. (19) and using Eq. (33),
we solve for the function δχi j (t, ω), defined as δχi j (t, t ′) =
(1/2π )

∫
dω e−iω(t−t ′ )δχi j (t, ω), retaining first-order terms in

b0. In Laplace space, by performing an expansion of the full

(a)

(b) (c)

FIG. 4. (a) The colored surface represents the time and
Laplace frequency dependence of the off-diagonal response func-
tion χyx (t, z), given in Eq. (35) for T = 0.4 (0.3 K), ωext = 0.32
(4.8 GHz), ϕext = π/4, and b0 = 0.05 (27 mT) the amplitude of the
external field. The skyrmion is stabilized from a uniform out-of-plane
magnetic field of strength h = 0.4 (216 mT) and has a radius of
λ = 2.67 (5.32 nm), and we choose J = 1 meV, α = 0.5 nm, and
J/D = 4. Insets (b) and (c) depict the frequency dependence of
χxx (t, z) at given times t , where Text = 2π/ωext denotes the period
of the external drive.

response function χi j (t, z) = χ0
i j (z) + δχi j (t, z) around z = 0

and keeping leading-order terms in z, we find

χii(t, z) � D(T )

Q̃2
0z

sin(ωextt ) + χ0 + δχ cos(ωextt ), (34)

with δχ = [−2M(T )δQ(T ) + Q̃0δM(T )]/Q̃3
0, and similarly

χyx(t, z) � 1

Q̃0z
− δQ(T )

Q̃2
0z

cos(ωextt ) + δχ̄ sin(ωextt ), (35)

where δχ̄ = [−2M(T )D(T ) − Q̃0G(T )]/Q̃3
0. We observe

that new terms emerge for the diagonal response function
and a new static susceptibility term for the off-diagonal one.
The characteristic behavior of the response functions χ ji(t, z)
is illustrated in Figs. 3 and 4. To begin with, an anticipated
result is depicted in the colored surfaces plotted in Figs. 3(a)
and 4(a), namely, that χ ji(t, z) are periodic functions of
time t , with a period Text = 2π/ωext = 19.63 (1.3 ns). The
z dependence of χ ji(t, z) carries information on the mem-
ory effects that originate from the skyrmion-magnon bath
coupling, including the additional dissipative terms generated
by the oscillating driving field. Thus, we notice that the
diagonal χii(t, z) depends on the coefficient D(T ), while the
off-diagonal χyx(t, z) has a dependence on the magnus force
correction δQ(T ).
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V. FLUCTUATION-DISSIPATION THEOREM

In this section we turn our attention to the derivation of
the fluctuation-dissipation (FD) theorem, for a skyrmion in
contact to a bath of magnons at equilibrium. An extension of
the FD relation is also derived for a nonequilibrium bath of
magnons which is weakly driven by an oscillating magnetic
field, a relation which reduces to the FD theorem in the static
limit. We also calculate the time and temperature dependence
of the skyrmion mean-square displacement (MSD).

The FD theorem relates equilibrium thermal fluctuations
and dissipative transport coefficients [1,4]. In the absence of
an external drive, the Fourier transform C0

i j (ω) of the quantum
stochastic force correlation function defined through Eq. (16)
is related to the magnon kernel γ 0

i j (ω) by the relation

C0
i j (ω) + C0

ji(−ω) = iω coth

(
βω

2

)[
γ 0

i j (ω) + γ 0
ji(−ω)

]
.

(36)

Equation (36) is the quantum mechanical version of the FD
theorem with the observation that quantum effects enter not
only through the usual ω coth(βω/2) term, but addition-
ally through the nontrivial ∝coth(βεν/2) dependence of the
magnon kernel γi j (ω).

We now turn to the extension of the FD relation of Eq. (36)
in the presence of an external field b(t ). In general, the
stochastic fluctuations of reservoirs driven out of equilibrium
do not necessarily relate to their dissipative properties, and
a generalization of the FD theorem should not be expected,
except for some special cases [71–74]. Following the same
methodology as in Sec. III, we decompose the random force
autocorrelation function as follows:

〈ξ j (t )ξi(t
′)〉 = −i

[
C0

ji(t − t ′) + �Cji(t, t ′)
]
, (37)

where the stochastic function �Cji(t, t ′) satisfies

�Cji(t, t ′) = ∂t∂t ′Uji(t − t ′)
[
gji

ext (t ) + gji
ext (t

′)
]
. (38)

Here, Uji(t − t ′) carries information about the magnon bath
and is given by

Uji(t ) =
∑

ν1,ν2,ν2

′ iCν1ν2ν3
ji

[
uν3ν2 (t ) − uν3ν1 (t )

]
2
[(

εν2 − εν1

)2 − ω2
ext

] , (39)

where uν1ν2 (t ) = [1 − F (εν1 )F (εν2 )] cos[(εν1 − εν2 )t]. We
remind the reader that the magnon kernel �γ ji(t, t ′) equals
�γ ji(t, t ′) = ∂tWji(t − t ′)[gji

ext (t ) + gji
ext (t

′)], with Wji(t )
given in Eq. (24). The generalization of the FD theorem is
found to be independent of the form of the external drive and
is expressed as a relation between the functions Wji(t ) and
Uji(t ) in Fourier space,

Uji(ω) + Ui j (−ω) = coth

(
βω

2

)
[Wji(ω) − Wi j (−ω)]. (40)

The nonequilibrium FD relation (40) is valid within first-
order perturbation theory with respect to the amplitude of the
driving field, however, we expect it will serve as a basis for
future investigations of the effects of time-dependent driving
fields beyond first-order perturbation theory. We emphasize
that Eq. (40) is independent of the form of the external

drive and the value of the external frequency ωext, and holds
irrespectively of whether the time dependence of the drive is
periodic.

In the special case of a static external field ωext → 0, the
FD theorem in equilibrium, Eq. (36), is recovered trivially,

Ci j (ω) + Cji(−ω) = iω coth

(
βω

2

)
[γi j (ω) + γ ji(−ω)],

(41)

where Ci j (ω) = C0
i j (ω) + 2ω2Ui j (ω)gji

ext (0) and γi j (ω) =
γ 0

i j (ω) + 2(−iω)Wi j (ω)gji
ext (0). This indicates that the

magnons are driven out of equilibrium by the time dependence
of the drive. It is also important to note that, although there
is no global equilibrium, in terms of Green’s functions
depending only on the time differences [75], our result shows
that FD relations also hold for local (in time) equilibrium,
as long as the amplitude of the drive is small and first-order
perturbation theory is valid.

We now focus on the temperature dependence of the right-
hand side of Eq. (36), which we expect to give rise to a
finite zero-temperature mean-squared displacement (MSD)
of the skyrmion position. This motivates us to consider the
correlation function Si j (t, t ′) = 1

2 〈[Ri
c(t ) − R j

c (t ′)]2〉, where
〈. . .〉 denotes ensemble average, and where 〈Rc〉 = 0. From
Eqs. (32) and (18) it follows that in the special case of b(t ) =
0, the diagonal MSD Sii(t̄ ) = Sii(t − t ′) reduces to

Sii(t̄ ) =
∫

dω

2π
(e−iωt̄ − 1)χil (ω)Xlk (ω)χik (−ω), (42)

where X 0
i j (ω) = −i[C0

i j (ω) + C0
ji(−ω)] is the symmetrized

autocorrelation function. Equation (42) contains several con-
tributions, of which we retain only the leading terms in Q̃0,
under the assumption Q̃0 � 1, to further simplify the MSD to

Sii(t̄ ) = 2π

Q̃2
0

∑
ν,ν ′

′ Bν;ν ′
ii [F (εν )F (εν ′ ) − 1] sin2[(εν ′ − εν )t̄/2].

(43)

First, we focus on the temperature dependence of the
root-mean-square displacement (RMSD)

√
Sii(t̄ ), which is

summarized in Fig. 5. As a result of the quantum magnetic
excitations, the RMSD at T̃ = 0, defined as SQ = √

Sii(T̃ =
0), remains finite. The dependence of SQ on the skyrmion
size λ, illustrated in the inset of Fig. 5, implies that quantum
fluctuations become important for very small skyrmions of
a few lattice sites, while their effect on the RMSD becomes
negligible for larger skyrmions. We should emphasize that
in this work we consider a classical skyrmion coupled to a
bath of quantum magnetic excitations, and disregard quantum
effects of the center of mass, which could increase the value of
SQ further and make it experimentally more accessible. Such
quantum effects are beyond the scope of this paper, and we
leave it as a motivation for further studies.

Another important feature of Fig. 5 is the fast linear
thermal activation for temperatures T̃ > 4 K, i.e.,

√
Sii(t̄ ) �

0.14T̃ α/K. Such a behavior results from the nontrivial tem-
perature dependence of the fluctuation-dissipation theorem
(36) and stands in contrast to the

√
T dependence obtained

in a classical description [37]. For a skyrmion with a radius
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FIG. 5. Root-mean-square displacement (RMSD)
√

Sii given in
Eq. (42) as a function of temperature T̃ at time t = 6.6 ps, for a
skyrmion of radius λ = 2.57α, and Q0 = −1. The RMSD is plotted
for the choice J = 1 meV, NAS = 1, and d = 1, and given in units of
the lattice constant α. Due to the quantum magnetic excitations, the
RMSD at zero temperature, SQ ≡ √

Sii(T̃ = 0), remains finite, while
it scales linearly with T̃ at finite temperatures. The inset depicts the
dependence of SQ on the skyrmion size λ.

10α, the RMSD is (3.3/NAS) percentage of its radius at T̃ =
1.5 K, (10.8/NAS) percentage at T̃ = 5 K, and (32.5/NAS)
percentage at T̃ = 15 K.

Further results are shown in Fig. 6, where we plot the
dependence of the RMSD on the skyrmion size λ. We note
that there is a critical radius λcr (T̃ ) which signals the interplay
between long-time renormalization and short-time dynamical
effects. For λ < λcr , the RMSD is inversely proportional to
the skyrmion size, as expected for a massive particle with a
mass proportional to the area λ2. Indeed, the time-dependent
magnon kernel γ 0

i j (t ) of Eq. (B4) is renormalized to the effec-
tive mass of Eq. (22) in the long-time scale approximation. On
the contrary, for λ > λcr , shorter timescale dynamical infor-
mation becomes dominant and the RMSD scales linearly with
λ. Analogous results are obtained for very low temperatures
below 2 K, illustrated in the inset of Fig. 6.

Several conclusions can be drawn also from the time
dependence of Sii(t̄ ) as illustrated in Fig. 7. At short times
t̄ � 1, we find a quadratic dependence Sii(t̄ ) � S0t̄2, which
resembles the ballistic regime of the Brownian motion of a
particle [76]. The constant S0 is found from Eq. (43) under the
replacement sin[(εν ′ − εν )t̄/2] → (εν ′ − εν )t̄/2, while for the
specific parameters plotted in Fig. 7 we find S0 = 4.2 × 105.
Such a ballistic motion is a direct consequence of the memory
effects which dominate the dynamics at short timescales. At
longer times, the memory effects become negligible and Sii(t̄ )
saturates at a value which can be estimated from replacing
sin2[(εν ′ − εν )t̄/2] → 1/2 in Eq. (43).

The ballistic regime of the Brownian motion for a classical
particle with a large inertia mass of the order of 10−14 kg
has been experimentally observed for short timescales of the
inertia-dominated regime of μs [77,78]. Here, the ballistic
motion we predict for the quantum dynamics of a mag-
netic skyrmion, with an inertial mass of 0.2 × 10−28 kg at

FIG. 6. The RMSD
√

Sii given in Eq. (43) as a function of the
skyrmion size λ at three different temperatures T̃ = 5, 10, and 15 K,
for J = 1 meV, t = 50 ps, and NAS = 1. The dashed vertical line
indicates the value λ = α. The inset depicts the λ dependence of the
RMSD at low temperatures below 2 K. For a given temperature T̃ ,
the RMSD has a local minimum at a critical radius λcr (T̃ ) which
signals a crossover from short-time dynamical effects to long-time
renormalization: for λ < λcr , the RMSD decreases as 1/λ, while for
λ > λcr it scales linearly with λ.

T = 580 mK, is restricted to the immeasurably small fem-
tosecond regime, which, however, is comparable to the du-
ration of ultrafast light-induced heat pulses needed to write
and erase magnetic skyrmions [79]. We anticipate that the
ballistic motion for a confined skyrmion with an inertial mass
of about 10−26 kg [41] could possibly take place within the
experimentally accessible nanosecond regime. It suffices to
mention that the classical dissipation is dominated by the

FIG. 7. Mean-squared displacement (MSD) Sii(t̃ ) given in
Eq. (43) as a function of time at temperature T̃ = 14.5 K, for a
skyrmion of radius λ = 3.63α. The MSD is plotted for the choice
of J = 1 meV, NAS = 1, and d = 4. We observe a ballistic regime
at a very small timescale, while for larger times the MSD saturates
quickly at the value obtained when the memory effects become
negligible.
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contribution of some low-lying localized modes with energy
ε0 in the GHz regime [80]. Thus, the quadratic short-time
expansion is valid up to times ε−1

0 , i.e., the ballistic regime
extends in the nanosecond regime. We also note that our
predictions significantly deviate from the classical results
for the mean-squared displacement which, in the latter case,
increases linearly with time [37], a result that directly follows
from the assumption of a phenomenological thermal white
noise which scales proportional to the Gilbert damping pa-
rameter.

VI. CONCLUSIONS

In this work, we consider the stochastic dynamics of
a magnetic skyrmion in contact with a dissipative bath of
magnons in the presence of a time-periodic external field,
which directly couples to the magnon bath. We develop a mi-
croscopic derivation of the Langevin equation for the classical
center of mass, based on a quantum field theory approach
which combines the functional Keldysh and the collective
coordinate formalism. The non-Markovian magnon kernel is
explicitly related to the colored autocorrelation function of the
stochastic fluctuating fields, through the quantum mechanical
version of the fluctuation-dissipation theorem. Emphasis is
given to the nontrivial temperature dependence of the dynam-
ical properties of the system, in terms of the fundamental
response and correlation functions. Contrary to the prediction
of the classical theory, the magnon kernel and the mass remain
finite at vanishingly small temperatures, due to the quantum
nature of the bath considered in this work. This will give
rise to a finite mean-squared displacement at T → 0, which
increases with temperature as T 2, a result that deviates from
the phenomenological prediction of a linear increase.

We rigorously treat the effects of an external drive on the
bath, and therefore on the skyrmion-bath coupling, and we
generalize the theory of quantum dissipative response. The
bath is dynamically engineered out of equilibrium and through
its interaction with the skyrmion gives rise to dissipation and
random forces that incorporate the bath’s dynamical activity.
The magnitude of these effects is illustrated in the diagonal
and off-diagonal response functions, which acquire an ad-
ditional time periodicity inherited by the external drive. In
addition, a crossover behavior is signaled by a new time-
periodic term linear to the skyrmion velocity and a magnus
force correction, similar to the effects predicted within a
microscopic theory of classical dissipation with measurable
consequences for the skyrmion path [52]. We note, however,
that, in contrast to Ref. [52], where the external drive couples
to a well-pronounced bath mode, here we do not consider
resonance effects.

Within our path-integral formulation, we are able to
establish a generalization of the fluctuation-dissipation the-
orem to the nonequilibrium case for weakly driven magnetic
excitations. The spectral characteristics of the bath modes of
the magnon kernel are related to the ones of the stochastic
correlation function, irrespectively of the form of the external
drive and the value of the external frequency. Noteworthy,
our results apply to similar mesoscopic systems embedded in
a driven bath. Advances in the theoretical understanding of
skyrmion dynamics out of equilibrium is expected to have an

impact on similar particlelike objects such as solitonic
textures in quantum superfluids and domain walls in
ferromagnets. Our nonequilibrium formalism of skyrmion
dynamics can serve as a basis for future experimental
investigations as well as theoretical studies that go beyond
first-order perturbation theory and beyond the slow dynamics
of the GHz regime.
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APPENDIX A: AUTOCORRELATION FUNCTION

Here, we present in more detail the autocorrelation func-
tion of the stochastic fields Ci j (t, t ′), defined in Eq. (16) of
Sec. II. To evaluate the trace we use the functions �ν (r, t ),
eigenfunctions of the magnon Hamiltonian H, which are pre-
sented in detail in Appendix D. After some algebra, Ci j (t, t ′)
is expressed as

Ci j (t, t ′) = CK,K
i j (t, t ′) + CR,A

i j (t, t ′) + CA,R
i j (t, t ′), (A1)

where

Ca,b
i j (t, t ′) = iS2

4

∑
ν

′
∫

t̄

∫
r̄,r,r′

∂t∂t ′[�†
ν (r̄, t̄ )Ga(r̄, r′, t̄, t ′)

× �i(r′)σzG
b(r′, r, t ′, t )σz� j (r)�ν (r, t )],

(A2)

with a, b = K, R, A. A more transparent form is obtained for
a bath of magnetic excitations at equilibrium, i.e., b(t ) = 0,

C0
i j (t − t ′) = i

4
∂t∂t ′

∑
ν,ν ′

′ Bνν ′
i j e−i(εν′ −εν )(t−t ′ )

× [�(t−t ′) + �(t ′ − t ) − F (εν ′ )F (εν )], (A3)

which is further simplified in Fourier space

C0
i j (ω) = iπω2

2
coth

(
βω

2

) ∑
ν,ν ′

′ Bνν ′
i j F̄ν ′νδ(ω − εν ′ + εν ),

(A4)

where, again, F̄νν ′ = F (εν ) − F (εν ′ ) and F (εν ) =
coth(βεν/2).

APPENDIX B: EQUILIBRIUM MAGNON KERNEL

Our current task is to analyze the magnon kernel of Eq. (20)
by considering first the special case b(t ) = 0. By a simple in-
spection of Eq. (14) we notice that correlations in equilibrium
are time-translation invariant and the Green functions depend
on time differences GR,A(t, t ′) = GR,A(t − t ′) and as a result
the the diagonal part of the magnon kernel is found equal to

γ 0
ii (t ) = �(t )∂t

∑
νν ′

′ Re
(
Bνν ′

ii

)
F̄νν ′ sin[(εν ′ − εν )t], (B1)

while the off-diagonal part can be cast into the form

γ 0
yx(t ) = �(t )∂t

∑
ν,ν ′

′ Im
(
Bνν ′

yx

)
F̄νν ′ cos[(εν ′ − εν )t]. (B2)

Here, we sum over the quantum number ν = {q = ±1, n},
where the index q distinguishes between particle states
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(q = 1), solutions of the eigenvalue problem H�n = ε
q
nσz�n,

with positive eigenfrequency ε1
n = +εn, and antiparticle

states (q = −1) with negative eigenfrequency ε−1
n = −εn

[41]. The matrix elements are given by Bνν ′
i j = Bn,q;n′,q′

i j =
(qq′/2)

∫
r �†

ν�iσz�ν ′
∫

r′ �
†
ν ′� jσz�ν . From the structure of

the matrix elements we conclude that Bνν ′
ii = Re(Bνν ′

ii ) and
Bνν ′

xy = i Im(Bνν ′
i j ). We also note that γ 0

xy(t ) = −γ 0
yx(t ) and that

Re(Bν ′ν
ii ) = Re(Bνν ′

ii ), while Im(Bν ′ν
yx ) = −Im(Bνν ′

yx ). Thus,
both Eqs. (B1) and (B2) are symmetric under the interchange
of ν and ν ′.

It appears convenient to derive the Langevin equation of
Eq. (19) in the Laplace-frequency z space,

Q̃0εi j zR j
c (z) + zR j

c (z)γ ji(z) = ξi(z), (B3)

where the frequency-dependent kernel of Eq. (B1) equals

γ 0
ii (z) = z

∑
ν,ν ′

′ Re
(
Bν;ν ′

ii

)
(εν ′ − εν )F̄νν ′

(εν ′ − εν )2 + z2
, (B4)

and the off-diagonal kernel of Eq. (B2) is found to be

γ 0
xy(z) = z2

∑
ν,ν ′

′ Im
[
Bν;ν ′

xy

]
F̄νν ′

(εν ′ − εν )2 + z2
, (B5)

and it also holds that γ 0
yx(z) = −γ 0

xy(z). Note that agreement of
the magnon kernel γ 0

i j (z) with earlier results derived in Mat-
subara space using the imaginary-time path-integral approach
[41] can be established by simple analytic continuation.

In the limit ω � T � εgap, with ω = Re(iz), intrinsic
Ohmic friction is absent and the low-frequency power-law
behavior of zγ 0

ii (z) = zM(T ) + O[(z/εgap)2] is super-Ohmic,
where M is given by Eq. (22). This is analogous to domain
wall [67] and solitons in superfluid [10] dynamics, where it
has been demonstrated that a super-Ohmic frictional force
is induced by the back-reaction of the bosonic gapped ex-
citations zγ (z) ∝ e−βε0 z3, with ε0 being the energy gap of
the continuum modes of the system. We should emphasize
that the magnon kernels of Eqs. (B4) and (B5) have been
derived considering only the low-temperature limit, at which
the spin degrees of freedom are decoupled from phonons, and
focusing on slow dynamics, where fast oscillating terms at
frequencies higher than εgap are neglected. We also neglect
relaxation mechanisms for the magnon bath, for example,
higher-order magnon-magnon interactions, or the back-action
of the skyrmion to the magnon bath. Such terms can be phe-
nomenologically included by multiplying the magnon kernels
γ 0

i j (t ) by e−�t , where � is the relaxation rate. It can be shown
that in this case, Ohmic dissipation arises proportional to
zγ 0

ii (z) ∝ z�e−βεgap/(ε2
gap + �2), for ω � � � εgap.

APPENDIX C: NONEQUILIBRIUM MAGNON KERNEL

In this Appendix we provide explicit formulas for the re-
duced expressions of the nonequilibrium magnon kernels ap-
pearing in Eq. (28). First, we note that the Laplace transform
Wi j (z) of the function Wi j (t ) given in Eq. (24) is expressed as

Wji(z) =
∑

ν1,ν2,ν2

′ Cν1ν2ν3
ji

[
wν3ν2 (z) − wν3ν1 (z)

]
(
εν2 − εν1

)2 − ω2
ext

, (C1)

where wν1ν2 (z) = F̄ν1ν2 (εν1 − εν2 )/[(εν1 − εν2 )2 + z2] and
where the matrix elements Cν1ν2ν3

ji are given in Eq. (25).
Starting from Eq. (27) we define the temperature-dependent
dissipation constants through a Taylor expansion of the kernel
�γ ji(t, z) around z = 0 as

�γxx(t, 0) = −ωext[Wxx(0) + Wxx(iωext )] sin(ωextt ) (C2)

for the linear terms and the next order is given through the
relation

∂z�γxx(t, z)|z=0 = cos(ωextt )[Wxx(0) + Wxx(iωext )

+ iωextW
′

xx(iωext )]. (C3)

Analogously, we find

�γyx(t, 0) = ωext[Wyx(0) + Wyx(iωext )] cos(ωextt ) (C4)

for the linear terms and

∂z�γyx(t, z)|z=0 = sin(ωextt )[Wyx(0) + Wyx(iωext )

+ iωextW
′

yx(iωext )] (C5)

for the next-order term. First, we note that in the static limit
ωext → 0, all the terms vanish beside a mass renormalization
term Wxx(0). At this point, we emphasize that our approach is
valid only for slow dynamics and, consequently, the frequency
of the external drive should be restricted to the GHz range,
i.e., ωext � εgap. At the same time we recall that the external
potential V induces a finite but small overlap 0 < |Vν1ν2 | �
1 between magnon modes carrying approximately the same
energy. Thus, under the assumptions εd � ωext � εgap, with
εd = |εν1 − εν2 |, the resulting expressions are summarized
in Eqs. (28) and (29), with D(T ) = −ωextW̄ii, δM(T ) = W̄ii,
δQ(T ) = ωextW̄yx, and G(T ) = W̄yx. The W̄ji coefficient can
be found in Eq. (30).

APPENDIX D: MAGNON SPECTRUM

Here, we briefly discuss the structure of the magnon ex-
citations, while a more detailed discussion can be found in
Refs. [41,52]. The magnon Hamiltonian H for the model of
Eq. (3) in dimensionless units is given by

H = 2[−∇2 + U0(ρ)]1 + 2U1(ρ)σx − 2iU2(ρ)
∂

∂φ
σz, (D1)

where U2(ρ) = 2 cos �0
ρ2 − sin �0

ρ
, and

U1(ρ) = sin 2�0

4ρ
− (�′

0)2

2
+ 1

2

(
κ + 1

ρ2

)
sin2 �0 − �′

0

2

(D2)

and

U0(ρ) = h cos �0

2
− 3 sin 2�0

4ρ

− (�′
0)2

2
+

(
κ

4
+ 1

4ρ2

)
(1 + 3 cos 2�0) − �′

0

2
.

(D3)

The goal is to solve the eigenvalue problem of
the form H�n = εnσz�n. Using the wave expansions
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�n = eimφψn,m(ρ)/
√

2π , the eigenvalue problem takes the
form Hmψn,m(ρ) = εn,mσzψn,m(ρ), with

Hm = 2

(
−∇2

ρ + U0(ρ) + m2

ρ2

)
1 + 2U1(ρ)σx + 2U2(ρ)mσz,

(D4)

and ∇2
ρ = ∂2

∂ρ
+ 1

ρ
∂
∂ρ

. Scattering states �m,k (r), classified by m
as well as the radial momentum k � 0, carry energy ε(k) =
εgap + k2, with εgap = 2κ + h, and are of the form

ψm,k (ρ) = dm[cos(δm)Jm+1(kρ) − sin(δm)Ym+1(kρ)]

(
1

0

)
,

(D5)

where Jm (Ym) are the Bessel functions of the first (second)
kind, dm(k) is a normalization constant, and δm(k) is a scat-
tering phase shift that determines the intensity of magnon
scattering due to the presence of the skyrmion. The phase
shifts are calculated within the WKB approximation dis-
cussed in detail in Refs. [41,81]. In the presence of an oscil-
lating field b(t ) = b0�(t − t0) cos(ωextt )(sin ϕext, 0, cos ϕext ),
the magnons experience a potential V (r, t ) = b(t ) · D =
b0�(t − t0) cos(ωextt )V (r), with D = δχ†δχm|χ=χ†=0 and

V (r) = V1(r)1 + V2(r)σx + V3(r)σy. (D6)

The potentials are V1,2(r) = csc[�0(ρ)]2B1(r) ± B2(r),
V3(r) = (1/2) csc[�0(ρ)]B3(r) + B2(r), and B1(r) = (1/2)
sin(ϕext ) cos[�0(φ)] sin[�0(ρ)], B2(r)=B1(r)+(1/2) cos(ϕext )
cos[�0(φ)] sin[�(ρ)], and B1(r)=−(1/2) sin(ϕext ) sin[�0(φ)]
cos[�0(ρ)].

We note that since the Hamiltonian H is invariant under
the conjugation transformation C, where C = Kσx with K the
complex-conjugation operator, there exists an additional class
of solutions �−1

n = Cσx�
1
n with negative eigenfrequency. To

distinguish these two classes of solutions we use an additional
index �

q=±1
n , where the states �1

n have positive eigenfrequen-
cies ε1

n � 0, while �−1
n have negative eigenfrequencies ε−1

n �
0. The biorthogonality conditions for the solutions are of the
form 〈�q

n |σz|�q′
m 〉 = qδq,q′δn,m. Similarly, the resolution of the

unity operator is given by 1 = ∑
q=±1

∑
n q|�q

n 〉〈�q
n |σz and

the trace of an operator is Tr(A) = ∑
q=±1

∑
n q〈�q

n |σzA|�q
n 〉.

To calculate the mass M(T ) of Eq. (22), as well as the drive-
induced dissipation of Eq. (30), the sum over the quantum
number ν is replaced in the following way:∑

ν

�ν =
∑

q=±1,n

�q
n →

∑
q=±1

∑
m

∑
k

�
q
m,k . (D7)

To render our results finite in the thermodynamic limit, we
subtract the background fluctuations [40] as

∑
k �m,k →∑

k (�free
m,k − �m,k ), where �free

m,k are given by Eq. (D5) for
δm(k) = 0. We also note that in addition to scattering states, a
few localized modes which correspond to deformations of the
skyrmion into polygons exist in the range 0 < εn < εgap, but
do not contribute significantly compared to the continuum of
modes �m,k . For detailed formulas of the explicit calculation
of the mass M(T ) we refer the reader to Appendix C of
Ref. [41] and in particular to Eq. (C8). Finally, we note that
for the matrix elements Bνν ′

ii of Eq. (22), both elastic, Bk,k
ii , and

inelastic, Bk,k′
ii , scattering processes are taken into account.

Magnon-magnon scattering is neglected as it corresponds to
a higher-order process.
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