
PHYSICAL REVIEW B 100, 134401 (2019)

Scattering of spinon excitations by potentials in the one-dimensional Heisenberg model
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By a semianalytical Bethe ansatz method and a T -matrix approach we study the scattering of a spinon, the
elementary quantum many-body topological excitation in the one-dimensional (1D) Heisenberg model, by local
and phonon potentials. In particular, we contrast the scattering of a spinon to that of a free spinless fermion in
the XY model to highlight the effect of strong correlations. For the one-spinon scattering in an odd-site chain,
we find regular behavior of the scattering coefficients. In contrast, in an even-site chain there is a transfer of
transmission probability between the two spinon branches that grows exponentially with system size. We link
the exponent of the exponential behavior to the dressed charge that characterizes the critical properties of the
1D Heisenberg model, an interplay of topological and critical properties. The aim of this study is a microscopic
understanding of spinon scattering by impurities, barriers, or phonons, modeled as prototype potentials, an input
in the analysis of quantum spin transport experiments.
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I. INTRODUCTION

The novel mode of thermal transport by magnetic excita-
tions in quasi-one-dimensional quantum magnets has been,
over the last few years, the focus of extensive experimental
[1] and theoretical studies [2–7]. It was promoted by the
fortuitous coincidence of synthesis of excellent-quality com-
pounds very well described by prototype integrable spin chain
models and the proposal of unconventional (ballistic) spin
and thermal transport in these systems [2]. Of course, the
purely ballistic thermal transport predicted by theory is not
observed in thermal conduction experiments as the, albeit very
high, thermal conductivity is limited by the scattering of the
magnetic excitations from impurities and phonons [1].

In parallel, in the field of spintronics (spin caloritronics)
there is renewed interest in the transport of magnetization,
with the (inverse) spin Hall and spin Seebeck effects em-
ployed for the generation and detection of spin currents [8,9].
So far mostly metallic, semiconducting, and magnetically or-
dered (ferro-, antiferro-, ferri-) magnetic materials have been
studied. Only very recently was the spin Seebeck effect stud-
ied in the quasi-one-dimensional quantum magnet Sr2CuO3

accurately described by a spin-1/2 Heisenberg chain [10].
Regarding quasi-one-dimensional quantum magnets, a lot

is known about their bulk thermodynamic [11] and magne-
tothermal transport properties [12–14]. The prototype model
for these systems is the well-studied one-dimensional (1D)
Heisenberg model that is analytically solvable by the Bethe
ansatz (BA) method. The elementary excitations in this
strongly correlated system are topological in nature (the
spinons [15]), and most of thermodynamic and transport
experiments are discussed in terms of these low-energy ex-
citations [1,4,6].

In this work, we study the scattering of a spinon from local
potentials, aiming at a microscopic understanding of scatter-
ing processes by impurities, phonons, and barriers, which is

relevant to (far out of equilibrium) quantum spin transport.
At the moment, we do not address any particular experiment;
we only present background work on the theoretical question
of how a quantum many-body topological excitation scatters
from a potential. This question is also relevant in other sys-
tems with topological excitations of actual experimental and
theoretical interest.

To this end, we first use a recently developed semian-
alytical Bethe ansatz method [16,17] to evaluate scattering
matrix elements by prototype potentials and then to evaluate
scattering coefficients by a T -matrix method. We should em-
phasize that although it is an elementary exercise to evaluate
the quantum mechanical scattering coefficients (reflection,
transmission) of a free particle from a potential barrier, little
is known on the scattering of a quantum many-body quasi-
particle excitation, even less for a topological one. The Bethe-
ansatz-solvable models offer exactly such a framework for the
study of this fundamental problem.

II. MODEL AND MATRIX ELEMENTS

The XXZ anisotropic Heisenberg Hamiltonian for a chain
of N sites with periodic boundary conditions Sa

N+1 = Sa
1 and

in the presence of a local potential V of strength g is given by

H =
N∑

n=1

hn,n+1 + gV,

hn,n+1 = J
(
Sx

nSx
n+1 + Sy

nSy
n+1 + �Sz

nSz
n+1 − hSz

n

)
, (1)

where Sa
n = 1

2σ a
n , σ a

n are Pauli spin operators with components
a = x, y, z at site n, h is the magnetic field, and the anisotropy
parameter � is typically parametrized as � = cos γ . In the
following we will focus on the easy-plane antiferromagnet,
0 � � � 1, and we will take J = 1 as the unit of energy.
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FIG. 1. Schematic of the spin chain and the type of potentials in
consideration.

We study chains with odd and even numbers N of spins.
In odd chains, for each total Sz = ±1/2, the ground state
is doubly degenerate, containing one spinon with dispersion
given by the one-branch εQ = vs| sin Q|, 0 < Q < π . For
even N the lowest excitations involve at least two spinons,
with the dispersion of each spinon given by εQ = vs| sin Q|,
i.e., states of the Cloizeaux-Pearson spinon spectrum [15,18].
We will study states belonging to the lowest-energy branch
of the M = N/2 − 1 magnetization sector obtained from the
Sz = 1 states by keeping the one-spinon momentum fixed
at zero and considering the dispersion of the second. In
the spinon dispersion, vs = π

2
sin γ

γ
, and Q is defined as the

spinon momentum above the ground state. Normalized spinon
states |Q〉 = |{λ}〉 are determined from a specific set of Bethe
roots {λ j}M

j=1 (see the Supplemental Material [19] and also
references therein), and matrix elements between such states
describe spinon scattering processes. Moreover, we define the
spinon group velocity as uQ = dεQ/dQ.

In the following we first evaluate scattering matrix ele-
ments |M|2 = |〈Q′|V |Q〉|2 of a spinon from a state of mo-
mentum Q to a state of momentum Q′ on finite-size lattices
following [16,17,19]. We show in particular that they are
strongly enhanced compared to those of single-particle excita-
tions, leading to unusual scattering coefficients. The potentials
we consider are schematically shown in Fig. 1.

To start with we consider a one-site longitudinal potential
V = Sz

n at site n. The corresponding matrix element is given
by [20]

∣∣Mz
q(Q)

∣∣2 = ∣∣〈Q + q|Sz
q|Q〉∣∣2

, (2)

where Sz
n = 1√

N

∑
q e−iqnSz

q. In the simple � = 0 case, the
XY model, by a Jordan-Wigner transformation the spectrum
corresponds to that of free spinless fermions, |Mz

q|2 = 1/N ,
and the potential moves only one fermion to a different state
[21].

In sharp contrast, in the isotropic Heisenberg model (� =
1), due to strong antiferromagnetic fluctuations, the scattering
matrix elements are drastically enhanced, as shown in Fig. 2.
|Mz

q(Q = 0)|2 scales overall as 1/
√

N , and as indicated in the
inset of Fig. 2, in the region not close to q = 0, π , the matrix
element behaves approximately as

∣∣Mz
q(Q = 0)

∣∣2 ∼ 1√
N

1

(π − q)2/3
. (3)

FIG. 2. Scaled
√

N |Mz
q(Q = 0)|2 as a function of q/π for N =

120, 240, 360, 480, � = 1. The inset shows the asymptotic scal-
ing of |Mz

q(Q = 0)|2, with the solid line indicating the asymptote
(π − q)2/3.

Note that this behavior does not describe q = π , which should
not be diverging and scales differently with N , as will be
discussed below.

The most interesting part in Fig. 2 and relation (3) is that
the matrix elements scale in a nontrivial fashion with N . In the
XY model and for an Sz

n potential all matrix elements scale
as 1/N , which is the usual case in lattice scattering. On the
contrary, for all � �= 0 the matrix elements have a nontrivial
relation with respect to the spinon momentum and a particular
scaling with respect to the number of spin sites, which is
crucial to the spinon scattering.

Furthermore, using [16] and a numerical evaluation, we
further address the two types of matrix elements shown in
Fig. 3 (and all equivalent transitions between the two spinon
branches), and as we will see in the next section, they play
a significant role in the scattering processes. In the q = π

transition
∣∣〈Q + π |Sz

π |Q〉∣∣2 � f z(Q)

N2Z2−1,
(4)

FIG. 3. Schematic description of the Q → π + Q transition
(blue arrow) and Q → π − Q same-branch velocity-flipping transi-
tion (red arrow).
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FIG. 4. Scaled N
2
3 |Mph

q (Q = 0)|2 as a function of q/π . The inset
shows the asymptotic scaling of |Mph

q (Q = 0)|2 as a function of
(π − q)/π . The solid line indicates the asymptote (π − q)1/2.

and in the same-branch velocity-flipping transition

∣∣〈π − Q|Sz
π−2Q|Q〉∣∣2 � hz(Q)

Nα(Q)
, (5)

both corresponding to on-shell transitions. Z is the dressed
charge introduced in [22,23], and the identification has been
done using the analysis in [24] since for small magnetic fields

the dressed charge is Z �
√

π
2(π−γ ) . In particular, Z2 = 1 for

� = 0, and Z2 = 1/2 for � = 1. Note that this scaling of
the matrix elements is also valid in the h = 0 case since by
an analytical continuation the critical exponent 2Z2 remains
the same. Furthermore, for Q not close to zero α(Q) � 1,
and f z(Q) is an almost constant function, while hz(Q) is a
rapidly decreasing one to a constant value [19]. These types of
matrix elements were extensively studied in [25,26], and the
correspondence between the dressed charge and the scaling of
the matrix elements has been proven analytically.

Next, we consider the scattering of a spinon by a lattice
distortion of wave vector q,

hq = 1√
N

N∑
n=1

eiqnJ
(
Sx

nSx
n+1 + Sy

nSy
n+1

)
, (6)

from which we can deduce the scattering from a “weak link”
V = g(S−

n S+
n+1 + S+

n S−
n+1). Similar to the previous case, the

scaled scattering matrix element for � = 1 and the asymptotic
form

∣∣Mph
q (Q = 0)

∣∣2 ∼ N−2/3 1

(π − q)1/2
(7)

for Q = 0 are shown in Fig. 4.
Again, the dominant matrix elements for spinon scattering

are a π transition and a same-branch velocity-flipping matrix
element,

|〈Q + π |hπ |Q〉|2 � f ph(Q)

Na(Q)
,

|〈π − Q|hπ−2Q|Q〉|2 � hph(Q)

N
. (8)

FIG. 5. Scaled |Mx
q (Q = 0)|2√N vs q for the isotropic model

� = 1 and various N . The solid line in the inset shows that the
asymptote scales as (π − q)2/3.

For the isotropic � = 1 case, a(Q) has a weak dependence
with respect to Q, a(Q) � 0.4 around Q = 2π/10, while by
a Jordan-Wigner transformation we can derive that for � =
0 the absolute value squared of all matrix elements scales
as 1/N .

Finally, we consider a transverse magnetic potential, V =
gSx

n. The main difference of this potential from the two pre-
vious ones is that it acts nontrivially only between states with
�Sz = ±1.

Similar to the Sz
n potential, as shown in Fig. 5, the asymp-

tote behaves as
∣∣Mx

q (Q = 0)
∣∣2 ∼ 1√

N

1

(π − q)2/3
, (9)

and the dominant matrix elements scale as
∣∣〈Q + π |Sx

π |Q〉∣∣2 � f x(Q)

N
1

2Z2 −1
. (10)

This time, the XY model matrix elements behave nontrivially
as they scale as

√
N , and in fact, they imply the strongest

scattering compared to the 0 < � � 1 case.
Overall, the π transitions show a strong N dependence and

a weak Q dependence, while the π − 2Q (velocity flip) tran-
sitions show a 1/N dependence and a strong Q dependence
[19].

To close our discussion on the matrix elements, we con-
sider an extended potential profile Vext = ∑N

n=1 gnVn, where
Vn represents one of the potentials we studied above and gn is
the potential profile,

|〈Q + q|Vext|Q〉|2 = 1

N

∣∣∣∣∣
N∑

n=1

gne−iqn|2
∣∣∣∣∣Vq|2. (11)

For example, for a segment of m sites with a potential Vm =∑N/2+m−1
n=N/2 Sz

n the matrix element is given by

|〈Q + q|Vm|Q〉|2 = 1

N

sin2 qm
2

sin2 q
2

∣∣Mz
q(Q)

∣∣2
. (12)

This form of equation can be interpreted as a “diffraction”-like
pattern modified by the scattering of the spinon. For the XY
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model it simply becomes

|〈Q + q|Vm|Q〉|2 = 1

N2

sin2 qm
2

sin2 q
2

. (13)

The main message of this section is that the scattering ma-
trix elements of the quantum many-body topological (spinon)
excitations in the XXZ Heisenberg model are strongly en-
hanced compared to the ones in the XY model (free fermions).
They show a nontrivial system size dependence, and thus,
we expect profound differences in the scattering of spinon
excitations by a potential from the generic single-particle one.

III. SCATTERING COEFFICIENTS

We will analyze the transmission and reflection scatter-
ing coefficients of a spinon from a potential within the T -
matrix approach (see the Supplemental Material [19] and also
reference therein) by writing all quantities in the basis of
Bethe ansatz eigenstates |{λ}〉,

T = V
1

1 − G0V
,

G0(E ) = lim
ε→0

∑
{λ}

|{λ}〉〈{λ}|
E − E{λ} + iε

,

V =
∑

{μ},{λ}
〈{λ}|V |{μ}〉|{λ}〉〈{μ}|. (14)

E{λ} is the energy corresponding to the Bethe state |{λ}〉. Based
on the discussion in the previous section for the particular
scaling of the matrix elements with N , we write a typical
matrix element in the form 〈{λ}|V |{μ}〉 = gf{λ},{μ}/Nα , with
g being the potential strength and α = α({λ}, {μ}) > 0 being
a scaling factor. The potential matrix V belongs in a Hilbert
space of dimension dim H = 2N , which makes the problem
intractable from a computational point of view. Therefore, in
order to be able to calculate the scattering coefficients for rela-
tively long spin chains, we restrict our numerical calculations
to including only the two-spinon continuum, i.e., a subspace
of dimension dim H2sp = N

8 (N + 2). The calculation of the
T matrix is straightforward; we compute the matrix 1 − G0V
and subsequently invert it and left multiply it by V . Note
that for the evaluation of the Green’s function G0 we use the
identity limε→0

1
x+iε = P 1

x − iπδ(x), where P stands for the
Cauchy principal value part.

A. “Free” spinon

It is instructive to consider the scattering of a free parti-
cle on a lattice with the “spinon” dispersion relation εQ =
vs| sin Q| by a one-site δ-like potential of strength g. In this
case all the matrix elements are the same, 〈Q′|V |Q〉 = g/N ,
and the transmission coefficient TQ,Q is a function of g/uQ

[19], uQ = dεQ/dQ.
In Fig. 6 we show that the “free”-spinon transmission

probability and that of a particle in a tight-binding model
with the dispersion relation εQ = vs(1 − cos Q) behave very
differently. The free-spinon transmission probability is gen-
erally a decreasing function of the energy, a property of the
specific bounded spectrum. Moreover, we observe that in the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

TQ,Q

Q

g=0.2
g=0.4
g=0.6

(tight binding) g=0.6

FIG. 6. TQ,Q vs εQ for the scattering of a “free” particle and a
particle in a tight-binding model from a δ-like potential of strength g.

linear part of the energy dispersion we have high transmission
probability, which is related to the fact that in a purely linear
dispersion relation, i.e., a massless one-dimensional Dirac
equation, only a phase is induced in the wave function and
there is no reflection probability [27]. Additionally, from the
specific form of the spinon dispersion relation we observe
that when εQ decreases, uQ increases, which implies that
TQ,Q is an increasing function of the spinon velocity. Thus, a
more sensible quantity for the description of the transmission
coefficient is the spinon velocity and not the spinon energy as
in usual scattering problems.

B. One-site longitudinal potential

We first consider the scattering of a spinon in an odd-site
chain from a one-site potential V = gSz

n. In the fermionic
language of the t − V model [28] this would, indeed, corre-
spond to the scattering of a spinless fermion from a one-site
potential. In our calculation of the transmission coefficient
TQ,Q as a function of spinon energy (Fig. 7), we include only
the lower one-spinon branch as intermediate states. For � = 0

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

TQ,Q

Q/ max

=1.0
=0.7
=0.4
=0.0

=1.0 (N=301)

FIG. 7. TQ,Q vs εQ for various �, g = 0.15 for an odd spin chain,
N = 121. The black dashed line indicates the N = 301 data. The
solid lines are guides to the eye.
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

TQ,Q

Q

g=0.2
g=0.3
g=0.4
g=0.5

FIG. 8. TQ,Q vs εQ for an odd N = 241 isotropic model spin
chain for various g. The solid lines are guides to the eye.

we recover the free-spinon result of Fig. 6, while for finite
� we find strong suppression of the transmission probability
at low energies. Because of the finite size of the chain we
cannot study the zero-energy limit; however, we expect the
transmission to vanish at this limit, as implied by comparing
the N = 121 and N = 301 data at low energies. We should
also note that the results are practically independent of system
size, at least in this lowest-branch approximation. Similar
results are shown in Fig. 8 for the isotropic model at different
potential strengths g, where, as expected, the transmission is
suppressed with increasing potential strength. Furthermore, as
in the free-spinon case, note the vanishing of the transmission
at high energies, related to the zero-spinon velocity at the top
of the energy dispersion.

As shown in Fig. 3, in an even chain there are two low-
energy spinon branches. In Fig. 9 we find that there is a
complementarity in transmission, as when TQ,Q decreases,
TQ,Q+π increases. The sum of the two closely resembles the
transmission of the one spinon in an odd chain. Furthermore,
there is a strong size dependence of TQ,Q which can probably

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

T

Q

FIG. 9. TQ,Q (red, N = 100; blue, N = 280) and TQ,Q+π (green,
N = 100; purple, N = 280) vs εQ for g = 0.15 and � = 1. The sum
Ttot = TQ,Q + TQ,Q+π for N = 280 is indicated by the solid black
line. The solid lines represent the analytical results, while the dots
show the numerical data.

 0.1

 1

 50  100  150  200  250  300

TQ,Q

N

g=0.10
g=0.15
g=0.20
g=0.25
g=0.30

 0.1

 1

 20  100  300

TQ,Q

N

g=0.10
g=0.15
g=0.20
g=0.25
g=0.30

FIG. 10. log10 TQ,Q vs N (top) and log10 TQ,Q vs log10 N (bot-
tom) for V = gSz

n for the isotropic model � = 1 and energy εQ =
π

2 sin(2π/10) � 0.92. The solid lines represent the analytical ap-
proximation [19], while the dots represent the numerical data.

best be described as exponentially decreasing with N . This is
argued in [19] and shown in Fig. 10, where for comparison
a power law dependence is also plotted (not shown, there is
a corresponding exponential increase of TQ,Q+π ). The expo-
nential dependence increases with �, as shown in Fig. 11,
and with g (Fig. 10). However, the sum TQ,Q + TQ,Q+π of
transmission probabilities shows a weak size dependence and,
of course, in the � = 0 case coincides with the one spinon
in an odd chain with no size dependence. In other words,
we conjecture that in the thermodynamic limit an incoming
spinon from the one branch is fully transmitted and reflected
in the other branch. In this calculation we have again included
as intermediate states only the two lower spinon branches.
As discussed below, including all the two-spinon states only
quantitatively changes this behavior. Another aspect of this
transfer of transmission probability from the TQ,Q to the
TQ,Q+π branch is shown in Fig. 12, where we see that TQ,Q+π

increases with potential strength.
Based on the integrable structure of the Heisenberg model,

we can understand these results from first principles [19].
Resumming to all orders the most important on-shell ma-
trix elements, |Q〉 → |Q + π〉, |π − Q〉, described in the pre-
vious section, we obtain a fairly good description of the
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 0.25

 0.4

 0.6

 0.8

 1

 20  40  60  80  100  120  140  160

TQ,Q

N

=1.0
=0.8
=0.6
=0.4

=0

FIG. 11. log10 TQ,Q vs N for V = gSz
n, g = 0.2 for constant en-

ergy εQ/vs = sin(2π/10) and � = 0.4, 0.6, 0.8, 1.0 The solid lines
represent the analytical approximation [19], while the dots represent
the numerical data. The horizontal line represents the � = 0 case.

transmission probabilities (even quantitative in the weak-
coupling limit). It is easily proved that these transitions result
in a monotonically decreasing (increasing) transmission prob-
ability TQ,Q(TQ,π+Q) with spin chain length N . We expect this
behavior to be generic in one-dimensional spin chains; simply,
here, the integrability of the model allows us to explicitly
evaluate the corresponding exponents.

By a numerical fit in Figs. 10 and 11 we find that a useful
quantity for the description of the scattering process is geff =
gN1−Z2

and that for εQ not close to zero the transmission
coefficient behaves as

TQ,Q � e−a(geff /uQ )2
, (15)

which holds for geff/uQ 
 1. Thus, for the isotropic Heisen-
berg model (γ = 0, � = 1) which is the most experimentally
relevant TQ,Q � e−a(g/uQ )2N . Although this approach does not
offer an analytical solution of the scattering problem, using the
framework of integrability, we derived a connection between
the transmission coefficients and θzz = 2Z2, the critical ex-
ponent of the ground state’s correlation function 〈0|sz

1sz
n+1|0〉

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

TQ,Q+

Q

g=0.04
g=0.06
g=0.08
g=0.10
g=0.12

FIG. 12. TQ,Q+π vs εQ as a function of g for N = 280. The solid
lines are guides to the eye.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

T

Q

FIG. 13. TQ,Q (red, g = 0.1; blue, g = 0.2) and TQ,Q+π (green,
g = 0.1; purple, g = 0.2) vs εQ for N = 100 and � = 1. The solid
lines are produced by including only the lower branch, while the dots
represent the numerical data obtained by including the whole two-
spinon continuum.

dominant oscillatory part. Predicted by conformal field theory
and Bethe ansatz calculations [16,22], it offers a qualitative
description of the scattering process.

Note that this approximation gives reasonable results even
though we have performed a rough elimination of most of
the intermediate matrix elements. On the other hand, from
the specific form of the transmission probability of the free-
spinon model we observe that the dominant behavior is given
by the on-shell matrix elements and the rest of the matrix
V serves as a correction, which justifies the reasoning for
the above approximation. Of course, as we see in Fig. 10,
it is a weak-coupling approximation, albeit a very good one,
that becomes increasingly unreliable in the strong g coupling
limit. Even more, in the strong coupling g/uQ � 1 limit (e.g.,
Q → ±π/2) the numerical T -matrix approach we are using
often does not converge at all.

Finally, to improve the lower-branch approximation we
include all the two-spinon de Cloizeaux–Pearson [18] states,
which forces us, however, to study rather small spin chains as
the space of intermediate states increases as N2. As shown in
Figs. 13 and 14, the inclusion of the two-spinon states results
in only quantitative differences with most of the effect coming
from the TQ,Q+π transition. We estimate the N → +∞ ex-
trapolated value of Ttot to be reduced by about 30% from the
value of the lower branch data. We should note, however, that
the two-spinon continuum data become increasingly sensitive
with system size to details of the calculation, e.g., separation
of the real and imaginary parts in the T -matrix numerical
evaluation.

Comparing the even- and odd-site cases, we find an in-
teresting topological effect. In the odd chains, in our one-
spinon study where the spectrum is twofold degenerate, we
find a rather regular behavior of scattering coefficients. In
the even chains, due to the topological two-spinon constraint,
we have a fourfold-degenerate spectrum that, together with
the singular π transition, implies a transfer of transmission
probability between the two spinon branches. Thus, in the
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FIG. 14. Ttot versus N for the V = gSz
n potential � = 1 and εQ �

0.923 including the two-spinon continuum along the lower-branch
data. The dots represent the numerical data, while the solid lines
represent the fitted curve Ttot = A exp(−B f z(Q)g2N/u2

Q ) + C.

spinon scattering, we have an interplay of the topological
character and the singular matrix elements of a critical system.

C. Spin-phonon potential

The spin-phonon interaction is described by a one-link
potential of the form

V = g(S−
n S+

n+1 + S+
n S−

n+1). (16)

In Fig. 15 the numerical calculation for an even-site chain
shows that TQ,Q → 0 as N increases. Like in the previous
case, we obtain an approximate analytical result by using the
dominant matrix elements that were described in the previous
section. In particular, the monotonicity of the scaling factors
implies that the transmission and reflection coefficients will
be scale invariant for � = 0, while on the contrary, for 0 <

� � 1, TQ,Q → 0 as N increases. Moreover, the relation of the
scattering coefficients to the spinon energy εQ is very similar
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FIG. 15. log10 TQ,Q vs N for a one-link spin-phonon potential V ,
εQ � 0.92, and g = 0.1, 0.15, 0.2, 0.25, 0.3. Solid lines are predic-
tions based on the dominant matrix elements [19].
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FIG. 16. log10 TQ,Q vs system size N (top) and log10 TQ,Q vs
system size log10 N for a one-site transverse potential V = gSx

n ,
g = 0.2, εQ = vs sin( 2π

10 ), and � = 1, 0.6, 0.2, 0.0. Solid lines are the
prediction considering the dominant matrix elements [19].

to that of a longitudinal magnetic potential, as was depicted in
Fig. 9.

D. Transverse potential

We now turn to a transverse magnetic potential, V = gSx
n.

The main difference of this potential from the two previous
ones we studied is that it acts nontrivially only between
states with �Sz = ±1. We will restrict ourselves to transitions
between the Sz = 1 and Sz = 2 magnetization sectors.

Figure 16 shows that like in the previous cases, for an even-
site chain TQ,Q → 0 as N increases. Again, the dependence is
probably best described as exponential, as argued in [19] and
by comparison with a power law one. However, this time we
find that this holds also for � = 0, and in fact the scattering
increases as � decreases, which is the opposite of what hap-
pened in the previous cases. Again, we can obtain a qualitative
explanation of this behavior by using the fact [25,26] that
the dominant matrix element approximately scales as θ−+ =

1
2Z2 � π−γ

π
, which is the dominant critical exponent of the

ground-state correlation 〈0|σ−
1 σ+

n+1|0〉. By resummation [19]
and the monotonicity of the critical exponents with respect to
� one can argue that TQ,Q → 0 for 0 < � � 1. Nevertheless,

134401-7



A. PAVLIS AND X. ZOTOS PHYSICAL REVIEW B 100, 134401 (2019)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4

TQ,Q

Q

g=0.10
g=0.15
g=0.20
g=0.25
g=0.30

FIG. 17. TQ,Q vs spinon energy εQ for a potential V = g(Sz
n +

Sz
n+1), N = 201.

a full-scale analysis of the matrix elements should be done
in order to give a definite answer. Similar to what we did
in the previous cases, by defining geff ≡ gN1− 1

4Z2 , implying
geff = g

√
N for � = 1 (isotropic model) and geff = gN3/4 for

� = 0 (XY model), we conclude that

TQ,Q � e− f x (Q)(geff /uQ )2
(17)

in the region geff/[4u2
Q/ f x(Q)] 
 1, a behavior which agrees

well with the numerical data.

E. Extended potential

Finally, we consider the spinon scattering from an extended
potential

Vext =
m∑

n=1

gnVn. (18)

Using the numerical procedure presented earlier, we can cal-
culate the transmission probability for an arbitrary potential
profile {gn} in the two-spinon continuum approximation. We
start with the scattering of a spinon in an odd chain by a two-
site longitudinal potential, a case analogous to Fig. 7 for an on-
site potential. In Fig. 17 we see a remarkable difference at low
energies where there is complete transmission. This situation
is consistent with the well-known “cutting” and “healing”
[30,31] effect in one-dimensional correlated systems and spin
chains, where one weak link is cutting a chain at low energies
while two weak links are healed. This effect leads to a finite
conductance with a power law dependence on the temperature
due to thermal effects.

Here, we can understand the results of extended potentials
by considering the “diffraction” relation (12). For an m =
2 longitudinal potential in an odd chain, at low energies
Q → 0, the q = π − 2Q scattering matrix element vanishes,
leading to total transmission. Following the same argument,
we also find that for an even chain with an m = 2 longitudinal
potential the transfer of transmission probability from TQ,Q to
TQ,Q+π found in Fig. 7 is now totally suppressed as the q = π

matrix element vanishes. Following the same line of resum-
mation of dominant matrix elements and taking into account

the corresponding diffraction factor allow us to understand the
transmission by extended potentials.

IV. CONCLUSIONS

Using the Bethe ansatz method and the T -matrix approach,
we have studied the scattering of a spinon from prototype
potentials. Three main features emerged from this study;
first, we are considering a quantum many-body problem, so
in principle outgoing states with the creation of spinons or
“electron-hole” pairs are possible, although we expect from
the scattering matrix elements that these processes have lower
probability. We have limited our study to outgoing states
with the same number of spinons as the incoming state.
Second, we can qualitatively account for the transmission
probabilities by resumming the dominant scattering elements.
Their dependence on the size of the spin chain is given by the
critical exponents characterizing the anisotropic Heisenberg
model. Thus, we linked the scattering to the critical proper-
ties of this integrable model, and we evaluated them using
the Bethe ansatz method. Whether including all intermediate
states O(2N ) would qualitatively change the present picture is
an open, technically very difficult, question. Third, we have
found an intriguing topological effect as, in an even chain,
there is complete transfer of the incoming spinon transmission
probability from the one branch of the dispersion to the other
branch. At the moment, in a macroscopic open chain the
role of this odd-even effect is ambiguous. Further study is
necessary to clarify it, presumably including further outgoing
states, e.g., three-spinon states in odd chains. Note that several
experimental and theoretical studies [29] have addressed the
physical effect of even vs odd chain length in the thermody-
namic properties of finite-size chains.

Along the lines of dominant matrix elements, we analyzed
a basic difference in the scattering coefficients of longitudinal
and weak-link potentials from those of a transverse potential.
We also discussed extended potentials where we attributed
a drastic dependence of scattering coefficients on the po-
tential extent to a geometric diffraction factor and dominant
scattering matrix elements. These results are consistent with
previous studies on cutting and healing in 1D correlated
systems [30–32].

Considering experiment, we studied the problem of a
spinon excited above the ground state and scattering from
a potential. Although we have not addressed any particu-
lar experiment, our study should provide key elements in
the interpretation of far-out-of-equilibrium experiments as
well as thermal transport ones, for instance, zero-temperature
tunneling studied by a “Landauer”-type approach or spinon
transport probed, e.g., by terahertz two-dimensional coherent
spectroscopy [33] experiments.
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