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In this paper we continue to explore “hybrid” quantum circuit models in one-dimension with both unitary and
measurement gates, focusing on the entanglement properties of wave function trajectories at long times, in the
steady state. We simulate a large class of Clifford circuits, including models with or without randomness in the
unitary gates, and with or without randomness in the locations of measurement gates, using stabilizer techniques
to access the long-time dynamics of systems up to 512 qubits. In all models we find a volume-law entangled
phase for low measurement rates, which exhibits a subdominant logarithmic behavior in the entanglement
entropy, SA = α ln |A| + s|A|, with subsystem size |A|. With increasing measurement rate the volume-law phase
is unstable to a disentangled area-law phase, passing through a single entanglement transition at a critical rate of
measurement. At criticality we find a purely logarithmic entanglement entropy, SA = α(pc ) ln |A|, a power-law
decay and conformal symmetry of the mutual information, with exponential decay off criticality. Various spin-
spin correlation functions also show slow decay at criticality. Critical exponents are consistent across all models,
indicative of a single universality class. These results suggest the existence of an effective underlying statistical
mechanical model for the entanglement transition. Beyond Clifford circuit models, numerical simulations of up
to 20 qubits give consistent results.

DOI: 10.1103/PhysRevB.100.134306

I. INTRODUCTION

Quantum many-body systems under unitary dynamics will
generally thermalize [1–7]. But is thermalization inevitable?
Are there systems in which the thermalization of entangle-
ment entropy is avoidable? One example is many-body lo-
calization [8,9], in which entanglement growth is suppressed
by strong quenched disorder. Repeated local measurements
provide an alternative approach for taming the growth of
entanglement. While unitary dynamics tends to increase en-
tanglement, local measurements tend to disentangle. When
measurements are made continually, the steady-state wave
function should exhibit nonmaximal, and nonthermal, entan-
glement entropy [10]. If measurements are made as frequently
as possible, the wave function will become localized in the
Hilbert space near a trivial product state—a quantum Zeno
effect [11]. What happens in the intermediate regime when
measurements are made at a small but finite rate? Can the
volume-law scaling of entanglement entropy survive in the
presence of a nonzero rate of measurement? These questions
are pertinent to our basic understanding of quantum informa-
tion dynamics.

Recently, in Refs. [12–14], a prototypical (1+1)-
dimensional circuit model with both unitary dynamics and
projective measurements was introduced and explored. Local
unitary gates acted on all neighboring qubits, while single-
(or two-) qubit measurement gates were sprinkled throughout
the circuit, with each space-time point occupied with prob-
ability p, representing the strength of the measurements. In
Ref. [12] it was argued that the volume-law entangled phase
is destroyed by arbitrary rare measurements, for all p > 0,
while the authors in Refs. [13,14] presented arguments and

numerical evidence for a stable volume-law entangled phase,
separated from an area-law entangled phase at a critical value
of measurements, pc > 0. Due to different approaches taken
in these papers, a direct comparison was not immediate.

In this paper, we continue to investigate these hybrid
circuit models with unitary-measurement dynamics. Our goal
is to further explore and characterize both the nature of the
entanglement transition and the properties of the volume-law
entangled phase in the presence of weak measurements. A
central focus is on generic circuits with randomness in both
the unitary gates and in the locations of the measurement
gates. The least constrained model we consider is a “random
Haar circuit,” with two-qubit unitaries taken from the Haar
measure [15,16] and single-qubit measurements randomly
scattered across the circuit [12,13]. However, the high entan-
glement in the volume-law phase poses formidable numerical
challenges even in one dimension. We thus will largely study
“random Clifford circuits” with the Haar unitaries replaced
by random two-qubit Clifford unitaries, and the single-qubit
measurements restricted to the Pauli group [17–19]. Such
Clifford circuits can be efficiently simulated on a classical
computer, enabling us to perform extensive large-scale numer-
ical studies. We draw several conclusions from our data in the
random Clifford circuit:

(1) At long times, measurements reduce the entanglement
entropy from maximal, and the steady-state entanglement
fluctuates weakly over time and over circuit realizations, inde-
pendent of the initial conditions. These “typical” steady states
are nonthermal, qualitatively distinct from thermal states.

(2) The volume-law phase persists when measurements
are infrequent, consistent with results from Refs. [13,14].
The algebraic structure of the Clifford dynamics provides a
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convenient framework for characterizing the entanglement
structure of these wave functions, revealing an unusual
scaling form of the entanglement entropy, namely
SA = α ln |A| + s|A| for a contiguous subsystem A. The
subleading logarithm is exposed by analyzing the length
distributions of the “stabilizers”—mutually commuting Pauli
string (eigen)operators of the Clifford wave functions with
unit eigenvalue. The stabilizer distribution is “bimodal,”
consisting of a power-law distribution of “short” stabilizers
that contribute to the logarithm, and “long stabilizers” with
length � ≈ L/2 giving the volume-law piece (L being the
system size). This logarithmic correction is conjectured to be
a generic feature of volume-law steady states in the presence
of measurements.

(3) The “entanglement transition,” from volume-law to
area-law states [13,14], occurs when the weight under the
“long stabilizer” peak at � ≈ L/2 vanishes continuously upon
approaching pc from below. Remarkably, the power-law tail
of “short” stabilizers remains, implying a purely logarithmic
form for the entanglement entropy right at the critical point,
p = pc. The entanglement transition exhibits conformal sym-
metry of the mutual information at criticality, and we extract
several critical exponents. In particular, we find that in all the
models we study, the mutual information between two small
regions separated by a large distance, r, scales as 1/r4. Off
criticality the mutual information decays exponentially.

(4) We explore the fluctuations of certain spin-spin cor-
relation functions across the transition and find that they are
enhanced at the critical point, mimicking the mutual informa-
tion.

We establish the generality of these results by explor-
ing models with imposed spatial symmetry constraints—
specifically Clifford circuits with the unitaries periodic in
space and time (Floquet) and/or the measurement locations
periodic in space and time. All models are found to exhibit
a measurement-driven entanglement transition, with similar
exponents and similar behavior of the stabilizer length dis-
tribution as in the random Clifford circuit.

Apparently the randomness in the unitaries and measure-
ment locations are inessential, with the remaining stochastic-
ity in the measurement outcomes sufficient to account for the
presence and universality of the entanglement transition.

Going beyond Clifford, we implement a full quantum
simulation of more general circuit models for systems with
size up to L = 20 qubits. Both random Haar circuits and (non-
Clifford) Floquet circuits exhibit behavior consistent with
their Clifford counterparts. We also explore models with (non-
projective) “generalized measurements,” with each and every
qubit being measured at each time step, and find evidence for
an entanglement transition, with accessible exponents being
consistent with the Clifford circuits. Of particular interest is
a space-time translationally symmetric Floquet model with
generalized measurements, which exhibits an entanglement
transition where the only stochasticity is in the results of the
quantum measurements.

Motivated by the remarkable consistency between all of
our different models, we conjecture that generic hybrid cir-
cuits have a volume-law phase with logarithmic correction
for weak enough measurements, and exhibit an entanglement
transition in a single universality class.

FIG. 1. The random circuit model with random measurements.
In this circuit, the unitaries are arranged in a brick-layer fashion,
while the single-qubit Z-measurements are positioned randomly in
space and time. We depict the Poissonian arrangement in this figure,
for which the measurements take place at each available space-time
site independently with probability p. For a circuit with L qubits and
with depth D, there are LD such available sites.

Our paper is organized as follows. In Sec. II we define
the circuit models of interest. Extensive numerical results for
Clifford circuits are reported in Secs. III and IV. In particular,
Sec. III contains evidence for the phase transition in entan-
glement entropy, and allows characterization of the volume-
law phase in terms of stabilizers. Section IV is devoted to a
detailed analysis of the critical behavior of the entanglement
transition. In Sec. V we systematically explore Clifford circuit
models with space and time symmetries imposed, either in the
unitaries or the measurement locations—or both. In Sec. VI
we consider more generic non-Clifford circuits, establishing
complementary results via a full quantum simulation for
smaller systems. We close with discussion in Sec. VII.

Finally, in Appendix A we review Clifford circuits and de-
fine the stabilizer length distribution, and detail measurement
and unitary Clifford dynamics—beyond the steady state—in
Appendix B.

II. THE CIRCUIT MODEL

Consider first the prototypical quantum circuit model,
shown in Fig. 1, with L qubits arranged on a one-dimensional
chain. The circuit dynamics is composed of two parts, as
depicted in Fig. 1 and detailed below (in order), namely, (1)
the background unitary evolution and (2) measurements made
on selected qubits scattered throughout the system.

(i) The background unitary time evolution of the L-qubit
wave function is determined by applications of local unitary
gates which are arranged in a bricklayer pattern, such that the
geometry of the circuit is periodic in both space and time.
The local unitaries act on neighboring pairs of qubits. Each
discrete time cycle of the circuit consists of two layers, and
each layer has L/2 two-qubit unitary gates, acting on all the
odd links in the first layer, and all the even links in the second.
We primarily consider circuits with periodic spatial boundary
conditions, except in Appendix B where circuits with open
boundary condition are more convenient.

We define the depth of a circuit to be the number of unitary
layers, and denote it by D. Therefore, a circuit with depth
D has T = D/2 time cycles. The circuit as a whole can be
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regarded as a unitary transformation in the Hilbert space of
many-body wave functions on L qubits,

UT =
T −1∏
t=0

U (t ), (1)

where U (t ) is the time evolution operator for the t th time
cycle,

U (t ) =
( ∏

x odd

U(x,x+1),2t+1

)( ∏
x even

U(x,x+1),2t

)
, (2)

where U(x,x+1),d is the gate on link (x, x + 1) at depth d . Under
the action of a unitary gate, the wave function transforms as

|ψ〉 → U(x,x+1),d |ψ〉, (3)

so that the wave function at arbitrary time T is |ψ (T )〉 =
UT |ψ (0)〉.

(ii) The full dynamics of the model is nonunitary, wherein
the space-time sheet of the unitary circuit is punctuated
with measurements—for simplicity chosen as single-qubit
measurements. In a circuit with depth D = 2T , there are
L × D available space-time locations between unitary layers
available for such measurements. Measurements are made on
a fraction p of all these sites, chosen either randomly or deter-
ministically. The parameter p is thus the rate of measurement.
In Secs. II–IV we will choose these sites randomly (Poisson
distribution) as depicted in Fig. 1, a model first proposed in
Refs. [12,13]. The unitary background is obtained by setting
p = 0.

Under the action of a measurement the wave function
transforms as

|ψ〉 → Mα|ψ〉
‖Mα|ψ〉‖ , (4)

where {Mα} are a set of linear “generalized measurement” op-
erators satisfying

∑
α M†

αMα = 1 [20]. Under such a measure-
ment, the process described by Eq. (4) is probabilistic, with
outcome α happening with probability pα = 〈ψ |M†

αMα|ψ〉.
Throughout much of the paper, and unless specified to the
contrary, we will choose these “generalized measurement” op-
erators to be mutually orthogonal projectors, that is Mα → Pα ,
with P± = (1 ± Z )/2 measuring the Z component of the spin
of individual qubits. Such projectors satisfy PαPβ = δαβPα

and
∑

α Pα = 1.
For a convenient initial wave function (unentangled, for

example), once the realizations of each unitary and measure-
ment gate are specified as well as the measurement outcomes,
the many body wave function at any time step is determined,
by following the transformations defined in Eqs. (3) and (4).
This pure state time evolution is known as a quantum trajec-
tory [21]. As emphasized in Refs. [13,14] the entanglement
physics of interest to us will not be contained in the time
evolution of the mixed state density matrix (appropriate when
or if the measurement results are summed over, rather than
tallied), which appears in more familiar treatments of open
quantum systems [22].

While unitary gates generically increase entanglement,
local measurements tend to reduce the entanglement entropy
on average. This competition is subtle since the effect of the

unitary gates on the entanglement is strictly local and incre-
mental [23], while the measurement operators are expected to
have some nonlocal effects on entanglement. Moreover, this
competition could lead to interesting entanglement dynamics
at early times. For example, in Ref. [13] the entanglement
dynamics can be mapped to the first passage percolation
[24–27] in certain limits, while in Ref. [14], sublinear power-
law growth of entanglement was observed at a critical mea-
surement rate, in contrast to the linear growth in purely
unitary circuits. Nonmonotonic growth of entanglement can
also occur in this type of circuit [12,28]. However, in this
paper we will primarily focus on the entanglement entropy of
the late-time steady state, rather than its early-time dynamics.
We leave a detailed study of the latter to the future.

The primary quantity we use to characterize the steady-
state wave functions is the Rényi entropy, defined as

Sn
A = 1

1 − n
log2 Tr(ρA)n, ρA = TrA|ψ〉〈ψ |, (5)

where (A, A) is a bipartition of the L-qubit system with A
being a contiguous subregion, and |ψ〉 is the pure state wave
function we obtain by following the quantum trajectory. A
closely related quantity is the mutual information between two
subregions,

In
A,B = Sn

A + Sn
B − Sn

A∪B. (6)

The mutual information is guaranteed to be non-negative
when n � 1.

For a large part of the paper, we will consider Clifford
circuits. In this case, all Rényi entropies are equal to each
other due to the flat entanglement spectrum [29,30], and we
will drop the Rényi index (the superscript n).

The generic circuit has three types of randomness: (i) a
random ensemble of unitary gates, (ii) the random locations
of the measurements, and (iii) the intrinsic random outcome
of each quantum measurement. We will mostly consider the
mean values of the entanglement entropies, averaged over the
various forms of randomness present in the circuit. As we
shall see in Sec. III, the distributions of the entanglement
entropies in the steady state are narrow, so well represented
by their averages.

III. THE PHASE DIAGRAM

In this section we discuss the phase diagram of a generic
circuit with random Clifford unitaries and random measure-
ment placements. Specifically, we consider circuits of the
structure exactly as in Fig. 1, wherein the unitary gates
are sampled from the uniform distribution on the two-qubit
Clifford group (see Appendix A), and the measurements are
taken to be single-qubit Pauli-Z measurements, namely P± =
(1 ± Z )/2, at random positions chosen independently with
probability p (the Poissonian fashion). We shall refer to this
specific model as the “random Clifford circuit,” in short.

The primary motivation for studying the random Clifford
circuits, rather than the more generic circuits with non-
Clifford gates (e.g., random Haar unitaries), is numerical
tractability. On the single gate level, the random Clifford uni-
taries approximate the random Haar unitaries quite well, being
known as a unitary 2-design [31]. Our expectation for the

134306-3



LI, CHEN, AND FISHER PHYSICAL REVIEW B 100, 134306 (2019)

equivalence in terms of the entanglement physics is partially
justified in Sec. VI, where comparisons are made between the
two circuits for small system sizes—and consistency is found.

The simulability of Clifford circuits is a result known
as the Gottesman-Knill theorem [17–20]. As reviewed in
Appendix A, the methodology involves following the dynam-
ics of “stabilizers”—mutually commuting and independent
Pauli string operators—that uniquely specify the wave func-
tion, and readily allow for calculation of the entanglement
entropy [23,32–34]. Clifford circuits have proven useful in
the study of entanglement and operator dynamics in various
contexts [23,35,36].

A. The steady state

Given a circuit of a finite length L of qubits, we are
primarily interested in the late-time behavior when T → ∞.
In this infinite time (circuit depth) limit we expect the system
to evolve into a steady state, characterized by a typical value
of entanglement entropy that depends on the measurement
rate p, but not the dynamics at finite times. To check that
this limit is well-defined, we compute the time dependence of
the entanglement entropies starting from two types of initial
states:

(1) The trivial product state,
∏

x |0〉x, which is a stabilizer
state, i.e., the simultaneous eigenvector with eigenvalue 1 of
its stabilizers G = {Z1, Z2, . . . , ZL}.

(2) The maximally entangled state, obtained by evolving
the random Clifford circuit without measurements well after
saturation.

The results, averaged over circuit realizations, are plotted
in Fig. 2(a). For all values of p and for both choices of the
initial state, the entanglement entropy saturates to a value
that is determined solely by p. We believe that this holds
for an arbitrary choice of the initial state. Therefore, we can
talk about the “steady state” for a given rate of measurement
without referring to the initial state. The steady state is thus a
bulk property of the circuit.

After saturation there are only minimal fluctuation in the
entropies over time. Moreover, the fluctuations are also small
over different circuit realizations. In Fig. 2(b) we plot the dis-
tribution of the entanglement entropy taken from an ensemble
of circuits, and over many time steps well after saturation.
Notice that the functions are sharply peaked for each p, and
fit well to the Gaussian distribution.

We define SA(p; |A|, L) to be the late-time entanglement
entropy of a subsystem with size |A|, when averaged over
different circuit realizations, for a circuit with length L and
measurement rate p. Given the (average) spatial translational
symmetry this quantity depends only on the size (but not
the location) of the subregion A. In the following we will
usually refer to this quantity as the entanglement entropy,
unless otherwise specified.

B. The two phases

Attempts have been made to map out the phase diagram
[12–14]. The limiting cases are easy to understand. When
p → 1, the steady state is close to a trivial product state, and
has area-law entanglement entropy. The other limit, p → 0,

FIG. 2. (a) Time dependence of the entanglement entropy SA

with |A| = L/2 and L = 512, in the random Clifford circuit averaged
over circuit realizations, starting from either a maximally entangled
state or a trivial product state. (b) Distribution function of SA for
different circuit realizations and over time well after saturation. The
solid lines are fits to a normal distribution.

corresponds to the random unitary circuit, where the steady
state is characterized by maximal volume-law entanglement
entropy [23]. The putative phase diagram is shown schemati-
cally in Fig. 3, which shows a volume-law phase and an area-
law phase separated by some critical rate of measurement,
pc. Whether pc is 0 or finite was not agreed upon in earlier
work.

FIG. 3. The phase diagram and scaling behavior of the entangle-
ment entropy in both phases and at criticality.
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FIG. 4. (a) Entanglement entropy SA(p; |A|, L) with fixed
|A|/L = 1/2, as functions of L, for different values of p.
(b) SA(p; |A|, L) with fixed L = 512, as functions of |A|, for different
values of p. Both plots are on a log-log scale. Notice that curves in
(a) and (b) corresponding to the same value of p < pc has the same
slope, s(p) (see main text).

Here our numerics for the random Clifford circuit sup-
ports a finite pc, consistent with [13,14]. In Fig. 4(a) we
plot the entanglement entropy SA(p; |A| = aL, L) for different
values of p as functions of L, with a fixed a = 1/2. We
find qualitatively distinct behavior of SA below and above
pc ≈ 0.16. For p < pc, the curves asymptote to straight lines
of slope 1 on a log-log scale, suggesting volume-law scaling
of the entanglement entropy, SA(p; |A| = aL, L) = s(p)L. For
p > pc, the curves are saturating to zero slope, suggesting an
area-law scaling, SA(p; |A| = aL, L) = c(p)L0.

In Fig. 4(b) we plot SA(p; |A|, L) as a function of |A| while
fixing L = 512. Similar scaling behavior is observed.

C. Entanglement entropy from stabilizer distribution

For Clifford circuits further information about the nature
of the two phases can be revealed by examining the stabilizer
distributions, as we now discuss. We start by listing several
results regarding the stabilizer formalism [17–20,23]. These
results are also reviewed in Appendix A.

(1) A wave function |ψ〉 in the Clifford circuit of L qubits
is uniquely characterized by L mutually commuting and in-
dependent Pauli string operators G = {g1, . . . , gL} such that
each one “stabilizes” the wave function, gi|ψ〉 = |ψ〉.
Elements of G are called stabilizers. Such a wave function
is called a stabilizer state or codeword. Only stabilizer states
appear in the Clifford circuit.

Being Pauli string operators, the stabilizers have endpoints
where they terminate. Specifically, we define the left and right
endpoints of a stabilizer to be

l(g) = min{x : g acts nontrivially on site x}, (7)

r(g) = max{x : g acts nontrivially on site x}, (8)

where x is the coordinate of the site, which takes values
in {1, 2, . . . , L}. For systems with periodic spatial boundary
conditions, there is an arbitrariness in choosing the origin of
the coordinate system, and there is no absolute distinction
between left and right. However, we note that the functions
l(g) and r(g) are well defined once the origin is chosen and
fixed, which we will always assume to be the case in the rest
of the paper.

(2) The choice of G is not unique. For any stabilizer state,
one can choose G such that there are exactly two stabilizer
endpoints on each site,

ρl(x) + ρr(x) = 2, for all sites x. (9)

We say G is in the clipped gauge [23].
Notice that G is not uniquely fixed by this gauge condition.

(3) Within the clipped gauge, the entanglement entropy
of a contiguous subregion A is given by half the number of
stabilizers that cross either its left or right boundary,

SA = 1
2 #{g ∈ G : [l(g) ∈ A and r(g) ∈ A] or

[l(g) ∈ A and r(g) ∈ A]}. (10)

With periodic spatial boundary conditions, the subregion A
can be either sites {x, x + 1, . . . , x + |A| − 1} when x + |A| �
L + 1, or x, x + 1, . . . , L, 1, 2, . . . , x + |A| − (L + 1) when
x + |A| > L + 1. In the clipped gauge, the entanglement en-
tropy is given solely by the end positions of the stabilizers,
and does not depend on their “internal” contents.

Consider the bigrams of stabilizer endpoints which encode
the “span” of each stabilizer,

B(G) ≡ {(l (g1), r(g1)), . . . , (l(gL ), r(gL ))}. (11)

As shown in Appendix A, for a given wave function this
object is unique, provided G = {g1, . . . , gL} is in the clipped
gauge. Generally there may be many different choices of G
that satisfy the (clipped) gauge condition, which all share
the same bigram. Nevertheless, the bigram fully characterizes
the entanglement entropy of the wave function(s) through the
relation in Eq. (10), being insensitive to the gauge redundancy.
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FIG. 5. The normalized stabilizer length distribution DG (�) plot-
ted on a log-log scale for a system with size L = 512. Here we take
α(pc ) = 1.6.

It is convenient to define the normalized stabilizer (spatial)
distribution function,

DG (x, y) = 1

L

L∑
i=1

δl(gi ),xδr(gi ),y, (12)

where the overline represents an ensemble average of the
bigrams taken over different circuits and times. We can also
define the normalized stabilizer length distribution function,

DG (�) = 1

L

L∑
i=1

δlen(gi ),�, (13)

where len(gi ) = r(gi ) − l(gi ). The latter is the integral of the
former,

DG (�) =
∑
x,y

δ�,y−xDG (x, y). (14)

For circuits with periodic spatial boundary conditions, our
numerics reveal (data not shown) that the spatial distribution
of the stabilizers for a particular length � is uniform, true at
each value of � and p:

DG (x, y) = DG (x′, y′) if y − x = y′ − x′. (15)

Thus, taking into account the geometric constraint that a
stabilizer with length � can only have its left endpoint in the
range (0, L − �), we have

DG (x, y) = DG (y − x)

L − (y − x)
≈ DG (y − x)

L
, (16)

where the last approximation applies when y − x � L/2.
These two distribution functions depend on each other through
a simple relation, and one can be inferred from the other.

In Fig. 5 we plot the distribution function DG (�) ≈
DG (x, y) × L, where � = y − x, at different values of p, for
fixed L = 512. The distribution function is quite remarkable.

(1) In the volume-law phase p < pc, the distribution is
“bimodal,” namely, a tail of “short stabilizers,” which is
checked to be independent of L (data not shown), and a peak
of “long stabilizers” at � ≈ L/2 [37]. On a log-log plot, the
short stabilizer distribution for p < pc looks like a straight

line with slope −2, corresponding to a power-law distribution
DG (�) ∼ �−2. The peak at � ≈ L/2 has nonzero weight in the
volume-law phase, and the weight vanishes continuously as
one approaches the critical point from p < pc.

(2) In the area-law phase, p > pc, the power-law distribu-
tion of “shorter” stabilizers becomes truly short-ranged.

The results in Fig. 5 can be schematically summarized as

DG (�) ∼

⎧⎪⎨
⎪⎩

α(p) 1
�2 + s(p)δ(� − L/2), p < pc

α(p) 1
�2 , p = pc

α(p) e−�/ξ

�2 , p > pc

, (17)

where α(p) is the weight of the power law, which has weak
dependence on p or L, s(p) is the weight of the peak, and
ξ is some finite length scale that cuts off the length of the
stabilizers in the area-law phase.

From the formula for entanglement entropy Eq. (10), we
see that for a region A with 1  |A|  L,

SA = 1

2

∫
x∈A

∫
y∈A

[θ (y − x)DG (x, y) × L + (x ↔ y)]

= 1

2

∫
x∈A

∫
y∈A

[θ (y − x)DG (y − x) + (x ↔ y)]. (18)

Combined with Eq. (16) and (17), we have

SA ∼
⎧⎨
⎩

α(p) ln |A| + s(p)|A|, p < pc

α(p) ln |A|, p = pc

α(p) ln ξ . p > pc

. (19)

This scaling behavior is consistent with our findings in
Fig. 4. When p < pc, the two parts of the distribution con-
tribute to the two terms separately: the volume-law entangle-
ment comes from the peak at � ≈ L/2, while the logarith-
mic correction comes from the power-law distribution of the
“shorter” stabilizers, which gets exposed at the critical point.

From the stabilizer length distribution, the existence of a
phase transition is rather obvious. The transition is accompa-
nied by the vanishing of s(p) as we approach pc from below,
and by the divergence of ξ as we approach pc from above.

IV. CRITICAL BEHAVIOR

A. Finite-size scaling of entanglement entropy

As seen from Eq. (19), the inverse-square power-law form
of the stabilizer length distribution at p = pc implies that
the entanglement entropy right at the critical point should
vary logarithmically with subsystem size. In Fig. 6(a) we plot
SA(p; |A|, L) with fixed values of L at pc, and see that it indeed
has the desired scaling form. The coefficient of the logarithmic
function matches well to that of the inverse square power law,
α(pc), as expected.

To further probe the entanglement transition, we consider
a finite-size scaling form for SA(p; |A| = aL, L),

SA(p; |A| = aL, L) = α(pc) ln L + F [(p − pc)L1/ν]. (20)

In order to match on to Eq. (19) in the thermodynamic limit,
the function F must be proportional to L when p < pc and
cancel the ln L term when p > pc. Therefore F (x) has the
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FIG. 6. (a) Entanglement entropy at the critical point fits well
to a purely logarithmic function, SA(pc; |A|, L) ≈ α(pc ) ln |A|, where
α(pc ) = 1.6, plotted for |A| < L/4. (b) Collapsing the SA(p; |A| =
L/2, L) data to the scaling form in Eq. (22), where we find pc = 0.16
and ν = 1.3.

following asymptotics:

F (x) ≈
⎧⎨
⎩

|x|ν, x → −∞
const, x = 0
−α(pc)ν ln |x|. x → +∞

. (21)

Therefore, from Eq. (19) we identify s(p) with (pc − p)ν for
p < pc, and ξ with |p − pc|−ν having the meaning of the
correlation length.

This scaling form appeared in Refs. [13,38]. In Ref. [38]
this formula follows if or when the entanglement entropy can
be mapped to the change of the free energy caused by the
insertion of two boundary condition changing operators in a
two-dimensional classical spin model. These two operators
are inserted at the boundaries of the subsystem A and the
free energy cost for them can be represented as the logarithm
of the two-point correlation function. Deep within the two
phases, the volume-law and area-law scalings of the entropy
are consistent with the free energy of a domain wall connect-
ing the two boundaries of A in the ordered and disordered
phases of the classical spin model, with finite and zero sur-
face tensions, respectively. The logarithmic correction in the
volume phase would be accounted for by the contributions
to the free energy due to capillary wave fluctuations of the
interface in the ordered phase of the spin model [39,40]. Right
at the critical point the two-point correlation function of the
boundary condition changing operator decays as a power law.

Thus, upon taking logarithms, the coefficient α(pc) in the
entanglement entropy has the meaning of twice the scaling
dimension of the boundary condition changing operator.

In order to put Eq. (20) into a conventional finite-size
scaling form, we will subtract out the critical entropy to cancel
out the ln L term, and fit our entanglement entropy data to the
scaling form,

|SA(p; |A|=aL, L) − SA(pc; |A|=aL, L)|= F̃ [(p − pc)L1/ν].
(22)

In Fig. 6(b) we plot the left-hand side of Eq. (22) (with
a = 1/2) versus (p − pc)L1/ν for values of p both below and
above pc, choosing the exponent ν = 1.3 to give the best
scaling collapse. The quality of the data collapse supports the
existence of a diverging correlation length ξ ∼ |p − pc|−ν and
the validity of the scaling hypothesis near criticality.

Notice that in Ref. [14] a different scaling form was used
for data collapse, and a different ν was found.

B. Mutual information and correlations near criticality

The bipartite mutual information IA,B is one convenient
measure of correlations between two disjoint regions A and B.
Loosely speaking, it is the entanglement shared only between
A and B, but not with any third party. We will first focus on
the mutual information when the two regions A and B, of size
|A| = |B| = L/8, are antipodal in the system with periodic
boundary conditions, their centers separated by rA,B = L/2. In
both phases, away from criticality, we expect the mutual infor-
mation to fall off exponentially with the system size, varying
as IA,B ∼ exp(−L/ξ ), much like the behavior of correlation
functions in conventional finite temperature transitions away
from the critical point. Right at criticality we expect IA,B to be
enhanced due to the longer range correlation [13].

In Fig. 7(a) we plot the mutual information IA,B(p; |A| =
|B| = L/8, rA,B = L/2, L) as a function of p for different
system sizes. The mutual information has a peak at p = pc,
which gets sharper with increasing system sizes, as we expect.
Moreover, the height of the peak saturates to a constant that
is independent of L, which is consistent with the conformal
symmetry discussed in the next subsection.

In Fig. 7(b) we attempt a data collapse with the following
finite-size scaling form:

IA,B(p; |A| = |B| = L/8, rA,B = L/2, L) = f [(p − pc)L1/ν],
(23)

where f (x) ∝ e−c|x|ν , and c is a nonuniversal constant. The
collapse is with high quality, and the data fit well to the
predicted functional form of f (x).

The von Neumann mutual information serves as an upper
bound on the fluctuation of connected correlation functions
between two disjoint regions A, B [41],

IA,B � 1

2

|〈OAOB〉c|2
‖OA‖2‖OB‖2

, (24)

where 〈· · · 〉c denotes the connected correlation function, OA

and OB are operators on A and B, respectively, and ‖ · · · ‖ is
the operator norm. For the purpose of illustration, we take
A and B to be the same antipodal subregions as above with
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FIG. 7. (a) The mutual information, IA,B, with region sizes |A| =
|B| = L/8 and separation rA,B = L/2, as shown in the inset. (b) Data
collapse of the curves in panel (a), where we have taken ν = 1.3.
Dashed lines show the function f (x) = e−c|x|ν where c ≈ 1.7.

|A| = |B| = L/8, and the operators to be

OA =
∑
x∈A

Zx, OB =
∑
x∈B

Zx. (25)

In Fig. 8 we plot the averaged value of |〈OAOB〉c|2 as a
function of p. Notably, the curves all show a peak at pc, which
gets sharper as L is increased.

We emphasize that the average squared correlation func-
tion is only obtained by examining the quantum trajectories

FIG. 8. The squared correlation function for two regions A and
B, as shown in Fig. 7.

one by one, and cannot be written as the expectation value of
any operator,

〈OAOB〉2
c �= Tr(ρ OA∪B). (26)

Indeed, since ρ is the infinite temperature density matrix for
arbitrary p > 0, it does not contain any information about the
entanglement phase transition [13,14].

C. Emergent conformal symmetry at criticality

In one-dimensional equilibrium quantum critical systems,
the entanglement entropy and mutual information of the
ground state show universal scaling behaviors, as predicted by
conformal field theories (CFTs) [42]. The logarithmic scaling
of the entanglement entropy and the diverging correlation
length suggest that our nonunitary entanglement transition
might likewise be described by some appropriate CFT [13,38].

To check for such possible underlying conformal symme-
try, we compute the mutual information between two disjoint
intervals, whose size and locations can be varied. Let A =
[x1, x2], B = [x3, x4], C = [x2, x3], D = [x4, x1] be a partition
of the system. In a conventional CFT the mutual informa-
tion between A and B is related to a four-point correlation
function of boundary condition changing operators, IA,B =
F [〈φ(x1)φ(x2)φ(x3)φ(x4)〉]. As a direct consequence of the
conformal symmetry, it is a function only of the cross ratio
[43],

IA,B = f (η), where η ≡ x12x34

x13x24
, (27)

where xi j is taken as the chord distance, xi j =
L
π

sin ( π
L |xi − x j |) because of the periodic boundary condition.

We numerically compute the mutual information for a
sequence of choices for the partition such that the cross ratio
takes value across several orders of magnitude. In Fig. 9(a)
we plot the mutual information versus the cross ratio at the
critical point. We find that the data points lie on a single curve,
confirming the CFT prediction. In the limit η  1, we find
IA,B ∝ η�, where � ≈ 2.

One interesting regime is when A and B are distant sites,
|A| = |B| = 1  rA,B  L. Here η ∝ r−2

A,B, so that

IA,B ∝ r−2�
A,B . (28)

Since the left and right boundaries of A (or B) are close, one
can apply the operator product expansion (OPE) to simplify
the four-point correlation function, and the mutual informa-
tion can now be viewed as the sum of two-point correlation
functions between operators that appear in the OPE. The
dominant term comes from the operator with lowest scaling
dimension, which can now be identified with � in the putative
underlying CFT.

We can also consider another regime where η  1. Let
|A| = |B| = aL, with a  1 and rA,B = L/2, so that η ∝ a2.
We thus have

IA,B ∝ η� ∝ a2� =
( |A|

L

)2�

, (29)

as verified in Fig. 9(b) with � = 2, and confirming the result
in Fig. 7 where the height of the peak saturates to a constant
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FIG. 9. (a) Data collapse for the mutual information, IA,B, at pc

as a function of the cross ratio η, on a log-log scale. The red line
corresponds to η2.1. (b) Fitting IA,B at pc to Eq. (29), where we vary
|A| = |B| but keep rA,B = L/2 fixed. The red line shows the function
(|A|/L)4.

with increasing L. This setup will prove useful in extracting
� in other models.

To summarize, the numerical results strongly support an
emergent conformal symmetry at the critical point and open
up the possibility of an underlying CFT description.

V. CIRCUITS WITH SYMMETRY

In previous sections we have been focusing on stochastic
circuit models which have three types of randomness present:
(1) spatial and temporal randomness in the unitary gates,
(2) spatial and temporal randomness in the positions of the
measurements, and (3) stochasticity in the measurement out-
comes. Due to (1) and (2) these models are quite generic, with
no imposed symmetries or constraints (excepting the Clifford
constraints). In this section we consider simple Clifford circuit
models which have additional constraints imposed, involving
space or time translational symmetry. In all examples con-
sidered we find the existence of a phase transition sharing
similar critical exponents with the random Clifford circuit.
Remarkably, this is true even for our most constrained model
which has both space and time translational symmetry in
the unitary gates and the measurement locations (spatially
uniform Floquet)—the only remaining stochasticity being the
measurement outcomes. This indicates the ubiquitous and

FIG. 10. The Floquet Clifford circuit model within one time
period. Measurements are made at random locations between each
adjacent unitary layer. The CNOTL/R gate is the controlled-NOT gate
with the left/right qubit as the control, and P and H are the phase
gate and the Hadamard gate, respectively (see Appendix A).

universal character of the entanglement transition in hybrid
unitary-measurement systems.

A. Floquet circuits with randomly located measurements

Unitary circuit models without measurements are naturally
adapted for mimicking systems with periodic drive [44–48].
In such circuits, the unitary gates are periodic in time, but
could be either random or regular in space. As for unitary
Hamiltonian dynamics, there is a notion of chaos in such
Floquet circuits, as diagnosed by the entanglement growth
[49,50], the operator growth (and butterfly effect in out-of-
time-order correlator) [51], the level spacing statistics and
the spectral form factor [45,46,48,52], etc.; familiar examples
include the kicked Ising model, which will be discussed in the
next section. The temporal randomness is not essential for the
development of chaos.

Here we first examine the measurement-driven entangle-
ment transition in Floquet Clifford circuits where the unitary
background has both spatial and temporal translation symme-
tries, but the measurements are still made at random positions,
as shown in Fig. 10. We choose the Floquet Clifford unitaries
to be “chaotic,” having a recurrence time that is exponential
in the system size and maximal entanglement at shorter times.
For the Clifford gates shown in Fig. 10 we check that this
holds by examining small system sizes (data not shown).

For the circuit in Fig. 10 the results for our numerical sim-
ulation are shown in Fig. 11. The stabilizer length distribution
shown in Fig. 11(a) has a behavior very similar to that of
the random Clifford circuit, clearly indicating the existence
of both a phase transition and of SA = α ln |A| + s|A| scaling
of the entanglement entropy in the volume-law phase. The
coefficient of the critical logarithmic entropy, α(pc) ≈ 1.6,
as extracted from the stabilizer length distribution, is close
in value to that of the random Clifford circuit. Moreover,
we can fit the entanglement entropy data near the transition
with the finite-size scaling form in Eq. (22) using the same
critical exponent ν ≈ 1.3, and find a reasonable collapse [see
Fig. 11(b)]. Finally, from the mutual information at criticality
for the geometry as in Fig. 9(b), we can extract the exponent
� ≈ 2 [see Fig. 11(c)], consistent with the random Clifford
circuit results.
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FIG. 11. Numerical data for the circuit in Fig. 10. (a) The nor-
malized stabilizer length distribution for L = 512, where α(pc ) =
1.6. (b) Collapsing the SA(p; |A| = L/2, L) data to the scaling form
in Eq. (22), where we set pc = 0.075 and ν = 1.3. (c) Mutual
information at pc for the geometry as in Fig. 9(b). We can similarly
extract the exponent � ≈ 2 from the data with |A|/L  1.

B. Random unitary circuit with periodic measurements

We next consider a circuit in which the measurements are
arranged (quasi)periodically, while the background unitary
circuit is still composed of random Clifford unitaries, as
illustrated in Fig. 12. Specifically, at a fixed measurement rate
p, for each space-time site (x, d ) a measurement is made if
and only if

�x
√

p� < �(x + 1)
√

p� and �d
√

p� < �(d + 1)
√

p�, (30)

where �r� is the largest integer that is not greater than r.
In Fig. 13 we plot the numerical results for this circuit, and

observe behavior that is essentially the same as in the earlier

FIG. 12. Two examples of circuits with random Clifford unitaries
but quasiperiodic measurements, for (a) p < 0.5, and (b) p > 0.5.

models—both the random and Floquet Clifford circuit models
with randomly located measurements. Evidently, eliminating
the randomness in the locations of the measurements does not
change the existence—or universality class—of the entangle-
ment transition.

C. Circuits with space-time translational symmetry

Last, we consider a circuit with translational symmetry in
space and time for both the unitaries and measurement posi-
tions. The only remaining stochasticity is in the randomness in
the outcome of a measurement, which is intrinsic to quantum
mechanics.

In our circuit we superpose the Floquet unitary background
in Fig. 10 with the quasiperiodic measurement pattern in
Fig. 12. Numerical results are shown in Fig. 14. As compared
to our earlier models, we once again find essentially the same
stabilizer length distribution indicative of two phases and
an entanglement transition. Moreover, the critical exponents
ν = 1.3 and α(pc) = 1.6 at the entanglement transition are
the same as in the other models.

The significant fluctuations in Fig. 14 are due to the lack
of averaging—since we have only a single circuit in this
case there is no ensemble averaging. Moreover, for Clifford
circuits with Pauli measurements, the measurement outcomes
are represented by the signs of the stabilizers and do not
affect the entanglement structure or the mutual information.
Thus, the randomness in the measurement outcomes has no
effect on the quantum information quantities here, and we
have an almost deterministic Clifford circuit. The only type
of averaging available is as a function of time.
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FIG. 13. Numerical data for the circuit in Fig. 12 with peri-
odically located measurement gates. (a) The normalized stabilizer
length distribution for L = 512, where α(pc ) = 1.6. (b) Collapsing
the SA(p; |A| = L/2, L) data to the scaling form in Eq. (22), where
pc = 0.162 and ν = 1.3. (c) Mutual information at pc for the same
geometry as in Fig. 9(b), where we identify � ≈ 2.

VI. BEYOND CLIFFORD

In this section we explore the transition in qubit systems
beyond the stabilizer formalism.

A. Random Haar circuit

Consider the random Haar circuit with the structure shown
in Fig. 1, where each rectangle now represents a two-qubit
gate which is a 4 × 4 matrix chosen randomly and indepen-
dently from the Haar measure of the unitary group [15,16,53].
Without measurements, this is a minimal model to study
operator dynamics and chaos propagation in systems with
small onsite Hilbert space and local interaction [35,54]. With

FIG. 14. Data for a Clifford circuit with space-time translational
symmetry, as defined in subsection V C. (a) The normalized stabilizer
length distribution for L = 512, where α(pc ) = 1.6. (b) Collapsing
the SA(p; |A| = L/2, L) data to the scaling form in Eq. (20), where
pc = 0.08 and ν = 1.3.

measurements, it is the most generic model in which the
unitary-measurement dynamics can be addressed.

1. Random Haar circuit with projective measurements

We first consider the random Haar circuit with projective
measurements. As in Fig. 1, the single site projective measure-
ments, taken to be P± = (1 ± Z )/2, are introduced on each
site independently with probability p. This model is closest in
spirit to the random Clifford circuit studied in Secs. III and
IV, with which comparisons should be made.

As for the Clifford circuits, we use mutual information
between two antipodal regions (in a system with periodic
boundary conditions) to diagnose the putative phase transi-
tion. This approach is particularly useful for small systems
with L = 20, where it is hard to distinguish between volume-
law and area-law scaling behavior by directly looking at the
entanglement entropy. The numerical results, where the two
regions are taken to be single sites, are shown in Fig. 15.

We notice that the mutual information for all Rényi indices
show a peak, signifying the existence of a transition. Within
the Haar circuit, Rényi entropies and the mutual information
can depend on the Rényi index n, and we discuss them sep-
arately. For I0

A,B, the peak is located at pc = 0.5, as predicted
by the percolation mapping [13] (see the inset of Fig. 15).
This situation is different for In

A,B with n � 1, whose peaks are
located at p much smaller than 0.5, and there is no obvious
mapping to percolation [55]. While these peaks are rather
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FIG. 15. The mutual information for the random Haar circuit
with projective measurements. In the numerical simulation the two
regions A and B have size |A| = |B| = 1 and are antipodal in a system
with periodic boundary conditions of size L = 20. Here the regions
A and B are single sites.

broad due to finite-size effects, they sit close to one another,
suggesting that pc is independent of n for n � 1—i.e., there is
a single transition (instead of a different transition for each n).

As discussed in Sec. IV, the fluctuation in the connected
correlation function is upper bounded by the mutual informa-
tion. We consider the following quantity in this model:

|〈OAOB〉c|2, where OA = Z1 and OB = Zr+1, (31)

and the distance r is varied. In our numerical calculations
shown in Fig. 16, we find that it takes a similar form as I1

A,B
and has a peak at the corresponding pc.

2. Random Haar circuit with generalized measurements

Projective measurements can be generalized to measure-
ments that model imperfect measuring devices, known as
“generalized measurements” or “weak measurements” [20].
Here the coupling between the system and the measuring
device is weak, and less information (� one bit) is extracted
from the system by one such measurement. We consider a
model in which the single site measurement gates in Fig. 1
are taken to be generalized measurements with operators,

M± = 1 ± λZ√
2(1 + λ2)

. (32)

These measurement operators satisfy the required complete-
ness relation, M†

+M+ + M†
−M− = 1. The parameter λ rep-

resents the measurement strength: in the limit λ → 0, the
system and the measuring device are totally decoupled and
M± acts trivially on the wave function, while in the limit
λ → 1, it becomes a projective measurement. For simplicity,
we take the measurement rate p = 1 so that the generalized
measurements are uniformly applied to each and every qubit
in the circuit. Notice that these generalized measurements do
not have a Clifford counterpart.

In Fig. 17(a) we present results for In
A,B, where we find a

peak for n � 1. The closeness of the peaks again suggests a
single phase transition, as in the Haar circuit with projective

FIG. 16. Comparison between (a) the mutual information and
(b) the squared correlation function, in the random Haar circuit with
projective measurements. In the numerical calculation A and B are
separated by distance r with |A| = |B| = 1 (see the inset).

measurements. Compared to the projective measurement case
we note that here there is no phase transition in S0

A—as long
as λ < 1, S0

A obeys a volume law. Moreover, we compute the
squared correlation function and find a peak close to λc [see
Fig. 17(b)].

Despite the uniformly imposed generalized measurements,
the wave functions are not completely disentangled as long as
λ < 1. Moreover, the volume-law phase is stable for λ < λc.

B. Floquet Ising circuits

As a generalization of the Floquet Clifford circuits from
Sec. V, we consider a Floquet Ising spin chain model with the
following Floquet operator:

UF = exp[−iτ0HZ ] exp [−iτ0HX ], (33)

134306-12



MEASUREMENT-DRIVEN ENTANGLEMENT TRANSITION IN … PHYSICAL REVIEW B 100, 134306 (2019)

FIG. 17. Data for the Haar unitary circuit with generalized mea-
surements. (a) The mutual information, I1

A,B, where A and B are
antipodal in the system with periodic boundary conditions. (b) The
squared correlation function as a function of λ. Here the two intervals
A and B are separated by distance r [see the inset of Fig. 16(b)]. In
both panels (a) and (b), we take L = 20 and |A| = |B| = 1.

where

HX = hX

L∑
j=1

Xj,

HZ =
L−1∑
j=1

ZjZ j+1 + hZ

L∑
j=1

Zj . (34)

The Floquet operator defines a one-dimensional periodically
driven system with period T = 2τ0. This Floquet model is
integrable when hZ = 0. We will focus on the generic noninte-
grable case with hZ �= 0. The circuit in Fig. 18(a) represents a

FIG. 18. (a) The Floquet operator is specified by a quantum
circuit. (b) The projective measurements are introduced in the circuit
after each two-qubit gate layer with probability p. (c) The general-
ized (weak) measurements are applied uniformly with p = 1 in the
circuit after each Floquet operator, UF .

particular discretization of the Floquet operator that we adopt.
For the special parameter set, (τ0, hX , hZ ) = (π/4, 1, 1), the
discretized Floquet operator falls within the Clifford group.
Without measurements, the Floquet circuit has both temporal
and spatial translational symmetries, and no randomness is
present.

1. Floquet Ising circuit with projective measurements

We introduce projective measurements in the Floquet cir-
cuit [see Fig. 18(b)], taking the measurement gates to be
P± = 1

2 (1 ± X ). The single-site projective measurements are
applied randomly in the same fashion as in Fig. 10.

In Fig. 19 we show data for the mutual information as a
function of p. Here we have taken the parameter hZ = 0.9,
with the rest of the parameters the same as the Clifford pa-
rameters. There is a peak in In

A,B, with the location of the peak
depending weakly on the Rényi index, which we identify as
pc. Again, the data support the existence of the entanglement
transition.

The dashed line in Fig. 19 shows the data for hZ = 1.0,
i.e., the Clifford limit in which there is no n dependence.
The Clifford curve is close to the n = 1 curve for the non-
Clifford circuit and gives a consistent estimation of pc. This
comparison further justifies using the Clifford circuits as a
convenient stand-in for more generic (non-Clifford) quantum
circuits.

134306-13



LI, CHEN, AND FISHER PHYSICAL REVIEW B 100, 134306 (2019)

FIG. 19. Mutual information In
A,B for the Floquet spin chain

model with projective measurements. A and B are antipodal in the
periodic boundary condition. We take L = 20 and |A| = |B| = 1.

2. Floquet Ising circuit with generalized measurements

We next introduce generalized measurements in the Flo-
quet spin chain model, again taking the measurement rate p =
1, so that the generalized measurements are uniformly applied
at each and every site after UF [see Fig. 18(c)]. The result for
the mutual information is presented in Fig. 20. Once again,
the presence of the peak is indicative of an entanglement
transition. As in the random Haar circuit with generalized
measurements, there is no phase transition in S0

A.

FIG. 20. Mutual information In
A,B for the Floquet spin chain

model with generalized measurements. A and B are antipodal in
a system of size L = 20 with periodic boundary conditions, while
|A| = |B| = 1. The Floquet parameters are chosen as (τ0, hX , hZ ) =
(0.8, 0.9045, 0.809) [44].

FIG. 21. The mutual information I1
A,B for the four non-Clifford

models studied in Sec. VI, each at their respective critical points,
plotted versus the cross ratio, η, on a log-log scale. Here the critical
values, pc and λc, were determined by the peak location of I1

A,B when
rA,B = L/2 = 10.

C. Various properties at criticality

1. The location of pc

The previous numerical results for random Haar circuit
and Floquet Ising model suggest that pc is independent of
the Rényi index n when n > 1. This result can be further
supported by the following inequality for Rényi entropies,

S∞
A � Sn

A � n

n − 1
S∞

A , (35)

where the second inequality holds when n > 1. Since Sn
A is

bounded on both sides by S∞
A , in the thermodynamic limit, the

scaling behavior of Sn
A (n > 1) must be the same at any p. This

indicates that the transition for Sn
A with n > 1 occurs at the

same pc and the critical exponent ν should also be the same.
However, the coefficient α in Sn

A(pc; |A|, L) = α(pc) ln |A| at
the critical point could depend on n.

2. Scaling of mutual information

As shown in Sec. IV C, for the Clifford circuits we were
able to extract the operator scaling dimension of a (putative)
underlying CFT from the scaling of mutual information at
criticality. Here we attempt the same for the four non-Clifford
models considered in this section. To this end, we compute
IA,B with fixed |A| = |B| = 1, varying the distance rA,B be-
tween the two sites. In this case the cross ratio varies as
η ∝ r−2

A,B  1.
In Fig. 21 we plot the mutual information as a function of

the cross ratio η, which is defined in Eq. (27) for a system with
periodic boundary conditions. At small values of η, the mutual
information for all four models varies as a power law, I1

A,B ∝
η� with � ≈ 2, consistent with the Clifford circuit results [see
Figs. 9(b), 11(c), and 13(c)].
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VII. DISCUSSION

A. Summary

In this paper we have investigated a broad class of hybrid
quantum circuit models constructed by interleaving unitary
and measurement gates, the latter breaking the circuits uni-
tarity. Under the circuit dynamics we have followed quan-
tum trajectories of the qubits, focusing on the entanglement
properties of the evolving pure state wave function at late
times (in the steady state). Entanglement generated by the
unitary gates competes with the disentanglement from the
measurements. As established numerically, upon varying the
frequency of measurements, p, the phase diagram has two
stable phases—a volume-law entangled phase when mea-
surements are rare/weak (p < pc), and an area-law entan-
gled phase when measurements are frequent/strong (p > pc).
These two phases are separated by a critical point at p = pc,
with associated universal scaling properties.

The entanglement entropy in the volume-law phase has a
remarkable subleading correction that is logarithmic in the
subsystem size, SA = α(p) ln |A| + s(p)|A|, as we established
by analyzing the length distribution of stabilizers used to sim-
ulate our Clifford circuits. The coefficient of the logarithm is
nonuniversal throughout the volume-law phase, but vanishes
in the absence of measurements, α(0) = 0. The coefficient of
the linear piece in the entanglement entropy, s(p), smoothly
vanishes as one approaches the phase transition from the
volume-law phase, scaling as s(p) ∼ ξ−1 ∼ (pc − p)ν with a
universal correlation length exponent ν ≈ 1.3. At the critical
point, the logarithmic scaling of the entanglement entropy
survives, with a universal coefficient given by α(pc) ≈ 1.6.
Moreover, the mutual information between two sites was
found to decay as a power law of the distance at the critical
point, r−2� with exponent � ≈ 2, while the bipartite mutual
information for more general geometries depends only on the
cross ratio, as expected for a conformal field theory (CFT). To-
gether with the logarithmic entanglement at pc, this suggests
the possible existence of an underlying CFT description.

It should be emphasized that these results were established
by considering a large class of quantum circuits, both with and
without Clifford gates. In addition to generic random models
with no symmetries, we also explored circuits with space-time
translational symmetries of the unitary dynamics and/or the
measurement gate locations. In all cases we found stable
volume-law phases with a logarithmic correction, and similar
critical exponents as in models without those symmetries.

B. Conjectures beyond numerics

Our findings suggest a remarkable degree of universality,
both at the phase transition and in the properties of the
volume-law entangled phase. We thus propose the following
conjectures for local circuit models in one dimension:

(1) In circuits with generic background unitary dynamics
and homogeneous arrangement of measurements, there exists
a stable volume-law entangled phase when measurements are
rare.

(2) In the volume-law phase, the entanglement entropy
always has a logarithmic correction.

(3) There is a continuous phase transition separating the
volume-law and area-law phases of the von Neumann and
higher Rényi entanglement entropies, with critical properties

FIG. 22. The entanglement entropy growth problem can be trans-
formed into a surface growth model. While the unitary entanglement
growth is local, the disentanglement of a local measurement (Zx1 ) can
be nonlocal.

in the same universality class as the models explored in this
paper (including both Clifford and Haar circuits) [56].

1. Volume-law phase and logarithmic correction

We now discuss a general framework incorporating mea-
surements and unitaries that can be used to help better un-
derstand and bolster our numerical results. As above, we
emphasize that the steady-state entanglement properties of
purely unitary circuits are qualitatively different from those
circuits with measurements. In the absence of measurements,
the steady state is maximally entangled, i.e., each subset A
has an entanglement entropy of SA = |A|. Measurements on
a portion p of all qubits immediately reduces SA from |A| to
(1 − p)|A|. This result is a direct consequence of the subaddi-
tivity of entanglement. Thus the maximally entangled state is
very susceptible to measurements. Indeed, if we assume that
this pSA reduction in SA is true for any volume-law entangled
state, we would reach the conclusion that no volume-law
phase should exist [12].

However, this intuition does not carry over to the case
for the generic volume-law entangled states present with
measurements, which, first, have a linear slope s smaller than
1 − p, so that the subadditivity bound on entanglement is
no longer tight. With less entanglement, local measurements
would have a weaker effect. Indeed, taking the limit of a trivial
product state, a local measurement has only a local effect
because of the lack of entanglement.

To illustrate this argument, we consider the following “sur-
face growth” picture, as considered in Ref. [13] and shown in
Fig. 22. Taking open spatial boundary conditions, we define a
“height” function, h(x), to be the entanglement entropy of the
subsystem containing the first x qubits,

h(x) = SA={1,2,...,x}. (36)

It is convenient to define the average height function,

h = 1

L

∑
x

h(x). (37)

In the volume-law phase, h ∝ L1, while in the area-law phase
h ∝ L0, similar to the scaling of the entanglement entropy
with subsystem size. Consider now the effect of the circuit
dynamics. At all times, h grows under unitary time evolution.
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After a unitary layer in the circuit, it is expected that

�U h ∝ L0. (38)

Recall that each measurement layer has pL measurement
gates distributed homogeneously across the L qubits, after
which the reduction in h̄ is

�Mh = 1

L

pL∑
i=1

L∑
x=1

[h(i)(x) − h(i−1)(x)]

=
pL∑

i=1

δMh
(i)

, (39)

where h(i) is the height function after the first i measurements

are made, and δMh
(i) = 1

L

∑L
x=1 [h(i)(x) − h(i−1)(x)] is the re-

duction of h by the ith measurement. Each of the δMh
(i)

has a
nonpositive expectation value.

At this point, we ignore the correlations and causal rela-

tions among measurements within the circuit, and treat δMh
(i)

for all measurements deep within the circuit as an independent
samplings of a single random variable, δMh. This simplifica-
tion is based on the assumption that in a generic circuit with
little structure, the disentanglement of a single measurement
should depend only on the entanglement structure of the
premeasurement wave function, which fluctuates weakly over
time after saturation.

Therefore, Eq. (39) can be simplified as

�Mh = (pL)
〈
δMh

〉
, (40)

where 〈· · · 〉 denotes the expectation value, taken within the
ensemble of all measurements after saturation. Here δMh
quantifies the disentangling ability of a single local measure-
ment.

By definition, within the steady state, the entangling and
disentangling effects must balance out, i.e., �U h + �Mh = 0,
therefore 〈�Mh〉 ∝ L0 or

〈δMh〉 = O

(
1

L

)
. (41)

This is a relation that must hold for all p > 0, regardless
of the steady-state entanglement entropy. In particular, it
must hold in any volume-law entangled state in the presence
of measurements, despite the fact that 〈δMh〉 = O(L0) in a
maximally entangled state and in a Bell pair state as discussed
in Ref. [12].

Direct numerical evidence for the validity of Eq. (41)
for all p > 0 can be established in our Clifford circuits, as
we now discuss. As detailed in Appendix B, we compute
the normalized distribution function of δMh for the random
Clifford circuit. Specifically, the distribution function of the
“disentanglement length” R ≡ −L × δMh, which we denote
as P (R), takes the following schematic form within the
volume-law and area-law phases:

P (R) ∼
{

R−γ (p), p < pc,

e−R/R0 R−γ (p), p > pc,
(42)

where R0 is proportional to the correlation length in the
area-law phase. Here the power γ (p), which varies with p
throughout the volume-law phase, grows as we increase p,

consistent with our intuition that less entanglement implies
less disentanglement. For p very small γ (p) appears to ap-
proach 2 and is close to 3 when p = pc, γ (pc) ≈ 3. Through-
out the volume-law phase γ (p) is always larger than 2. Thus,
despite the power-law distribution of the disentangling scale,
R, in the volume-law phase, the average disentangling length,
〈R〉 = ∫ L/2 dR RP (R) is finite for all p > 0. We then conclude
that 〈δMh〉 = −〈R〉/L = O(1/L), validating Eq. (41).

When restricted to Clifford circuits, the difference be-
tween the maximally entangled state and a general volume-
law entangled state in the presence of measurements is well
illustrated by the stabilizer length distribution. As we show in
Appendix B, within the clipped gauge, a local measurement
(say, Zx) replaces one of the L stabilizers with Zx, while
rearranging the others in a way that more or less preserve
their lengths. When p = 0, the stabilizer distribution function
is a δ function at � ≈ L/2. In other words, there are only long
stabilizers but no short ones. In this case, a local measurement
will inevitably replace a long stabilizer with Zx, causing a
nonlocal change in the entanglement structure, as seen from
Eq. (10). On the other hand, when p > 0, the power-law dis-
tribution of “shorter” stabilizers protects the long stabilizers in
the � ≈ L/2 peak from always being replaced by a unit length
one (Zx), so that the replacement and rearrangement only hap-
pens within the “shorter” stabilizers, thereby preserving the
volume-law entropy. In the (rare) case when a long stabilizer
does get replaced by Zx, the power-law distribution of “short”
stabilizers can shift to the right under unitary evolution and
compensate this reduction, rendering the distribution steady.
In all models that we have studied, the inverse-square power-
law distribution of the “shorter” stabilizers is present, giving
the subleading logarithmic correction to the entanglement
entropy. We might thus say that the logarithmic correction is
necessary for the stability of the volume-law phase.

It seems plausible that the power-law distribution in the
measurement-induced “disentanglement length,” P (R), and
the power-law distribution of the “shorter” stabilizers are
related to one another, but the exact relation remains unknown
to us. Although the distribution P (R) was computed for the
random Clifford circuit it is defined with complete generality,
and we believe that both the stability criterion γ > 2 as well
as the logarithmic correction are universal for volume-law
phases stable against measurements in generic hybrid circuits.

2. The nature of the phase transition

What can we say about the nature of the entanglement
phase transition beyond our numerical results? Ref. [13]
showed that in a circuit with random Haar unitaries and
single-qubit projective measurements, the zeroth Rényi en-
tropy S0

A can be mapped to a percolation-type problem. With
spatial randomness in the location of the measurements, it was
thereby concluded that S0

A exhibits an entanglement transition
in the universality class of the first passage percolation (FPP)
transition on a square lattice [24–27]. In this mapping, p
corresponds to the probability for a bond of the lattice to
be broken, and the entanglement entropy is mapped to the
minimal cut from the temporal boundary at time T in the
space-time manifold of the circuit, known as the “first passage
time.” Corresponding to the volume-law and area-law phases,
the minimal cut scales with L for small p, and is a finite
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constant for large p. Logarithmic scaling of entropy at the
critical point also follows from FPP.

From this perspective, it is perhaps surprising that we have
found phase transitions in models with no randomness in the
locations of the measurements, including the Clifford circuits
with spatially (quasi)-periodic measurements, and random
Haar and Floquet circuits with generalized measurements—
the generalized measurements acting uniformly on each and
every qubit. Indeed, for percolation the randomness in the
locations of the measurements is essential in producing fluc-
tuations in the size of “puddles” of broken bonds, which then
drives the percolation transition. With spatial periodicity, there
should be no transition for S0

A—the minimal cut will scale with
L for arbitrary p. Remarkably, this is entirely consistent with
our random Haar and Floquet circuit results with generalized
measurements for which no transition was found for S0

A,
consistent with volume-law entanglement for all λ < 1 (see
Sec. VI and Fig. 20).

However, the absence of a transition in S0
A does not pre-

clude transitions in higher Rényi entropies; these transitions
are seen explicitly for both generalized measurement models
in Sec. VI. Evidently, S0

A is very special and is quite different
from higher Rényi entropies with Renyi index n � 1, which
are more physically relevant. Indeed, in Fig. 16 the peak in
the spin-spin correlation functions are close to those given by
higher Rényi entropies, but far away from the peak in S0

A.
Even though all Rényi entropies in the Clifford circuit are

equal, the entanglement entropy has all the virtues of the von
Neumann entropy and is actually close in value (see Fig. 19).
Therefore, a numerical comparison in terms of critical expo-
nents between the percolation transition and Clifford circuits
should also illustrate the difference between the zeroth and
higher Rényi entropies. For Clifford circuits with or without
spatial and temporal translation symmetries, we consistently
find the critical exponents ν ≈ 1.3 and � ≈ 2; the latter even
holds beyond Clifford circuits. These values coincide with
those of percolation, as found in Ref. [13]. However, the
coefficient of the critical logarithmic entropy within Clifford
circuits, α(pc) ≈ 1.6, is much larger than the value predicted
by first passage percolation α(pc) = √

3/π ≈ 0.55 [13,57–
59] (notice the open boundary condition in Ref. [13]). Put
together, these results indicate that the percolation mapping
only works in the limit of Renyi index n → 0, and cannot give
a full characterization of the entanglement dynamics.

This point can be analytically understood in the context of
effective spin models for Rényi entropies with arbitrary n [60].
For n � 1, in addition to the cost of the minimal path, there is
an extra contribution from an “entropy term” which counts
the number of minimal paths of the same cost. This term is a
relevant perturbation and could drive the critical point away
from the percolation transition [13,60].

C. Outlook

At present, there is little analytical understanding of en-
tanglement dynamics (or of the steady states) in circuits with
measurements. For Clifford circuits, the motion of the end
point of the stabilizers under unitary and measurement gates
can be approximately modeled by a simple traffic-flow model
(discussed in Appendix B), which is related to an asymmetric

simple exclusion process (ASEP) [61]. Can one find an ex-
actly soluble model that belongs to ASEP and exhibits the
same type of entanglement transition as in the full Clifford
circuit? Alternatively, by analogy with the percolation map-
ping of S0

A in the random Haar circuit [13] with projective
measurements, can one find an effective description for the
generic transition in terms of a statistical mechanical model?
A simplification occurs in the random Haar circuit with large
onsite Hilbert space dimension q → ∞, which can be mapped
to an effective spin model [62], again described in terms of
bond percolation. In this limit, Sn

A is independent of n. It
would be interesting to study the nature of the phase transition
when q is finite but large, perhaps as a 1/q expansion [62].
Exploring the entanglement transition in higher dimensions,
d > 1, would also be interesting.

In the absence of measurements the dynamics of a ran-
dom Haar unitary circuit exhibits all of the characteristics
of quantum chaos [23,35,54]. With measurements present, it
would be interesting to explore signatures of quantum chaos
in the entanglement spectrum of the steady-state reduced
density matrix (e.g., the spectral form factor), especially in the
volume-law phase and at the critical point. Presumably, as one
passes through the entanglement transition into the area-law
phase there will be a chaotic to nonchaotic phase transition.

Hints of an underlying CFT at the hybrid circuit entangle-
ment transition suggest that there might be a dual holographic
description. If so, the possible role of the universal logarithmic
correction to the extensive entropy in the volume-law phase
might have interesting consequences for the putative “black
hole.”

A more general issue, beyond the hybrid circuit models,
concerns the disentangling effects of local measurements on
various many-body wave functions. For example, the expo-
nent γ (when it is defined) appears to be fundamental.

Last, one might ask whether experimental realizations of
the measurement induced entanglement transition are pos-
sible. As we showed numerically, generalized weak mea-
surements in a circuit with spatial and temporal translational
symmetry are sufficient to drive the transition, so one does
not require perfect projective measurements or ensemble av-
erage. Eliminating such fine tuning might perhaps lighten the
experimental challenges in accessing the transition. However,
directly measuring the entanglement entropy or the enhanced
fluctuation of correlation functions (as discussed in Sec. IV)
requires preparing several copies of the same wave function at
the end of the circuit evolution. This is usually exponentially
expensive due to the intrinsic randomness in the measurement
outcomes, therefore a naive protocol based on postselection
is not scalable. Whether it is possible to access the transition
experimentally remains an open question.
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APPENDIX A: BRIEF REVIEW OF THE STABILIZER
FORMALISM AND GAUGE FIXING

1. Basics

In this subsection we review the stabilizer formalism
and Clifford circuits. The references for this subsection are
Refs. [17–20,23].

a. Codewords, stabilizers, and gauge freedom

The defining property of the Clifford circuit is that the pure
state wave function |ψ〉 at any time is a codeword, the simul-
taneous +1 eigenstate of L mutually commuting and linear
independent (under multiplication) Pauli string operators

G = {g1, . . . , gL} ⊂ P+(L), P+(L) = {g ∈ P (L) : g2 = 1},
(A1)

among which none of the gi is proportional to the identity.
These Pauli string operators generate the stabilizer group
[17,63] of the codeword, denoted S (|ψ〉) = 〈G〉, or simply
S . The codeword is uniquely determined given the stabilizer
group, and the stabilizer group is uniquely determined given
the codeword |ψ〉,

S = {g ∈ P+(L) : g|ψ〉 = |ψ〉}. (A2)

One can explicitly write all elements of S given G,

S = {
gp1

1 gp2
2 . . . gpL

L : (p1, . . . , pL ) ∈ {0, 1}L
}
. (A3)

In this case, we also write G = G(S ), which means the same
thing as S = 〈G(S )〉. Because of the linear independence of
G, each element of S has a unique representation in this form,
hence there is a one-to-one mapping between {0, 1}L and S . It
follows that S is a finite Abelian group of order |S| = 2L.

Being a finite Abelian group, and with each element of
order 2, S can be viewed as an L-dimensional vector space on
Z2, and group multiplication can be viewed as addition in this
vector space (ignoring phase factors). Thus, an independent
generating set G(S ) corresponds to a choice of basis for this
vector space. Such a choice is not unique, and the freedom
in choosing G(S ) is referred to as the gauge freedom in this
paper.

For the rest of this Appendix, we will always take G(S ) to
be an independent generating basis (thus has L elements), and

use the word stabilizer for elements of G(S ). When we talk
about a codeword state, we mostly work with its stabilizers,
G(S ).

b. Simulating Clifford circuits

We briefly review our simulation of the Clifford circuits
with Pauli measurements. The main result we use is the
Gottesman-Knill theorem.

First, consider the action of a unitary operator, U . For a
state |ψ〉 whose stabilizer group is S = {g1, . . . , g|S|}, the
state evolves as |ψ〉 �→ U |ψ〉, while the stabilizer group
evolves as

S �→ SU = {
gU

1 , . . . , gU
|S|} = {Ug1U

†, . . . ,Ug|S|U †
}
. (A4)

For the state to remain a codeword under unitary time evo-
lution, the unitaries must be taken from the Clifford group,
which transforms a Pauli string operator g into gU = UgU †

that is still a Pauli string operator. Thus, SU remains a group
of Pauli string operators, hence the wave function remains a
codeword. To simulate a circuit under Clifford unitary evolu-
tion, one needs only to keep track of S , or equivalently (and
more conveniently) its generating set G(S ). Such a simulation
takes only polynomial time in L.

It is common knowledge that the Clifford group on two-
qubits is generated by {CNOT, SWAP, H, P}, where in the
standard bases

CNOT =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠,

SWAP =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠, (A5)

H = 1√
2

(
1 1
1 −1

)
, P =

(
1 0
0 i

)
. (A6)

The CNOT gate defined here is also known as CNOTL,
whereas CNOTR = SWAP · CNOTL · SWAP.

Next we consider Pauli measurements, that is, measuring a
Pauli string operator g.

Let G = {g1, . . . , gk, gk+1, . . . , gL} be the stabilizers of |ψ〉
and suppose that [g j, g] = 0 for j � k, and {g j, g} = 0 for j >

k. After the measurement, there are two possible outcomes (1
or −1), hence two possibilities of the measured wave function,

|ψ〉± ∝ 1 ± g

2
|ψ〉. (A7)

Their corresponding probabilities can be computed, as de-
tailed in Ref. [19]. Remarkably, the measured state is still a
codeword, and its corresponding stabilizer group is generated
by the following stabilizers [20]:

G± = {g1, . . . , gk, gk+1gk+2, . . . , gL−1gL,±g}. (A8)

Such a simulation can also be performed in polynomial time.
We use the particular algorithm in Ref. [19] for our simu-

lation of the Clifford circuits, where we take the unitary and
measurement gates to be local.
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c. Generating random Clifford unitaries

In the random Clifford circuit, the local unitaries are taken
from the uniform distribution on the two-qubit Clifford group.
Here we explain the sampling process from the L-qubit Clif-
ford group C(L) [64]. It applies to L = 2 as a special case.

First, we notice that the Clifford group acts on the Pauli
group transitively, and that a Clifford unitary U is determined
(up to a sign) by images of the generators of P+(L), con-
veniently taken to be {X1, Z1, . . . , XL, ZL}. Thus, sampling
a random Clifford unitary is equivalent to sampling random
images of the generators. We proceed by induction and start
with assuming that one is able to sample from the uniform
distribution on C(k). Now consider the action of a random
Clifford unitary on {Xk+1, Zk+1}. Since the random unitary
is taken from the uniform distribution, it maps Xk+1 to all
the nonidentity elements of P+(k + 1) with equal probability.
XU

k+1 is essentially a random nontrivial Pauli string operator of
length k + 1; there are 2(4k+1 − 1) choices, where the factor
of 2 comes from the sign. ZU

k+1 is also almost random, except
that it must also square to 1 and anticommute with XU

k+1; there
are 2(2 × 4k ) choices.

Having randomly chosen XU
k+1 and ZU

k+1, we can find one
unitary U ′ [again represented by its action on the generators of
P+(k + 1)] such that XU ′

k+1 = XU
k+1 and ZU ′

k+1 = ZU
k+1 satisfying

the following relations:

(U ′)†XU
k+1U

′ = Xk+1, (A9)

(U ′)†ZU
k+1U

′ = Zk+1. (A10)

To preserve the commutation relations, we must have for
i � k,

(U ′)†XU
i U ′ = (. . .) ⊗ Ik+1, (A11)

(U ′)†ZU
i U ′ = (. . .) ⊗ Ik+1, (A12)

which is equivalent to

XV
i = (. . .) ⊗ Ik+1, (A13)

ZV
i = (. . .) ⊗ Ik+1, (A14)

where V = (U ′)†U is now shown to be in the Clifford group
of the first k qubits. Thus to sample U from C(k + 1), we just
need to sample V from C(k), and multiply it by U ′ (which is
determined by XU

k+1 and ZU
k+1, which are also random), to get a

random U from C(k + 1). Since it is easy to generate elements
in C(1), we know how to generate elements in C(k + 1), by
induction.

From the above, we get the following recurrence relation:

|C(L + 1)| = 2(4L+1 − 1) × (4L+1) × |C(L)|, (A15)

where the first factor corresponds to the number of choices of
the image of XL+1, and the second factor corresponds to that
of ZL+1.

d. Entanglement entropy from stabilizers

Given a pure state wave function |ψ〉, the nth Rényi entan-
glement entropy with respect to a given bipartition (A, A) is

defined to be [cf. Eq. (5)]

Sn
A = 1

1 − n
log2 Tr(ρA)n, where ρA = TrA|ψ〉〈ψ |.

When |ψ〉 is a codeword, the Rényi entropies are independent
of the Rényi index n and are related to its stabilizers through
the following relation [23,33,34]:

SA = |A| − log2 |SA|, (A16)

where SA is the subgroup of S of all elements that have trivial
content (I) on A. Equivalently,

SA = |A| − |G(SA)|, (A17)

where G(SA) is an arbitrary generating set of SA.
We recall an alternative formula as derived in Ref. [23].

Define the linear operator projA such that projA(S ) contains
all elements from S with their contents on A set to iden-
tity (“projected out”). In this notation we have |G(SA)| =
dim Ker(projA). By a theorem in linear algebra we have
dim Ker(projA) + dim Im(projA) = dim S = L, so that

SA = |A| − dim Ker(projA)

= |A| − [L − dim Im(projA)]

= dim Im(projA) − |A|, (A18)

or, interchanging the roles of A and A,

SA = SA = dim Im(projA) − |A|
= rank(projA(S )) − |A|. (A19)

Given the entanglement entropy, the computation of the
bipartite mutual information is immediate.

e. Computing Pauli correlation function

Consider the following ZZ correlator for the state ψ ,

cxy = 〈ψ |ZxZy|ψ〉, (A20)

which can be written as a difference,

cxy = 〈ψ |1 + ZxZy

2
|ψ〉 − 〈ψ |1 − ZxZy

2
|ψ〉 (A21)

= p+ − p−, (A22)

where the first term is the probability of measuring the Pauli
operator g = ZxZy and getting +, and the second of getting −.
Since the probabilities can be computed [19], the computation
of correlation functions of Pauli string operators is straightfor-
ward.

2. The clipped gauge

In this subsection we review the clipped gauge and the
clipping algorithm introduced in Ref. [23] and slightly extend
the computation of entanglement entropy within this gauge.

Consider an L-qubit codeword |ψ〉 with stabilizer group
S , where S = 〈G(S )〉. For a stabilizer g ∈ G(S ), we define
l(g) to be the position of the left endpoint and r(g) to be the
position of the right endpoint, as in Eqs. (7) and (8),

l(g) = min{x : g acts nontrivially on site x}, (A23)

r(g) = max{x : g acts nontrivially on site x}, (A24)
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where x is the coordinate of the site, which takes values
in {1, 2, . . . , L}. For systems with open spatial boundary
conditions, there is a natural coordinate system: we label the
sites sequentially, from the left boundary to the right one. For
systems with periodic spatial boundary conditions, there is an
arbitrariness in choosing the origin of the coordinate system,
and there is no absolute distinction between left and right.
To resolve this arbitrariness we will assume that the origin
is chosen and fixed (by hand), so that the functions l(g) and
r(g) are well defined.

We further define ρl and ρr, the densities of left and right
endpoints, to be

ρl(x) =
L∑

x=1

δl(gi ),x, (A25)

ρr(x) =
L∑

x=1

δr(gi ),x. (A26)

The total number of left and right endpoints are conserved,
and

∑
x ρl(x) = ∑

x ρr(x) = L. It was shown in Ref. [23] that
it is always possible to “gauge fix” a stabilizer basis G in an
arbitrary gauge into the clipped gauge, where

(1) ρl(x) + ρr(x) = 2, for all sites x.
(2) For each site with ρl(x) = 2 or ρr(x) = 2, the two

stabilizers that end at x must have different content on x.

a. Clipping algorithm

We here give an explicit algorithm for gauge fixing an
arbitrary stabilizer basis G into the clipped gauge Gc, such that
〈G〉 = 〈Gc〉. We use the word “clipping” for this process. Such
a process was given in Ref. [23].

Clipping algorithm part 1. Given a stabilizer group S , there
exists an generating set G of S such that

(1) ∀x, ρl(x) � 2
(2) If ρl(x) = 2, the two Pauli operators at the left end-

points must be different.
We call this the pregauge condition. It is different from the

gauge condition in that it does not refer to the right endpoints
of the stabilizers.

[Sketch: Recall that elements of G can be viewed as basis
vectors of the L-dimensional vector space, S . For concrete-
ness, we construct an L × 2L matrix M on Z2, for which
the ith row corresponds to gi, where each Pauli matrix is
represented by two bits,

I �→ 00, X �→ 10, Y �→ 11, Z �→ 01. (A27)

Then we perform Gaussian elimination (row reduction) on M
to reduce it into the row echelon form [65]. The resultant
matrix, with each row viewed as a stabilizer, satisfy the
pregauge condition.]

Clipping algorithm part 2. A generating set G that satisfies
the pregauge constraint in part 1 can be transformed into the
clipped gauge while preserving ρl.

[Sketch: This is achieved by performing another Gaussian
elimination based on the resulting matrix of the previous
algorithm, focusing the right endpoints, from the right to
the left. In doing so, one has to always eliminate the longer
stabilizer by the shorter one. One can check that ρl is not
changed under this process. That the stabilizers commute with

FIG. 23. Illustration of the two cases in the proof of the Lemma.

each other guarantees that after the algorithm terminates, each
site has no more than 2 endpoints, and both left and right
endpoints satisfy the pregauge constraint in part 1. It follows
that the resultant G is in the clipped gauge.]

b. From clipped gauge to B(G)

Consider the following quantity (which we call bigrams)
defined for the generating set G in the clipped gauge,

B(G) ≡ {(l(g1), r(g1)), . . . , (l(gL ), r(gL ))}. (A28)

B(G) is a set of L ordered pairs.
Proposition 1. If 〈G〉 = 〈G ′〉, where G and G ′ are both

independent and in the clipped gauge, then B(G) = B(G ′).
But before we prove Proposition 1, it is helpful to state the

following
Lemma. Let G be in the clipped gauge. For an arbitrary

product of the stabilizers,

g = gi1 . . . gik , (A29)

where gi j ∈ G, and {i1, . . . , ik} are mutually distinct, we have

l(g) = min {l(gi1 ), . . . , l(gik )}, (A30)

r(g) = max{r(gi1 ), . . . , r(gik )}. (A31)

Intuitively, this is saying that the “span” of the product would
be the outer envelope of its factors.

Proof of the Lemma. Without loss of generality, let l(gi1 ) �
l(gi2 ) � · · · � l(gik ). According to the clipped gauge condi-
tion we have two possibilities (see Fig. 23):

(1) x = l(gi1 ) = l(gi2 ) < l(gi3 ) � l(gi4 ) � · · · � l(gik ).
In this case, the clipped gauge condition guarantees that the
gi1 and gi2 have different but nontrivial (X , Y , or Z) contents
on x, and gi j has trivial content (I) on site x, for j � 3. The
product g would then have nontrivial content on x, but trivial
content for y < x.

(2) x = l(gi1 ) < l(gi2 ) � l(gi3 ) � l(gi4 ) � · · · � l(gik ).
In this case, only gi1 has nontrivial (X , Y , or Z) content on x,
and gi j has trivial content (I) on site x, for j � 2. The product
g would then have nontrivial content on x, but trivial content
for y < x.

Thus l(g) = l(gi1 ) as claimed. A similar reasoning gives
r(g). �

Proof of Proposition 1: First recall that ρl/r in the clipped
gauge are completely fixed by the entanglement entropy
(which is a gauge invariant quantity) through the following
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relation [23]:

SA(x) =
∑
y�x

(ρl(y) − 1) =
∑
y>x

[ρr(y) − 1]. (A32)

To reach our conclusion, we are going to show that, for two
arbitrary generating sets G and G ′ (both in the clipped gauge),
the lengths of the ρl(x) stabilizers that start at site x are the
same for G and G ′, for all sites x.

(1) First, the case ρl(x) = 0 is trivial.
(2) Second, consider the case where ρl(x) = 1. Let gi ∈ G

and g′
i ∈ G ′, where l(gi ) = l(g′

i ) = x. Since both G and G ′ are
independent generating sets, gi has a unique representation as
products of elements from G ′, and conversely, g′

i has a unique
representation as products of elements from G, that is,

gi =
L∏

j=1

(g′
j )

p′
j , g′

i =
L∏

j=1

(g j )
p j , (A33)

where p j, p′
j take values in {0, 1}. Since l(gi ) = l(g′

i ), we
know pi = p′

i = 1 from the Lemma. Then, again from the
Lemma,

r(gi ) � r(g′
i ), (A34)

r(g′
i ) � r(gi ). (A35)

Hence r(gi ) = r(g′
i ), and gi and g′

i have the same lengths.
(3) Finally, consider the case where ρl(x) = 2, and

let gi, g j ∈ G, g′
i, g′

j ∈ G ′, where l(gi ) = l(g j ) = l(g′
i ) =

l(g′
j ) = x. We again have

gi =
L∏

k=1

(g′
k )p′

k , g j =
L∏

k=1

(g′
k )q′

k , (A36)

g′
i =

L∏
k=1

(gk )pk , g′
j =

L∏
k=1

(gk )qk . (A37)

Without loss of generality, assume r(gi ) � r(g j ) and r(g′
i ) �

r(g′
j ). From the Lemma, we know that

p′
i + p′

j � 1, pi + p j � 1, (A38)

q′
i + q′

j � 1, qi + q j � 1. (A39)

That is, gi must has a least one factor of either g′
i or g′

j , to have
its left endpoint at x. So from the Lemma we have

r(gi ) � min{r(g′
i ), r(g′

j )} = r(g′
i ). (A40)

Similarly,

r(g′
i ) � min{r(gi ), r(g j )} = r(gi ). (A41)

Hence r(gi ) = r(g′
i ).

Again, without loss of generality, assume r(gj ) � r(g′
j ), thus

r(gi ) � r(g j ) � r(g′
j ).

We observe that p′
j + q′

j � 1; otherwise p′
j = q′

j = 0, and
we must have p′

i = q′
i = 1, which implies that gi and g j have

the same content on x, in contradiction with the clipping
condition. Thus, from the Lemma, we must have at least one
of the following:

(1) r(gi ) � r(g′
j ), in which case

r(gi ) = r(g′
i ) = r(g j ) = r(g′

j ). (A42)

(2) r(g j ) � r(g′
j ), in which case

r(gi ) = r(g′
i ), r(g j ) = r(g′

j ). (A43)

Therefore, the stabilizers starting at x have the same length
in G and in G ′.

The above arguments work for every site x. We have thus
proven the Proposition. �

We immediately have the
Corollary. Let len(g) ≡ r(g) − l(g) and

DG (�) = 1

L

L∑
i=1

δlen(gi ),�, (A44)

where G = {g1, . . . , gL}. For G and G ′ satisfying the condi-
tions in the Proposition, we have

DG = DG ′ . (A45)

Thus, the length distribution of stabilizers in the clipping
gauge is well defined.

c. From B(G) to entanglement entropy

Define the following subset of G:

GA = {g ∈ G : g is supported only on A}. (A46)

Proposition 2. Let G be a generating set of S in the clipped
gauge, and A be a contiguous subregion of the system. Then
SA, defined in Eq. (A16) as the subgroup of S of all the
stabilizers that are supported only on A, is generated by GA.

Proof. Let gA be an arbitrary element of SA. It has the
following representation:

gA =
L∏

i=1

(gi )
pi , (A47)

where we recall that G = {g1, . . . , gL}, and pi = 0, 1. Suppose
gi is supported on both A and A. Either l(gi ) ∈ A or r(gi ) ∈ A.
From the Lemma, we see that pi = 0, otherwise gA will have
support on A, in contradiction with the assumption that gA ∈
SA. Thus, pi = 1 implies that gi is supported only on A.

We have shown that SA = 〈GA〉. �
Noticing that GA is also independent, from Eq. (A17) we

have the following corollary.
Corollary. The entanglement of a contiguous subregion A

is given by SA = |A| − |GA|.
From now on, we will assume that A is contiguous, unless

otherwise specified [66].
All the stabilizers in G can be divided into four types (see

Fig. 24):
(A) Those that are contained in A. These constitute GA. Let

there be a = |GA| of them.
(B) Those that have their right endpoint in A but left

endpoint outside A. Let there be b of them.
(C) Those that have their left endpoint in A, but right

endpoint outside A. Let there be c of them.
(D) Those that have their left and endpoints outside A. Let

there be d of them.
Counting the number of endpoints in subregion A, we have

2|A| = 2a + b + c. (A48)
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FIG. 24. The four types of stabilizers.

Thus

SA = |A| − |GA| = |A| − a = 1
2 (b + c). (A49)

When A contains the first site, b = 0, it reduces to the familiar
formula (A32). Surprisingly, the entanglement entropy of A
depends only on the endpoints of the stabilizers, but not the
contents of the stabilizers, as in the more general formulas
(A16), (A17), and (A19). This simplicity is present only in
the clipped gauge.

Several comments are in order:
(1) This formula works for any G that is in the clipped

gauge. It provides another proof that B(G), hence DG , are well
defined in the clipped gauge.

Here is an algorithm for getting B(G) from SA for all
contiguous subregions (segments) A. At the beginning of the
algorithm, we define the variables a[l,r] = |G[l,r]| for all seg-
ments [l, r], and let B = {}. In the wth stage of the algorithm,
we look at all segments [x, y] of length w (w = y − x + 1).
a[x,y] > 0 means that there are a[x,y] stabilizers that start at x
and end at y, and we add a[x,y] copies of (x, y) to B. Then we
subtract a[x′,y′] by the amount of a[x,y], for all [x′, y′] ⊃ [x, y].
This marks the end of the wth stage.

The algorithm terminates after L stages. The resultant
B gives the correct B(G). Hence, it is a quantity that is
uniquely determined by entanglement entropy (assuming
clipped gauge).

(2) It has the intuitive interpretation that the entanglement
is half the number of stabilizers that span the boundaries of
the subregion. In certain limits the formula reduces to simply
counting the number of entangled Bell pairs across the bound-
ary, which is an example we know and like. However, the Bell
pair picture fails to characterize multipartite entanglement
because of the trivial internal structure of the stabilizers.

APPENDIX B: ENTANGLEMENT DYNAMICS UNDER
CLIFFORD UNITARY-PROJECTIVE EVOLUTION

In this section, we try to give a simple picture for the
entanglement entropy for contiguous subregions starting from
the first site, which we define as the height function,

h(x) = SA={1,...,x}. (B1)

This is the same function considered in Ref. [23] and shown
in Fig. 22.

FIG. 25. Schematic illustration of the particle movement under
purely unitary evolution, from a trivial product state to a maximally
entangled state.

Alternatively, based on Eq. (A32), we can also consider
dynamics of ρl within the clipped gauge, which encodes
the same information as the height function. We will use
the pictorial representation in Fig. 25, where each blue dot
represents a left endpoint, and each white dot represents a
right endpoint. We will view the left endpoints as “particles”
and the right ones as “holes.” Recall that the clipped gauge
requires that the total number of dots on each site is 2.

For the convenience of discussion, we consider systems
with open boundary condition in this Appendix.

1. Unitary dynamics

Consider a local unitary on qubits x and x + 1, as in Fig. 25.
According to Eq. (A32),

ρl(x) + ρl(x + 1) − 2 = h(x + 1) − h(x − 1). (B2)

The local unitary on the bond (x, x + 1) does not change
h(x + 1) or h(x − 1); thus, restricting to the clipped gauge
before and after the gate, the quantity ρl(x) + ρl(x + 1)
remains the same as before the unitary gate. Moreover, ρl(y)
is left invariant by Ux,x+1 for y �= x, x + 1 for a similar reason.
Hence we have the following observation.

Observation. a local unitary gate on qubits (x, x + 1) can
redistribute particles only on sites x and x + 1, while leaving
particles on other sites untouched, as illustrated in Fig. 25.

If the unitary is taken from the Haar measure, and we take
the local Hilbert space dimension q to infinity, the entangle-
ment growth is governed by the following equation [23]:

h(x, t + 1) = min{h(x − 1, t ), h(x + 1, t )} + 1. (B3)

This is the crystal growth model. Since ρl is the derivative of
h(x), under the action of a random Haar unitary, the particles
within the range of action will drift to the left as much as
they can with the filling constraint ρl(x) � 2, while particles
outside the range of action stay where they are.

The difference between Clifford unitaries and random Haar
unitaries is that instead of ballistic movement, the particles
experience the biased diffusion with filling constraint. This is
captured by the KPZ equation derived in Ref. [23]. Without
further justification, we assume that this is the correct picture
for entanglement growth under Clifford dynamics.
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FIG. 26. Illustration of the hopping processes of the particles
under a local measurement at site x.

At long times t → ∞, all the particles will clump to the left
half of the system, corresponding to a maximally entangled
state (see Fig. 25). The fluctuation of h(x) around the maximal
value is expected to be small [23].

2. Measurement dynamics

Here we consider one-qubit Pauli-Z measurements and
their effects on ρl.

First, recall the transformation of G under the ef-
fect of a measurement of Zx in Eq. (A8). Let G =
{g1, . . . , gk, gk+1, . . . , gL} be in the clipped gauge and sup-
pose that [g j, Zx] = 0 for j � k, and {g j, Zx} = 0 for j >

k. The stabilizer group of the measured wave function is
generated by

G ′ = {g1, . . . , gk, gk+1gk+2, . . . , gL−1gL, Zx}. (B4)

This set does not necessarily respects the clipped gauge;
some clipping is necessary. In Appendix A we see that ρl is
determined by just the pregauge condition and is left invariant
by the second Gaussian elimination. Since we are focusing
on the ρl dynamics, it suffices to check only the pregauge
condition.

Observe that since x is disentangled from the rest of the
system after the measurement, Zx will remain in G ′ after
clipping.

FIG. 27. The normalized distribution function of R, on a log-log
scale.

In Eq. (B4), the ordering of the stabilizers is not essential;
different orderings correspond to the same wave function. For
convenience, we assume that gk+1, gk+2, . . . , gL are ordered
in such a way that their left endpoints are nondecreasing,

l(gk+1) � l(gk+2) � · · · � l(gL ). (B5)

The clipped gauge guarantees that gjg j+1 has the same left
endpoint as g j , for j > k. Thus, comparing ρl for G and G ′,
the net effect of a measurement Zx is the following:

ρl(l(gL )) → ρl(l(gL )) − 1, ρl(x) → ρl(x) + 1. (B6)

If we now run the clipping algorithm and check for the
pregauge (i.e., the first Gaussian elimination), it will find
that the pregauge constraints are satisfied for all y < x. The
first site that might violate this constraint is x. The clipping
algorithm would then check the constraint and move the left
endpoints to the right of x (the row elimination process), if
necessary.

The coordinate l(gL ) where a particle gets removed is the
rightmost left endpoint among stabilizers that anticommute
with Zx, which we define to be

lGmax = max{l(g) : g ∈ G,G clipped, and {g, Zx} = 0}.
(B7)

We define a similar quantity which will prove to be useful,

rGmin = min{r(g) : g ∈ G,G clipped, and {g, Zx} = 0}.
(B8)

Using this notation, we can further deduce the change of
ρl under a local measurement. There are three cases (see
Fig. 26):

(1) ρl(x) = 0 before measurement: It follows that lGmax <

x, and ρl(lGmax) � 1. After the operation in Eq. (B6), the
pregauge constraint is satisfied everywhere, and the algorithm
terminates. The height h(w) is reduced by 1 for w ∈ [lGmax, x).

(2) ρl(x) = 2 before measurement: It follows that lGmax =
x. After clipping, ρl(x) is reduced by 1, and that reduction
is compensated by the increase of ρl(y) for some y > x, for
which ρl(y) � 1 before the measurement.

If we view this processes from the perspective of ρr, it
would have the particle-hole symmetric dynamics, where the
symmetry operation is

x → L − x, ρ → 2 − ρ. (B9)

Consequently, the position y is equal to rGmin, and the height
h(w) is reduced by 1 for w ∈ [x, rGmin).

(3) ρl(x) = 1 before measurement: If this stabilizer has X
or Y on site x, the measurement has no effect on ρl(x). If this
stabilizer has Z on site x, the measurement will first hop a
particle from site lGmax < x to x, then hop a particle from x to
rGmin > x, as described in the previous two cases. The height
h(w) is reduced by 1 for w ∈ [lGmax, r

G
min).

Given these observations, we see that the effect of a local
measurement at x, in the particle picture, is to hop exactly
one particle across x via clipping. Thus we have an apparently
simple picture for the entanglement dynamics in the unitary-
measurement Clifford circuit in terms of the particles, which
are drifted to the left in a local fashion under unitary gates,
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and “hopped” to the right under measurements in a nonlocal
fashion.

What remains unspecified is the hopping distance, R, that
is, the distance between the initial and final positions of
the moving particle. This quantity takes the values x − lGmax,
rGmin − x, and rGmin − lGmax in the three cases above, respec-
tively. For concreteness, consider the following function:

H =
∑
w

h(w). (B10)

From the discussion above, it is easy to see that the change in
H after a time cycle is

�H = O(L) +
pL∑

k=1

(−Rk ), (B11)

where Rk is the distance of the hopping in the kth measure-
ment, and the O(L) terms comes from the unitary gates. We
replace the second term by its mean value,

�H = O(L) − pL〈R〉. (B12)

Within the steady state, the two terms must cancel out, so that
〈R〉 = O(1).

In Fig. 27 we plot the normalized distribution function of R,
denoted P (R), for several different values of p within a system
of size L = 128, within the random Clifford circuit. Within the
volume-law phase p < pc, the distribution function takes the
form of a power-law decaying function whose magnitude does
not depend on the system size (as we verify but not shown),
P (R) ∼ R−γ up to R ∼ L/2. Within the area-law phase the
distribution is short ranged. Schematically,

P (R) ∼
{

1
Rγ , p < pc,

e−R/R0

Rγ , p > pc,
(B13)

where γ , which varies throughout the volume phase, al-
ways satisfies γ > 2, and R0 is a finite length scale. As
of now, we have not understood this power-law distribution
and leave it for future work. Nevertheless, the expectation
values of the hopping distance can be readily computed, 〈R〉 =∫ L/2 dR RP (R).

In the volume-law phase, the mean value of R is finite (as
L → ∞) since γ > 2, while in the area-law phase this value
is finite regardless.

Notice that the quantity δMh, defined in Sec. VII, is propor-
tional to the hopping distance R within the Clifford context,
δMh = −R/L, so that 〈δMh̄〉 = O(1/L).

3. Toy particle traffic-flow model

The apparent simplicity of the dynamical rules governing
the particles motion in the Clifford circuit studied in the
previous subsection is somewhat misleading; to faithfully
simulate the particle dynamics, the knowledge of particle
densities are not enough, and one has to specify the internal
contents of the stabilizers (so as to obtain lGmax and rGmin). In
this subsection, we design an effective toy model which we
term the “traffic-flow model,” that aims to capture the essence
of the Clifford particle dynamics without resorting to a full
stabilizer simulation. As we shall see, the particles motion is

FIG. 28. (a) The average steady-state particle density for differ-
ent values of p with fixed L = 512. As seen in Eq. (A32), the volume-
law phase corresponds to a plateau in ρl(x) with height greater than
1, while the transition is signified by a continuous decrease of this
height to 1. There is clearly a particle hole symmetry in ρl(x) [see
Eq. (B9)] at all values of p. (b) Collapse of the entanglement entropy
using the scaling form in Eq. (20), where we choose ν = 1.33 and
pc = 0.56. (c) The particle density at the critical point. The data can
be fit to a slope −1 on a log-log scale, suggesting logarithmic scaling
of entanglement entropy [see Eq. (A32)], reproducing the result of
the full Clifford dynamics.

designed to mimic the motion of the stabilizers left endpoints
under both unitaries and measurements, as described in detail
in the previous subsection.

Specifically, we start with a one-dimensional system of
L sites with open boundary condition, and initially put in
L particles (mimicking the left endpoints of the stabilizers),
one on each site, as in a product state; the total number of
particles is conserved. At all times, we impose the constraint
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that on any site there are at most two particles, equivalent to
the clipping condition.

To imitate the random Clifford circuit, we choose the
particle motion under unitary gates to be ballistic and unidi-
rectional (to the left), instead of diffusive. The particle motion
under “measurements” is chosen to satisfy the following
simple rules:

(1) When ρl(x) = 0, choose the closest particle to the left
of x at y < x, and hop it from y to x.

(2) When ρl(x) = 2, choose the closest hole to the right
of x at z > x, and hop one particle from x to z.

(3) When ρl(x) = 1, leave the particle density untouched.
(4) After each measurement, the measured qubit is taken

out of the system, until the layer (with pL measurements)
terminates. This is because the measurements within the same
layer commute with each other, so that a site that is already
measured cannot serve as lGmax or rGmin for subsequent mea-
surements. Moreover, the temporal ordering of the measure-
ments is inessential given this rule, as expected.

In effect, we are replacing lGmax and rGmin above with
possibilities that are closest to x. This choice is of course
an oversimplification and is not faithful to real Clifford

dynamics. In particular, the hopping distance distribution is
strictly short-ranged (data not shown), and does not have the
power-law form. However, as we will see below, this toy
model captures some universal features of the random Clifford
circuit.

We numerically simulate this classical model and present
the results in Fig. 28. The function ρl shows a volume-law to
area-law transition, with similar critical exponents and loga-
rithmic scaling of entanglement at the critical point (although
the coefficient of the logarithmic function is significantly
smaller than α(pc) we found in earlier sections). Thus the
rules of our toy model are partially justified.

The traffic-flow model provides a different perspective for
studying entanglement dynamics. While our “traffic rules”
are oversimplified, one might still hope to design a set of
rules that faithfully represents the particle dynamics under the
full Clifford evolution. In fact, this framework could be more
versatile than what is already envisioned, and tweaking with
the rules might result in a whole class of different entangle-
ment dynamics, not necessarily within the same universality
class as the Clifford ones. We leave these studies to future
works.
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