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Disorder and interaction in chiral chains: Majoranas versus complex fermions
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We study the low-energy physics of a chain of Majorana fermions in the presence of interaction and
disorder, emphasizing the difference between Majoranas and conventional (complex) fermions. While in the
noninteracting limit both models are equivalent (in particular, belong to the same symmetry class BDI and flow
towards the same infinite-randomness critical fixed point), their behavior differs drastically once interaction is
added. Our density-matrix renormalization group calculations show that the complex-fermion chain remains
at the noninteracting fixed point. On the other hand, the Majorana fermion chain experiences a spontaneous
symmetry breaking and localizes for repulsive interaction. To explain the instability of the critical Majorana
chain with respect to a combined effect of interaction and disorder, we consider interaction as perturbation to
the infinite-randomness fixed point and calculate numerically two-wave-function correlation functions that enter
interaction matrix elements. The numerical results supported by analytical arguments exhibit a rich structure of
critical eigenstate correlations. This allows us to identify a relevant interaction operator that drives the Majorana
chain away from the infinite-randomness fixed point. For the case of complex fermions, the interaction is
irrelevant.
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I. INTRODUCTION

Topological states of matter represent one of the central
directions of the contemporary condensed matter physics [1].
Systems with topological order are usually characterized by a
gap in the bulk and “metallic” states at the boundaries. These
boundary states are robust against disorder-induced Anderson
localization as long as the disorder is not strong enough to
close the gap in the bulk [2–5].

One-dimensional (1D) systems with topological phases
are considered a potential platform for quantum computing
[6–9], as the quantum state is stored nonlocally and cannot
be destroyed by local, uncorrelated noise (as long as the
noise is not strong enough to close the bulk gap). For non-
interacting systems, the symmetry classification by Altland
and Zirnbauer [10] combined with the analysis of topologies
[11–14], extended also to various spatial symmetries [15,16],
has provided a systematic picture of possible topological
states. Despite the progress on extending this classification to
include weak interactions [17–19], it is still a formidable task
to determine which topological phases are present in a given
interacting systems. While noninteracting topological phases
are robust against disorder-induced localization, this is not
always the case for topological states in interacting systems.
In particular, in 2D superconductor systems, the combined
effect of disorder and interactions has been shown to break
entirely the topological protection [20,21]. The underlying
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mechanism is that disorder renders the interaction relevant in
the renormalization-group (RG) sense; see also Refs. [22,23]
for related physics. The fact that the interplay of interaction
and disorder may crucially affect the physics has been known
for a while [24]; recent works show that it is also of central
importance for topological states of matter.

In this work, we explore the effect of disorder and in-
teraction on the low energy physics of a chain of Majorana
quasiparticles commonly called Kitaev chain [25]. Note that
usually one studies the gapped Kitaev chain, with zero-
dimensional Majorana bound states at its ends. In this paper,
we will pay particular attention to the combined effect of
disorder and interaction on a gapless Majorana chain rep-
resenting a one-dimensional wire with counterpropagating
Majoarana modes. The most local interaction one can have in
this system is a four-point Majorana interaction [26]. Disorder
is introduced by choosing the hopping parameters from a
random distribution. This model could potentially be realized
by vortex lattices [27–29] in a thin film topological supercon-
ductor. In general, chains of parafermions such as Majoranas
can also be realized in superconductor-ferromagnet structures
along quantum spin Hall edges [30]. Further, the (gapped)
Kitaev chain Hamiltonian has been realized as an effective
low-energy theory in InGaAs nanowires on top of a supercon-
ductor in a magnetic field [31]. A gapless Majorana chain can
be realized on the edge of an array of such wires [32]. Other
platforms for generating Majorana chains include chains of
magnetic atoms on top of a superconductor [33], as well as
cold atoms in optical lattices [34]. The phase diagram of a
clean interacting Kitaev chain was studied in Ref. [26].
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We will compare the Majorana model to that of complex
fermion hopping on a chain with the chemical potential tuned
to zero [35,36]. In spin language, this model is equivalent to
the random bond XXZ model. In the absence of interaction,
both Majorana and complex-fermion models belong to the
symmetry class BDI and are largely equivalent. The only dif-
ference between them is that in the case of complex fermions
each pair of states related through chiral symmetry represent
two independent single body states, while in the case of the
Majorana chain each pair represents a single state. However,
the situation changes dramatically once one adds interaction.
In the case of complex fermions, previous work based on
real-space RG analysis showed that weak interactions are
irrelevant in the RG sense [35,37] and thus do not change
the low-energy properties of the system. This system flows
into a peculiar critical infinite-randomness fixed point. For
the interacting disordered Majorana chain, the behavior turns
out to be very different. We show that interaction drives the
system away from the infinite-randomness fixed point, which
leads to localization in the case of (even weak) repulsive
interaction. The localization of a disordered Majorana chain
with moderately strong repulsive interaction was observed
previously in Ref. [32]. We further explain why the above two
similar models behave so drastically different once interaction
is added.

The outline of the paper is as follows. We define the
models and review previous results in Sec. II. In Sec. III,
we present our numerical results obtained with the density
matrix renormalization group [38] (DMRG) code OSMPS [39].
We consider first the clean interacting Majorana chain that
we drive out of criticality by staggering in order to explore
emerging topological phases. Then we turn to the DMRG
study of combined effect of disorder and interaction, both
for complex fermions and for Majoranas. In the case of
complex fermions, we find that properties of a random chain
are not essentially influenced by interaction, in consistency
with previous results. On the other hand, we observe that the
interacting disordered Majorana chain localizes even for weak
repulsive interaction. This localization is accompanied by a
spontaneous breaking of symmetry between two topological
phases that manifests itself in correlation functions. To shed
light on the physical origin of these results, we employ in
Secs. IV and V two complementary approaches. Specifically,
in Sec. IV, we use momentum-space RG methods to inves-
tigate the effect of weak disorder on the interacting clean
models. We show that disorder in both models is strongly
relevant rendering the clean fixed point unstable. We thus turn
to the complementary approach in Sec. V, where we start from
an exact treatment of disorder (which drives the system into
the infinite-randomness fixed point) and consider interaction
as perturbation. By combining the RG treatment of interaction
with a numerical study of wave-function correlations at the
infinite-randomness fixed point, we identify a relevant op-
erator in the case of the Majorana chain. No such operator
exists in the case of the complex fermionic chain in view of
the cancellation between Hartree and Fock contributions. This
explains why the Majorana fermion chain is unstable with
respect to weak interaction, while the complex fermion chain
is stable.
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FIG. 1. Sketch of the couplings of the complex-fermion chain
with Hamiltonian (2) and r = 1. Couplings starting on odd sites are
solid, those starting on even sites are dashed. Odd sites have blue
color and are labeled by +, while even sites have red color and
are labeled by −. The first few quartic interaction terms involving
the sites j and j + 1 are indicated by blue (odd j) and red (even j)
ellipses.

II. MODELS

In this section, we define two 1D models to be considered
in this paper: that of complex fermions, Sec. II A, and of
Majoranas, Sec. II B. We also briefly review some previous
results relevant to this work.

A. Complex fermion chain

We start with a spinless fermionic chain where the chemi-
cal potential is tuned to zero,

H =
∑

j

t j (c
†
j c j+1 + H.c.). (1)

Every hopping term is between an even (e) and an odd (o) site.
The Hamiltonian possesses therefore a sublattice symmetry
which is represented by the operator S = τz, where τz is the
Pauli matrix operating on the even-odd subspace. By using the
local U(1) gauge freedom, we can always choose the hopping
matrix elements t j to be real. This implies a time-reversal
symmetry represented by complex conjugation T = K with
T 2 = 1. Further, the system possesses in addition the particle-
hole symmetry C expressed by C = Kτz, with C2 = 1. These
symmetries place the model in the BDI symmetry class.

We introduce disorder by making the hopping matrix el-
ements random. This does not change the symmetry clas-
sification. The most local interaction that can be added to
this model is a two-point nearest-neighbor density-density
interaction. To keep the system at half filling, a chemical
potential proportional to the interaction strength has to be
included. Since we will later see that the sublattice structure
of the interaction is important, we generalize the interaction
to act on sites separated by a distance r:

H =
∑

j

t j (c
†
j c j+1 + H.c.) + g

∑
j

p j p j+r, (2)

p j = c†
j c j − 1

2
. (3)

The couplings of this model for r = 1 are sketched in Fig. 1.

1. Spin representation

Using the Jordan-Wigner transformation, one can map the
model (2) onto a random-bond, spin-1/2 XXZ chain:

Hspin =
∑

j

t j
(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

) + gσ z
j σ

z
j+r . (4)
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The U(1) gauge freedom in the fermionic model corresponds
to the spin-rotation symmetry in the XY plane. While the
two models (2) and (4) are equivalent, the Jordan-Wigner
transformation is nonlocal, and so is the mapping between the
correlation functions. The spin representation turns out to be
particularly suitable for the DMRG analysis and will be used
in this paper.

2. Symmetries and topology

To show that our interaction does not change the sym-
metry class, we consider the many body generalizations
of the above symmetries T = ÛTK, C = ÛCK,S = ÛS , see
Ref. [40]. They can be obtained by defining the action of
the symmetry operators on the creation and annihilation
operators:

T̂ c j T̂
−1 = (UT ) j,ici = c j, (5)

Ĉc jĈ
−1 = (UC ) j,ic

†
i = (−1) jc†

j , (6)

Ŝ = T̂ · Ĉ. (7)

This defines the action of T̂ , Ĉ, Ŝ on all operators and states
in the Fock space. In this many-body formulation, the time-
reversal symmetry T̂ and chiral symmetry Ŝ are represented
by antiunitary operators, while the particle-hole symmetry Ĉ
is represented by a unitary operator. In contrast to the single
body symmetry operators C and S , the many body symmetry
operators Ĉ, Ŝ, T̂ all commute with the Hamiltonian.

Let us now analyze the symmetries of the Hamiltonian
(2). First, all couplings are real, implying that T̂ commutes
with H . Second, the term −1/2 in Eq. (3), which corresponds
to a proper choice of the chemical potential ensures that the
model is invariant under Ĉ. Further, the operators T̂ and Ĉ
square to unity. The interacting model belongs therefore to the
symmetry class BDI. It was shown that 1D interacting systems
of complex fermions belonging to this symmetry class (in
absence of pairing terms) have a Z4 topological invariant [19].

3. Clean limit

Let us briefly discuss the clean limit. If all matrix elements
t j are equal, t j = t , and the interaction g is not too strong,
the low-energy theory of the XXZ model (4) is the Luttinger
liquid. This is a conformal field theory with central charge
c = 1. For the case of nearest-neighbor interaction, r = 1,
the corresponding condition is [41] |g| < t . For |g| > t , the
system is gapped.

One can drive the system away from the critical line by
introducing a staggering, t2 j = te and t2 j+1 = to, with te �= to.
This will in general open a gap. More precisely, investigating
the RG relevance of the corresponding term in the bosoniza-
tion language (see analysis in Sec. IV below), we find that
the staggering immediately opens a gap for −1 < g/t < 0.7,
i.e., almost in the whole range of g/t corresponding to a
critical theory. The gapped phases with te > to and te < to are
topologically distinct. This can be easily seen by observing
that in the limit te → ∞, the fermion at the first site decouples
from the rest of the chain, thus representing a topological zero
mode. This zero mode will persist for te > to (although it will
spread over a few sites). In the opposite case, to → ∞, there

is no zero mode. The c = 1 critical theory (Luttinger liquid)
thus represents a boundary between two topologically distinct
phases.

4. Noninteracting limit

Consider now a noninteracting system (g = 0) but in the
presence of disorder, i.e., with random hopping matrix ele-
ments t j . This breaks translational symmetry j → j + 1 for
a given realization of disorder. However, if the distributions
of even t2 j and odd t2 j+1 matrix elements are the same, the
system remains self-dual with respect to the transformation
j → j + 1. In spin language, the model corresponds to a
disordered XY chain. Analytically, the problem can be treated
with a real space RG procedure [35]. At the self-dual point,
the system is critical despite an RG flow towards strong
disorder. This very peculiar fixed point is termed infinite-
randomness fixed point. By considering the scaling of the
disorder-averaged entanglement entropy, one can define an
effective central charge ceff = ln 2 characterizing this critical
state [42–44] .

B. Majoranas

To introduce the second model—the one that is which
is of the central interest for this work—we start with a 1D
chain of spinless fermions of length L with superconducting
pairing matrix elements � j , hopping t̃ j , and local chemical
potential μ j . The pairing and hopping are chosen to be real.
The Hamiltonian reads

H =
L∑

j=1

μ jc
†
j c j + t̃ j (c

†
j c j+1 + c†

j+1c j )

+� j (c jc j+1 + c†
j+1c†

j ). (8)

Now we rewrite each pair of fermionic creation and annihila-
tion operators in terms of two Hermitian Majorana operators
γ j = γ

†
j :

c j = (γ2 j + iγ2 j+1)/2, c†
j = (γ2 j − iγ2 j+1)/2. (9)

The Majorana operators obey the commutation relations

{γi, γ j} = 2δi j, γ 2
i = 1. (10)

Each Majorana operator represents half a degree of freedom.
The Hamiltonian becomes now

H = i

2

L∑
j=1

[μ jγ2 jγ2 j+1 + (−t̃ j + � j )γ2 j+1γ2 j+2

+ (t̃ j + � j )γ2 jγ2 j+3]. (11)

If the hopping and pairing terms are chosen such that t̃ j =
−� j , this simplifies to

H =
2L∑
j=1

it jγ jγ j+1, (12)

where we have introduced notations t2 j = μ j/2 and t2 j+1 =
−t̃ j . This model is known as Kitaev chain [25].

We now inspect the symmetries of the noninteracting
Hamiltonian (8). The pairing terms in Hamiltonian (8)
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break the global U(1) symmetry to the parity Z2. As usual
for Bogolyubov-de Gennes models, the Hamiltonian has a
particle-hole symmetry C = K. Since we chose all couplings
real, the system has time-reversal symmetry T = τzK. Both
symmetry operators square to unity, thus the model belongs
to class BDI. The product of those two symmetries yields the
sublattice symmetry S = τz.

Now we include the interaction term. Since γ 2
n = 1,

the most local interaction term couples four neighboring
Majoranas [26]:

H =
2L∑
j=1

it jγ jγ j+1 +
2L∑
j=1

g jγ jγ j+1γ j+2γ j+3. (13)

Below we will allow for randomness in the hopping matrix
elements t j . If the values of the interaction g j as well as the
distribution of hopping matrix elements t j is the same for even
and odd sites, the model is self-dual under translation by one
side.

1. Symmetry and topology

The symmetries T , C, and S can be extended to the many-
body setting in analogy with discussion in Sec. II A 2 for the
case of complex fermions. In terms of Majorana operators, the
symmetries read

T̂ γ j T̂
−1 = (−1) jγ j, (14)

Ĉγ jĈ
−1 = γ j, (15)

Ŝ = T̂ · Ĉ. (16)

It is worth mentioning that for Bogolyubov-de Gennes Hamil-
tonians the particle-hole symmetry is not a true many-body
symmetry but rather a constraint related to the Fermi statistics,
see discussion in Ref. [45]. This puts our model in interacting
symmetry-class BDI with Z8 topological classification, see
Ref. [17].

While the Hamiltonian (13) contains only nearest-neighbor
Majorana hopping t j , any odd-range hopping is, in principle,
permitted by symmetry. In particular, as we discuss below,
the interaction generates third-nearest-neighbor hopping on
the mean-field level. An even-range hopping would couple
Majoranas from the same sublattice and break the chiral
symmetry and the time-reversal symmetry. Similarly, any
interaction term containing an even number of Majorana
operators belonging to even sites (and thus an even number of
operators from odd sites), is consistent with the T̂ and chiral
symmetries.

2. Spin representation

The interacting Kitaev chain (13) can be mapped onto a
spin-1/2 chain by means of Jordan-Wigner transformation:

H =
L∑

j=1

t (1)
j σ x

j −
L∑

j=1

t (2)
j σ z

j σ
z
j+1

−
L∑

j=1

g(1)
j σ x

j σ
x
j+1 −

L∑
j=1

g(2)
j σ z

j σ
z
j+2. (17)

g
(1)
1
1)

g
(2)
1

+ + +− − −t
(1)
1

t
(2)
1

t
(1)
2

t
(2)
2

t
(1)
2

FIG. 2. Sketch of the couplings in the Majorana Hamiltonians
(13),(17). Couplings t2 j are dashed, t2 j+1 solid. Odd sites have blue
color and are labeled by +, while even sites have red color and are
labeled by −. The first two quartic interaction terms with couplings
g(1)

1 and g(2)
1 are indicated by a blue and a red ellipse, respectively.

Translation by one site swaps even and odd hopping and interaction
terms.

Here, t (1)
j and t (2)

j correspond respectively to odd (t2 j−1) and
even (t2 j) hopping matrix elements of Eq. (13), and similarly
for the interaction couplings g. The couplings of this model
are sketched in Fig. 2.

It is interesting to note that the odd couplings g(1)
j and

t (1)
j couple in the spin language to x components, and the

odd couplings g(2)
j and t (2)

j to z components. Translation by

one site (even-odd transformation) exchanges g(1)
j ↔ g(2)

j and

t (1)
j ↔ t (2)

j . Models related by this transformation are dual,
although this duality is less obvious in the spin representation
than in the Majorana representation. We will use the spin
representation for the DMRG analysis below.

3. Noninteracting limit

In the noninteracting limit (g = 0), the Hamiltonian
(17) describes the transverse Ising model. In the clean
translational-invariant case [no staggering, t (1) = t (2)], the
system is critical with a 1D Majorana low-energy theory and
central charge c = 1/2. In the presence of random hopping,
the model is at the infinite-randomness fixed point [37] as
noted above in the context of complex fermions in Sec. II A 4.
The difference between the two models in the absence of
interaction is that two single-particle states of the complex-
fermion model correspond to a single state of the Majorana
model. As a consequence, the effective central charge at the
infinite-randomness fixed point is halved, c = (ln 2)/2.

4. Clean limit

For the case of interacting model with homogenous cou-
plings, t j = t and g j = g, Rahmani et al. [26] have determined
the phase diagram.

Strong interaction. The system is gapped for very strong
interactions of both signs (g > 250 or g < −2.86). The trans-
lation symmetry gets spontaneously broken, and the transition
between the topologically distinct phases is of first order type.

Attractive interaction. There is a critical phase up to very
strong interactions 0 < g < 250. The low-energy theory is
a single Majorana mode with central charge c = 1/2. This
phase is controlled by the same fixed point as the transverse
Ising model and therefore dubbed Ising phase.

Weak repulsive interaction. For the case of repulsive inter-
action (g < 0), the Ising phase is stable for sufficiently weak
interactions, g > −0.28.
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Intermediate repulsive interaction. For repulsive interac-
tion of intermediate strength, −2.86 < g < −0.28, a phase
emerges with coexisting Luttinger-liquid and Majorana
modes. Alternatively, one can say that a single Majorana mode
of the noninteracting theory is promoted to three Majorana
modes, which can be understood already by a mean-field level
treatment of the interaction. The central charges in this phase
is c = 3/2.

III. DMRG RESULTS

It is viable to calculate the groundstate properties of sys-
tems with length of the order of a few hundred sites using
methods based on matrix-product states (MPS). For these
methods, spin models are most convenient. All DMRG cal-
culations in this work have therefore been done on the spin
representations, Eqs. (4) and (17), using the software OSMPS

[39]. The maximum bond dimension was chosen to be 512,
states with weight smaller than 10−8 were truncated.

A. Interacting Majorana chain with staggering

As we will later see, disorder drives an interacting Majo-
rana chain into different localized phases if the interaction
is repulsive. To obtain an overview over possible localized
phases in the Majorana model, we first consider the clean
model and drive the system out of criticality by introducing
staggering. We calculate the ground state of the clean Ma-
jorana chain, Eq. (17) with t (1)

i = t1, t (2)
i = t2, g(1)

i = g1, and
g(2)

i = g2, and L = 96 spin sites (which corresponds to 2L =
192 Majorana sites). We choose parameters in such a way that
the relation g1/t1 = g2/t2 is maintained; we use a short-hand
notation g/t for this ratio. By using DMRG, we explore the
range −4 < g/t < 1 of the interaction strength, varying the
staggering, 0 < t1/t2 = g1/g2 < ∞. For the staggering region
0 < t1/t2 < 1, the hopping t1 = 1 is fixed and t2 is varied,
while for staggering above the self-dual line 1 < t1/t2 < ∞,
t2 = 1 is fixed and t1 is varied.

The system with a given value of staggering t1/t2 is related
to the system with inverse staggering via duality transfor-
mation. In the Majorana representation, this transformation
corresponds simply to a translation by one lattice site. On the
other hand, in the spin language of Eq. (17), the duality trans-
formation is much less trivial (and, in particular, nonlocal).

In the MPS representation, the (von Neumann) entangle-
ment entropy between two subsystems split by a bond is
readily available [39,46]. In a critical 1D system of length L
with open boundary conditions, the bond entropy scales as a
function of bond position x as [47]

S(x) = c

6
ln

(
2L

π
sin

πx

L

)
+ γ , (18)

where c is the central charge and γ the topological entan-
glement entropy. The slope of the dependence of the entan-
glement entropy on the scaling function entering Eq. (18)
can thus be used to extract the central charge of the system.
In gapped systems, the entanglement entropy saturates, i.e.,
c = 0.

In order to identify critical lines and regions, the central
charge defined according to Eq. (18) is plotted in Fig. 3 via a

FIG. 3. Central charge c of the clean interacting Majorana chain
vs interaction strength g1/t1 = g2/t2 ≡ g/t and staggering t1/t2 =
g1/g2. On the self-dual line (no staggering, i.e., t1/t2 = 1), the results
agree with Ref. [26]: the central charge is c = 1/2 for −g/t � 0.28
and is then c = 3/2 until the system becomes gapped at strong
repulsive interaction, −g/t > 2.9. In the Ising phase, the system is
gapped everywhere apart from the critical line (i.e., by any staggering
t1/t2 �= 1). On the other hand, in the Ising + LL phase, adding
staggering produces an extend critical region with c = 1, see also a
schematic phase diagram in Fig. 5. The red patch is a peculiar region
where determination of c by means of Eq. (18) breaks down, see
Appendix E for more detail. In fact, this phase is gapped (as is also
clear by inspecting its dual, t1/t2 → t2/t1), i.e., the properly defined
central charge is zero.

color map in the parameter plane spanned by the interaction
strength g/t and the staggering t1/t2. Further, we show in
a similar way in Fig. 4 the long-range spin-spin correlation
〈σ z

L/4σ
z
3L/4〉. This plot helps to differentiate between topolog-

ically distinct gapped regions. Figure 5 provides an overview
over our results that are discussed in more detail below. In
this figure, numbers from 1 to 6 label different regions; the
corresponding distance dependencies of spin correlations is
shown (with the same labels) in Fig. 6. On the self-dual line,
t1/t2 = 1, the range of interaction strength −4 < g/t < 1 can
be divided, in agreement with Ref. [26], into three intervals:
the c = 1/2 Ising phase for attractive and relatively weak
repulsive interaction, g/t > −0.28, the c = 3/2 phase where
the Ising sector coexists with a Luttinger liquid sector for

FIG. 4. The 〈σ z
24σ

z
48〉 correlator between spins on the sites i =

24 and 48 for the clean interacting Majorana chain as a function
of interaction strength g1/t1 = g2/t2 ≡ g/t and staggering t1/t2 =
g1/g2. In the gapped phases (cf. Figs. 3 and 5), the correlator is
equal to zero above the self-duality line and to unity below this line,
thus helping to distinguish two topologically distinct phases. In the
critical region with c = 1 around the Ising + LL phase the correlator
shows an oscillatory behavior, cf. Fig. 6, right panels.
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FIG. 5. Schematic phase diagram of the clean interacting Majo-
rana chain in the plane spanned by the interaction strength g1/t1 =
g2/t2 ≡ g/t and the staggering t1/t2. The labels from 1 to 6 corre-
spond to the plots of the spin-spin correlator as a function of distance
in Fig. 6 which are labeled in the same way. For −g/t � 0.28,
the system on the self-dual line (t1/t2 = 1) is in the Ising phase
with central charge c = 1/2 (label 1). Introducing staggering yields
two topologically distinct gapped phases (labels 2 and 3). At the
point −g/t ≈ 0.28 (marked by a red star), the system undergoes
a Lifshitz transition into the Ising + LL phase with c = 3/2 (label
4). This Ising + LL phase intersects our projection plane also in the
vertical line at −g/t = 0.5 (red dashed-dotted line). For intermediate
interactions, a not too strong staggering leaves the system gapless but
reduces its central charge down to c = 1 (Luttinger liquid phases;
bounded by green dashed and blue dotted lines, labels 5 and 6).
These lines are drawn schematically, their exact form has not been
determined. The black dot on the bottom of the diagram (g1/g2 =
t1/t2 = 0 and −g/t = 0.5) marks the first-order transition in the
longitudinal Ising model. The blue square at −g/t ≈ 2.9 on the
self-duality line t1/t2 = 1 is the point of the transition to a gapped
phase. The phase diagram is symmetric with respect to the duality
transformation that links points with the same value of g/t and
inverse values of t1/t2.

repulsive interaction in the interval −0.28 > g/t > −2.9, and
a gapped phase for even stronger repulsive interaction, g/t <

−2.9. This distinction remains useful also for understanding
of phases in the presence of staggering, as discussed below.

1. Attractive and weak repulsive interaction

In the absence of staggering, t1/t2 = 1, the system remains
in the noninteracting Ising phase for attractive interaction
and for repulsive interaction, −g/t < 0.28, as was found in
Ref. [26]. Indeed, we observe in Fig. 3 that on the self-dual
line the system is critical with a central charge of 1/2 at
this range of interactions. At finite staggering the system
is gapped, with two topologically distinct phases (labeled 2
and 3 in Fig. 5) that can be distinguished by the behavior
of the spin-spin correlator. For staggering t1/t2 = g1/g2 > 1,
which corresponds to the topologically trivial phase in the
fermionic picture, it decays quickly with distance, see Fig. 4
and the top left panel of Fig. 6. On the other hand, in the
symmetry-broken phase in the spin language, t1/t2 = g1/g2 <

1 (which is topologically nontrivial in the fermion language),
the correlator saturates at a constant value of order unity at
large distance, Fig. 4 and the bottom left panel of Fig. 6.
On the critical line t1/t2 = g1/g2 = 1, the correlator decays
slowly (algebraically), as expected, see the middle left panel
of Fig. 6.

FIG. 6. Spin-spin correlator 〈σ z
L/4σ

z
L/4+i〉 for the clean Majorana

chain in spin formulation, Eq. (17), at weak repulsive interaction
g/t = −0.10 (left) and medium repulsive interaction g/t = −0.85
with no staggering, t1/t2 = 1 (middle), and staggering t1/t2 = 1.39
(top) and 0.72 (bottom). The labels from 1 to 6 correspond to
those in Fig. 5. The system size is L = 190, in the indices L/4
denotes the integer part [190/4] = 47. In the case of weak repulsive
interaction, the correlator is strictly positive, while in the case of
medium repulsive interaction, the correlator oscillates as a function
of distance and can take on negative values. On the self-dual line
(middle), both correlators decay slowly (presumably algebraically)
to zero. Above the self-dual line the correlators decay in both regimes
quickly (presumably exponentially) to zero. Below the self-dual line,
the correlator becomes constant for weak repulsive interaction and
oscillates with a constant amplitude for medium repulsive interac-
tion. The drop of the correlator in the bottom left panel (with label 2)
near i = 3L/4 (i.e., at the right end of the curve) is a boundary effect.

2. Intermediate repulsive interaction

For stronger repulsive interaction −0.28 < g < −2.9, the
clean system without staggering exhibits a Luttinger liquid
sector in addition to the Ising sector as has been already
pointed out in Sec. II B 4. In this paper, we will call this
phase “Ising + LL” phase, where “LL” stands for “Luttinger
liquid.” In Ref. [26], this phase is called the “floating” phase,
in analogy to a similar phase in the anisotropic next-nearest-
neighbor Ising model. It is characterized by a central charge of
c = 3/2. Our numerical data in Fig. 3 confirm this behavior.

As Fig. 3 demonstrates, the staggering does not immedi-
ately lead to a gapped system in this interaction range. Instead,
there is an extended region of finite staggering with a central
charge of c = 1 around the no-staggering line. This can be un-
derstood as a result of the Luttinger-liquid sector being stable
to weak staggering, with the Ising sector becoming gapped.
An argument based on RG analysis is given in Sec. IV. More
precisely, there are two such phases with c = 1, labeled 5
and 6 in Fig. 5, which are separated by the line with c = 3/2
(label 4).

134207-6



DISORDER AND INTERACTION IN CHIRAL CHAINS: … PHYSICAL REVIEW B 100, 134207 (2019)

In these extended critical regions, the spin-spin correlator
is an oscillating function of distance, as detailed in Fig. 6.
The oscillation decay above the no-staggering line (label 6,
top right panel), while their amplitude remains constant below
this line (label 5, bottom right panel). On the line without
staggering, the oscillations decay very slowly (label 4, middle
right panel). The nondecaying oscillation in the extended
critical region below the self-dual line are also visible in
Fig. 4.

At extreme staggering t1/t2 = 0, the model reduces to the
longitudinal Ising model. This model exhibits a first-order
transition at the point g/t = 0.5. The critical region with
central charge c = 1 is separated from the gapped region of
the Ising phase by a line connecting this point (g/t = 0.5
and t1/t2 = g1/g2 = 0; marked by a black dot in Fig. 5) with
the point of the Lifshitz transition on the critical line (g/t ≈
−0.28 and t1/t2 = g1/g2 = 1; marked by a red star in Fig. 5).
Additionally, there is a vertical critical line (red) connecting
the black dot to its dual. This line is also clearly visible in the
picture of the central charge, Fig. 3, as it has a central charge
of c = 3/2.

At variance with the horizontal c = 3/2 line that is de-
termined by the condition of no staggering, the vertical c =
3/2 line is not fixed by any simple symmetry. We have
thus performed additional checks to verify its position. First,
in order to exclude finite-size effects, we have considered
twice larger systems (L = 192) in this part of the phase
diagram. The results demonstrated that neither the obtained
value c = 3/2 nor the position of the line change with L.
This implies that the vertical c = 3/2 line is indeed a prop-
erty of the system in the thermodynamic limit. Second, we
have looked more carefully at the precise location of the
line and found that it is not exactly at −g/t = 0.5, although
very close to it. As an example, we find that the c = 3/2
line crosses the horizontal line t1/t2 = 0.72 at −g/t ≈ 0.45.
This indicates that the “vertical” c = 3/2 line is not exactly
straight but rather shows a small deviation from the line
−g/t = 0.5.

Analogous to the horizontal (no-staggering) critical line,
the value c = 3/2 can be understood as a superposition of
a Luttinger liquid (c = 1) and a Majorana mode (c = 1/2)
due to a topological phase boundary. To shed light on the
reason for the emergence of the vertical c = 3/2 line, we
have performed a mean-field analysis by generalizing that
of Ref. [48] to our problem. In this way, we have approx-
imately mapped an interacting fermionic Hamiltonian to a
noninteracting (mean-field) one and obtained the condition for
gap closing. This condition yields a two-dimensional surface
in the whole (three-dimensional) space of parameters (t2/t1,
g1/t1, and g2/t1). The surface can be computed numerically.
We observe numerically that this two-dimensional surface
intersects the two-dimensional surface determined by the
condition t1/t2 = g1/g2 (that is used in our DMRG numer-
ics) on two lines—the horizontal and the vertical ones. The
numerically obtained position of the vertical line is close to
−g/t = 0.5. With the superimposed extended Luttinger liquid
phase, we have c = 3/2 on these lines. In analogy with the
horizontal line, the vertical line corresponds to the gap closing
in the Ising sector, which corresponds to a phase boundary
between topologically distinct phases.

FIG. 7. Entanglement entropy of the clean (left) and disordered
(right) Majorana chain with attractive interaction g = 1 vs the scaling
function Eq. (18) for different system sizes. For the clean system,
the central charge is c = 1/2 in agreement with Ref. [26]. For the
disordered system, the effective central charge is also found to be
c = 1/2.

Another interesting point is the red patch appearing in the
upper plane seemingly violating the duality of the model. This
is more than a numerical artifact and has to do with corrections
to the scaling form of the entanglement entropy (18) in gapped
phases. We refer to Appendix E for a more detailed discussion.

3. Strong repulsive interaction

With increasing strength of repulsive interaction −g/t , the
extended critical region around the no-staggering line grad-
ually shrinks, see Fig. 3. For sufficiently strong interaction
−g/t > 2.9 this region vanishes and, moreover, the line of
no-staggering becomes gapped.

B. Interacting Majorana chain with disorder

We now introduce disorder in the interacting Majorana
chain model by choosing hopping t j as random independent
variables, with a homogeneous distribution over the interval
[0.5,1.5]. All hopping matrix elements have now the same
distribution, so that there is no staggering.

In general, critical lines can move in phase space as func-
tion of disorder strength [49,50]. However, the critical line at
no staggering is pinned by self-duality. Therefore it should
remain critical in the presence of both disorder and interaction
unless spontaneous symmetry breaking takes place, see a
more detailed discussion in Sec. III B 2 below.

Since the average value of the hopping matrix elements is
unity, the value of the interaction g has now the same meaning
as g/t in the analysis of the clean system. We consider
three different ranges of interaction strength: (i) attractive
interaction 0 < g < 250, (ii) weak repulsive interaction 0 >

g > −0.28, and (iii) medium repulsive interaction −0.28 >

g > 2.86. We calculate the effective central charge in these
regions of interaction by analyzing the disorder-averaged
entanglement entropy via Eq. (18).

1. Attractive interaction

For attractive interaction 0 < g < 250, the clean system
is in the Ising phase [26] with a central charge of 1/2, see
Sec. III A 1 and left panel of Fig. 7. On the other hand,
the disordered noninteracting system has an effective central
charge of ceff = (ln 2)/2 ≈ 0.35 as was found in Ref. [43].
Our numerics confirms this value.
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FIG. 8. Entanglement entropy of the clean (left) and disordered
(right) Majorana chain with weak repulsive interaction g = −0.1
vs the scaling function Eq. (18) for different system sizes. In the
clean system, the central charge stays at c = 1/2, while in the dis-
ordered case the entanglement entropy saturates indicating localized
behavior.

Remarkably, in the presence of both disorder and interac-
tion, the central charge returns to the value of the clean system
ceff = 1/2, see Fig. 7 (right panel). For higher attractive inter-
action, the disorder averaging requires less samples in order
to give a smooth function of the entanglement entropy versus
scaling function than for lower interaction. This serves as an
additional indication that disorder does not play an important
role for the Majorana chain with attractive interaction.

2. Weak repulsive interaction

The clean system stays critical with c = 1/2 for weak re-
pulsive interaction [26], −0.28 < g < 0, see Sec. III A 1 and
the left panel of Fig. 8. We find that adding disorder leads to
localization, see right panel of Fig. 8. This appears to happen
for arbitrarily weak repulsive interaction and arbitrarily weak
disorder. Due to duality, the critical lines have to be mirror
symmetric around the self-dual line with respect to staggering.
This holds also when the system is disordered. For this reason,
the critical line cannot simply bend away from the self dual
line. If the system localizes on the self-dual line, there are
therefore two possibilities: (i) the critical line splits up into
two lines with equal central charge, leaving a gapped region
around the self-dual line or (ii) the critical line terminates,
and the transition between the region above and below the
self-dual line becomes first order. It is shown in Appendix
C by treating the interaction at the mean-field level that the
criticality is pinned to the self-dual line for all interaction
values and disorder strengths. This excludes the option (i),
thus implying that the possibility (ii) is realized.

We thus conclude that, for a disordered system with repul-
sive interaction, the symmetry gets spontaneously broken, and
the system undergoes a first-order transition on the self-dual
line. This is also reflected in the distance dependence of the
spin correlation function. Specifically, we find that, depending
on the disorder configuration, this correlation function shows
one of two types of behavior: it either very quickly decays
to zero or fluctuates around a value of order unity. This
is illustrated in Fig. 9 where the results for two disorder
configurations are shown. These two types of behavior cor-
respond to two topologically distinct phases, as is clear from
the comparison of two panels of Fig. 9 with the top left
and bottom left panels of Fig. 6. In the latter figure, the
topologically distinct phases were induced by staggering (in a

FIG. 9. Spin-spin correlator 〈σ z
L/4σ

z
L/4+i〉 of the Majorana chain

with weak repulsive interaction g = −0.1 at length L = 200. The
two panels represent two different disorder configurations. In the
left panel, the correlator decays quickly to zero, which is analogous
to the behavior in the presence of staggering g1/g2 = t1/t2 > 1, see
top right panel of Fig. 6. In the right panel, the correlation function
fluctuates, staying of order O(1). This is similar to the region with
staggering g1/g2 = t1/t2 < 1, see bottom right panel of Fig. 6. This
behavior reflects the fact that disorder breaks spontaneously the
symmetry with respect to duality transformation, placing the system
in one of two topological phases.

clean model) breaking explicitly the symmetry with respect to
the duality transformation. We now see that adding disorder
breaks spontaneously the symmetry of the system on the
no-staggering line, placing it into one of the two topologically
distinct phases. The transition between these two topological
phases becomes thus first order.

3. Medium repulsive interaction

If the repulsive interaction is in the interval −2.86 < g <

−0.28, the clean system is in the Ising + LL [26] phase which
is characterized by a central charge of 3/2, see Sec. III A 2
and left panel of Fig. 10. Our results show that, similar to the
case of weak repulsive interaction, disorder leads to localized
behavior also in this range of interaction, see right panel of
Fig. 10. This was also found in Ref. [32].

As in the case of weak repulsive interaction, the sponta-
neous symmetry breaking by disorder can be visualized by
inspecting the spin-spin correlation function for individual
realizations of disorder. We find again two distinct types of
behavior that are illustrated in Fig. 11: oscillations without
decay or with a quick decay. The behavior shown in the left
panel of Fig. 11 corresponds to that in the clean model in
the Ising + LL phase with staggering g1/g2 = t1/t2 < 1, see

FIG. 10. Entanglement entropy of the clean (left) and disordered
(right) Majorana chains with medium repulsive interaction g = −0.5
vs the scaling function Eq. (18). The central charge of the clean
system is 3/2 as predicted [26]. On the other hand, the entanglement
entropy saturates for the disordered case, implying localization.
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FIG. 11. Spin-spin correlators 〈σ z
L/4σ

z
L/4+i〉 of the Majorana chain

for medium repulsive interaction g = −0.5 with length L = 200.
Two panels show results for two different disorder configurations
that lead to vastly different behavior. In the plot for the first dis-
order configuration, the spin correlator oscillates around zero with
an amplitude essentially independent of distance. This behavior is
analogous to the one induced by staggering in the region below the
self-dual line, see bottom right panel of Fig. 6. For the other disorder
configuration, the spin-spin correlator oscillates and quickly drops to
zero. This behavior corresponds to the one induced by staggering in
the region above the no-staggering line, see top right panel of Fig. 6.
The disorder thus breaks spontaneously the symmetry between the
two topologically distinct phases. In both phases, the correlator takes
negative values for some distances, at variance with the case of weak
repulsive interaction, Fig. 9.

bottom right panel of Fig. 6, while the behavior shown in the
right panel of Fig. 11 corresponds to that in the clean model
with staggering g1/g2 = t1/t2 > 1, see top right panel of
Fig. 6. Thus the symmetry between the two topological phases
gets broken spontaneously by disorder in full analogy with
the weak-repulsion regime. A comparison of Figs. 9 and 11
reveals an interesting difference between the weak-repulsion
and intermediate-repulsion topological phases. Specifically, in
the latter case the correlator shows oscillations around zero,
thus changing sign.

C. Disordered fermionic chain

We turn now to the DMRG results for a disordered interact-
ing fermionic chain, Eq. (2). The results for the entanglement
entropy are shown in Fig. 12 for the cases of odd (r = 1)
and even (r = 2) interaction distances. We observe that the
(sufficiently weak) interaction does not modify the behavior
of the disordered system: both for r = 1 and 2 the interacting
system remains critical and has the central charge c = ln 2
characteristic for the infinite-randomness fixed point. This
implies the RG irrelevance of the interaction.

IV. RENORMALIZATION GROUP AROUND THE CLEAN
FIXED POINT

Numerical results of Sec. III B for a disordered interacting
Majorana chain indicate that in the presence of disorder
an interaction of either sign becomes relevant. To get the
corresponding analytical insight, one has to consider a model
with both interaction and disorder, which is an extremely chal-
lenging problem. In this section, we approach this problem by
starting from a clean interacting Majorana chain and exploring
the effect of weak disorder.

The stability of the clean fixed points of the interacting
fermionic and Majorana models can be probed by a weak-

FIG. 12. Disorder-averaged entanglement entropy vs scaling
function for an interacting fermionic system with Hamiltonian (2)
and parameters L = 100, random hoppings t j drawn from the uni-
form distribution over [0.5,1.5], as calculated by DMRG. (Left) At-
tractive interaction g = 0.1. (Right) Repulsive interaction g = −0.1.
The interaction distance is r = 1 (top) and 2 (bottom). The scaling
of the entanglement entropy corresponds to the value of the central
charge c = ln 2, as for a noninteracting system. This indicates that
the interaction term is irrelevant in the RG sense.

disorder momentum-space RG analysis. For this purpose, we
consider the low-energy theory in the continuum limit. In the
case of the complex fermionic chain, this is a Luttinger liquid
(LL) theory. In the Majorana case, it is either a Majorana
theory (c = 1/2, Ising phase) or a Majorana theory with an
additional LL sector (c = 3/2, Ising +LL phase), depending
on the interaction strength. The density-density parts of the
interaction are quadratic in Luttinger theory and renormalize
the Luttinger parameter K .

In these continuum theories, disorder appears as a random-
mass term. Choosing nonzero average of the mass or a
constant nonvanishing mass corresponds to staggering. By
including such terms, one can draw conclusions about the
stability with respect to staggering, which is another goal
of the present section. This should help understanding the
appearance of extended gapless phases that were found by
DMRG numerical analysis in Sec. III A.

We will show below that at any of the fixed points of the
clean Majorana chain (Ising or Ising + LL), the disorder be-
comes relevant and flows to the strong-coupling regime. This
happens also for the complex-fermion fixed point (Luttinger
liquid) if the interaction is not too strong. This will lead us to
the complementary analysis in Sec. V, where we treat disorder
exactly and the interaction as a perturbation.

A. Majorana: c = 1/2 fixed point

The continuum decomposition in slow modes γR/L of the
lattice Majorana operators γ j is

γ j = γR + (−1) jγL. (19)

For Majorana low-energy theory, disorder corresponds to a
random-mass term of the form:

Smaj
m =

∫
dτdx m(x)γR(τ, x)γL(τ, x). (20)
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A constant mass m(x) = m0 corresponds to a staggering; it
directly opens a gap of size m0.

The disorder is assumed to be Gaussian white noise with
〈m(x)m(y)〉 = Dδ(x − y); one can also include a staggering
by introducing a nonzero mean 〈m(x)〉 = m0. Treating the
disorder by using the replica trick, one straightforwardly
finds that the term generated by disorder has (upon disorder
averaging) the scaling dimension 1 and is therefore relevant in
the RG sense. This term drives the system away from the clean
fixed point. However, this does not necessarily mean that the
system becomes gapped. For example, in the noninteracting
case (and in the absence of staggering), the system flows to
the critical infinite-randomness fixed point [37]. It means,
however, that an analysis based on RG around the clean
fixed point is insufficient to understand the infrared physics
of the problem and suggests a complementary approach as
implemented in Sec. V.

Finally it should be noted that no relevant interaction
term can be written down in a Majorana low-energy theory.
Indeed, the interaction should involve at least four Majorana
operators with scaling dimension 1/2 each and two derivatives
with dimension −1. The most relevant term thus has scaling
dimension −2 and is strongly irrelevant.

B. Complex fermions: Luttinger liquid (c = 1) fixed point

Lattice operators c j are related to their continuum versions
ψR/L as follows:

c j = i jψR + (−i) jψL. (21)

In the presence of interaction g �= 0, bosonization has to
be employed. Here the following conventions relating the
fermionic fields ψR/L to the bosonic fields φ, θ are used:

ψR/L = UR/L exp (φ ± θ ). (22)

The Klein factors UR/L are not important in any of the follow-
ing considerations.

The exact dependence of the Luttinger parameter K on the
parameters of the lattice model is known [41]:

g/t = − cos (π/2K ). (23)

Disorder and staggering introduce a mass term of the form:

SLL
m =

∫
dτdx m(x)(ψ†

R(τ, x)ψL(τ, x) + H.c.). (24)

The scaling dimension of a constant mass term is 2 − K . This
means that it is relevant for K < 2, which corresponds, in
terms of the microscopic parameters, to the interval −1 <

g/t < 0.7 covering almost the whole range of critical theories,
|g/t | < 1.

The scaling dimension of the quartic term generated by
disorder, as obtained by the replica field-theory approach, is
3 − 2K . It depends thus on the Luttinger parameter K whether
the disorder is relevant or not. Specifically, for g/t < 0.5,
the disorder is relevant, while for 0.5 < g/t < 1 the model
remains at the clean fixed point in the presence of weak
disorder. We have checked the latter prediction by DMRG,
see Fig. 13 for the scaling of the entanglement entropy at
strong attractive interaction, g = 0.8, and sufficiently weak
disorder. We find c = 1, as expected for the system at the

FIG. 13. DMRG results for disorder-averaged entanglement en-
tropy vs scaling function for an interacting fermionic system with
Hamiltonian Eq. (2) and parameters L = 100, random hoppings t j

drawn from the uniform distribution over [0.5,1.5]. The interaction
is attractive and strong, g = 0.8, which distinguishes this figure from
Fig. 12. The scaling of the entanglement entropy corresponds to the
value of the central charge c = 1, as for a clean system. The system is
at the Luttinger-liquid fixed point with K > 3/2 that is stable towards
weak disorder, see discussion in Sec. IV B.

Luttinger-liquid fixed point. Around the noninteracting limit,
i.e., for K sufficiently close to unity, the disorder is strongly
relevant, as expected.

We also briefly discuss allowed interaction terms as pertur-
bations to the Luttinger liquid fixed point. They are of three
types. First, the density-density interaction is marginal and
simply modifies the value of K . Second, terms that are of
higher order in ψ or contain gradients are strongly irrelevant.
Finally, the staggering yields sine and cosine terms that are
relevant in a range of K (in particular, around the weak-
interaction point K = 1). On the self-dual line, these latter
terms are absent.

C. Majorana chain: Ising + Luttinger liquid
(c = 3/2) fixed point

We turn now to the c = 3/2 fixed point of the clean
Majorana chain that emerges in a range of medium-strength
repulsive interactions, as discussed above. It was suggested
in Ref. [26] that, at this fixed point, the low-energy theory
consist of Majorana and Luttinger-liquid sectors, see also
Secs. II B 4 and III A 2. This can be understood by con-
sidering the quadratic form of the action including the third-
nearest-neighbor hopping which is generated by a mean-field
treatment of the interaction (or, alternatively, under RG flow):

H = i
∑

j

[t jγ jγ j+1 + t ′γ jγ j+3]. (25)

The third-nearest-neighbor hopping term modifies the dis-
persion such that there are now three Majorana modes, or,
equivalently, a fermionic mode emerge in addition to the
Majorana mode. The lattice Majorana operator γ j then has the
following low-energy decomposition [26]:

γ j = 2γL + 2(−1) jγR + exp(−ik0 j)�†
L

+ exp(+i(k0 + π ) j)�†
R + H.c. , (26)
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TABLE I. The RG scaling dimension and relevance range of
couplings in the low-energy theory of the Ising+LL phase. Forward
scattering is gauged away, see Appendix A. The five remaining
(dimensionless) coupling constants corresponding to disorder are
labeled yki , where ki refers to the momentum component. The di-
mensionless interaction strength is denoted by y′ = g′au−1, where
a is the lattice spacing and u the LL velocity. The clean Ising+LL
phase of the Majorana chain is characterized by K < 1 and remains
stable with respect to coupling between the Ising and LL sectors as
long as [26] 1

4 < K < 1.

coupling dimension relevant in

yk0 2 − 1
2 (K + K−1) 0.27 < K < 3.8

yk0+π 2 − 1
2 (K + K−1) 0.27 < K < 3.8

y2k0 3 − 2(K + K−1) 0 < K < 2
y2k0+π 3 − 2K K < 1.5
yπ 3 − 2K−1 0.67 < K
y′ 1 − K−1 1 < K

where k0 is the effective Fermi momentum. The interaction
gγ jγ j+1γ j+2γ j+3 generates now the density-density interac-
tion of the fermions �R, �L. To treat this interaction exactly,
we employ the bosonization approach. Another interaction
term couples the resulting Luttinger liquid to the Majoranas
with strength g′, see Eq. (A2).

Next, let us discuss the stability with respect to staggering.
The kinetic term γ jγ j+1 has oscillatory components with wave
vectors ki = 0, k0, k0 + π , 2k0, 2k0 + π , and π . A constant
mass term m(x) = m describing staggering couples to the π

component of the kinetic term:

Sm =
∫

d2r[−8mγLγR + 4m cos k0 cos 2θ ]. (27)

The Majoranas are then immediately gapped out. On the other
hand, the cosine term in the Luttinger-liquid sector is relevant
only for K > 1/2. There is therefore a region of the interaction
strength where the Luttinger liquid is stable towards stagger-
ing. This explains the existence of the extended gapless phase
with c = 1 observed numerically, see Fig. 3 and the schematic
phase diagram in Fig. 5.

Now we analyze the effect of disorder that is treated as
a weak perturbation. Combining the oscillatory components
of the kinetic term γ jγ j+1 (with the six wave vectors listed
above) with the corresponding Fourier components of the
random mass yields nonoscillatory contributions. We get
therefore six independent disorder couplings Dki that coincide
at the beginning of the RG flow but renormalize differently.
Details on implementation of the RG procedure are presented
in Appendix A. In Eq. (A1), the disorder-induced terms in the
action (with the replica formalism used to average over dis-
order) are presented. While the forward scattering D0 cannot
be gauged away straightforwardly, a more detailed calculation
shows that it does not change the results presented here.

In Table I, we list the scaling dimensions of the disorder
couplings resulting from the corresponding RG equations.
They determine the range of K in which the disorder-induced
terms are RG-relevant. We observe that at least one of the
couplings is relevant for any value of K , i.e., the disorder

always drives the system aways from the clean fixed point.
In analogy with the conventional Giamarchi-Schulz RG [51],
the RG equations for the disorder-induced couplings are com-
plemented by the flow equation for the Luttinger constant K :

∂K

∂

= − 1

2

[
K2 − (1 + K2)(3 − 2K )

2

]
y2k0+π

+ 1

2

[
1 − (1 + K2)(3 − 2/K )

2

]
yπ . (28)

Here, y2k0+π = π−1D2k0+πau−2 and yπ = 16 cos2 k0Dπau−2

are dimensionless coupling constants for the disorder-induced
terms with momentum component ki in terms of lattice spac-
ing a and Luttinger-liquid velocity u. In Eq. (28), we have
kept only the contribution of the couplings y2k0+π and yπ to
the renormalization of K . In principle, the other couplings yki

also contribute to this renormalization; however, they are less
relevant for K around unity, so that we have neglected their
contributions.

A brief summary of main conclusions that we draw from
this RG is as follows. First, the Ising + LL clean fixed point is
stable towards interaction. Indeed, this phase is characterized
by a repulsive interaction, hence K < 1, so that the y′ coupling
is irrelevant. In fact, a higher order coupling between the
LL and Majorana sectors becomes relevant for very strong
interaction [26], K < 1/4, so that the range of stability in the
absence of disorder is 1/4 < K < 1. Second, over an extended
parameter regime, the staggering is irrelevant in agreement
with the numerical results of Sec. III A 2, see Fig. 3. Third,
and most importantly, the disorder at the Ising + LL fixed
point always runs to strong coupling. In other words, this fixed
point is unstable with respect to disorder.

The results obtained in Sec. IV demonstrate that the weak-
disorder analysis is not sufficient for Majorana chain, both
in the c = 1/2 and c = 3/2 phases of the clean system. The
RG relevance of disorder is also supported by the analysis in
Appendix C where the exact treatment of disorder is combined
with mean-field treatment of the interaction. The disorder
is also RG relevant for the complex-fermion chain if the
interaction is not too strong. These results motivate us to
perform in Sec. V a complementary analysis. We will start
there from an exact treatment of disorder and will include
interaction as a weak perturbation.

V. STRONG RANDOMNESS FIXED POINT:
EIGENFUNCTION STATISTICS AND EFFECT

OF INTERACTIONS

In Sec. IV, we have seen that the combined effect of inter-
actions and disorder cannot be understood as a perturbation
around the clean interacting fixed point. Specifically, we have
established that disorder is strongly relevant at the clean fixed
point, thus quickly increasing under RG. We know that, in
the absence of interactions, this RG flow leads to the critical
infinite-randomness fixed point. It is thus a natural question
whether this fixed point is stable or not with respect to inter-
actions. This question is addressed in the present section. Our
analysis has much in common with the investigation of sta-
bility of 2D surface states of disordered topological supercon-
ductors with respect to interactions [20,21]. A closely related
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physics controls the enhancement of superconducting and
ferromagnetic instabilities by disorder in 2D systems [23,52].
Further, there are close connections with the analysis of the
anomalous scaling dimension of interactions in context of
the study of decoherence and the dynamical critical exponent
at the quantum-Hall transition with short-range interactions
[53–55].

In the clean system, the relevance or irrelevance of an op-
erator can be often established by a relatively straightforward
power counting. As an example, this was done in Sec. IV
to show that the interactions are RG-irrelevant at the clean
fixed point of the Majorana chain. In the presence of disorder,
the situation is much more complex, since the multifractal
nature of wave functions as well as a nontrivial scaling of the
density of states have to be taken into account. Formally, this
disorder-induced renormalization of the interaction U can be
expressed by an RG equation of the form [20,21]

d ln U

d ln L
= x1 − x(U )

2 . (29)

Here, x1 is the scaling dimension of the density of states of a
noninteracting system, with x1 > 0 and x1 < 0 corresponding
to the cases of vanishing and diverging density of states,
respectively. Further, x(U )

2 is the scaling dimension of the four-
fermion interaction operator with respect to the noninteracting
theory. For a detailed derivation of Eq. (29) we refer the reader
to Appendix C of Ref. [21]. If the right-hand side of Eq. (29) is
positive, the interaction is relevant at the noninteracting fixed
point; otherwise it is irrelevant.

For a short-range interaction, and in the case when cancel-
lations of the Hartree-Fock type (see below) are not operative,
the scaling dimension x(U )

2 is equal to the dimension x2 of the
squared density of states (which is also a local four-fermion
operator). For the clean system, x2 is simply equal to 2x1

but for a disordered system one has in general x2 < x1 in
view of multifractality (characterizing strong fluctuations of
the density of states) [21,56,57]. Specifically,

x2 = �2 + 2x1, (30)

where �2 < 0 is the anomalous dimension of the fourth
moment of the eigenfunction (〈U 4

iα〉 in the notations used
below). In this situation of the maximally relevant interaction
(no suppression due to Hartree-Fock cancellation or other
reasons), Eq. (29) takes the form

d ln U

d ln L
= −x1 − �2. (31)

The sum of two exponents −x1 and −�2 in the right-hand
side (r.h.s.) of Eq. (31) determines the scaling with L of the
product νCH of the density of states ν and the Hartree-type
correlation function CH [defined in Eq. (48) below] for r = 0.

In general, x(U )
2 � x2 since the effect of the interaction can

be suppressed due to Hartree-Fock-type cancellation. In this
generic situation, we have, in analogy with Eq. (30),

x(U )
2 = �

(U )
2 + 2x1, (32)

where �
(U )
2 is the anomalous dimension of the eigenstate

correlation function CHF corresponding to the matrix element
of the interaction [and thus taking into account possible
Hartree-Fock-type cancellations; see, e.g., Eq. (47) for the

case of complex fermions below]. Substituting Eq. (32) into
Eq. (29), we get

d ln U

d ln L
= −x1 − �

(U )
2 . (33)

The sum of the exponents −x1 and −�
(U )
2 in the r.h.s. of

Eq. (33) corresponds to the scaling with L of the product
νCHF of the density of states and the correlation function
CHF. Below we determine the explicit form of this correlation
function by inspecting the expectation value of the interaction
operator and analyze the scaling of the product νCHF with L
for the models of complex fermions (Sec. V B) and for the
Majorana model (Sec. V C).

If −x1 − �
(U )
2 < 0, the interaction is RG-irrelevant, i.e.,

the noninteracting fixed point is stable with respect to in-
clusion of not too strong interaction. In the opposite case,
−x1 − �

(U )
2 > 0, the interaction is RG-relevant and drives the

system away from the noninteracting fixed point. It was found
in previous works on the effect of interaction at critical points
of higher spatial dimensionality (d > 1, with a particular
focus on 2D systems) [20–23,53–55] that both these scenarios
can be realized. Whether the interaction is relevant or irrel-
evant depends on the specific noninteracting critical theory
considered (i.e., spatial dimensionality as well as symmetry
and topology class). As we show below, both scenarios are
also realized in the context of the present work (1D critical
systems of class BDI): the interaction is irrelevant in the case
of complex fermions and relevant in the Majorana model.

The present problem has much in common with d >

1 Anderson-localization critical points studied in previous
works where the multifractality induces strong correlations
between eigenstates at different spatial points and different
energies (often referred to as Chalker scaling). In fact, critical
singularities are particularly strong in the present case. In the
more conventional situation, both the density of states ν and
the eigenstate correlation function CHF (and, correspondingly,
their product) exhibit a power-law scaling with L, so that the
indices x1 and �

(U )
2 are constant (i.e., independent on L). On

the other hand, we will see below that in the present problem
ν and (in the complex-fermion case) CHF scale exponentially
with

√
L, which means that x1 and �

(U )
2 are L-dependent and

increase (by absolute value) at large L as
√

L/ ln L. This is
a manifestation of the fact that the 1D critical point studied
here is characterized by very strong multifractality. What we
are interested in is the sign of −x1 − �

(U )
2 at large L which

controls the behavior (increase or decrease) of νCHF in the
limit L → ∞.

For systems of the symmetry class BDI in one dimension
with an odd number of channels, the density of states at
low energies ε exhibits the well known Dyson singularity
[36,58–60]:

ν(ε) ∼ 1

ε| ln ε|3 . (34)

We can use this result to calculate the position of the nth level
in a system of the length L:∫ εn

0
ν(ε)dε = n

L
, (35)
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FIG. 14. Numerical verification of Eq. (36) for the scaling of
energies of the low-lying single-particle states. (Left) Average energy
of the lowest eigenstate ε1 as a function of the square root of the
system size, confirming the scaling − ln ε1 ∝ √

L. (Right) Average
energy εn of the nth eigenstate vs 1/

√
n in a system of size L = 1000,

confirming the scaling − ln εn ∝ n−1/2 for sufficiently low energies.
Combination of the scaling behavior observed in both panels con-
firms Eq. (36).

which yields

εn ∼ exp

(
−c

√
L

n

)
, c = O(1). (36)

We have verified the scaling (36) numerically for the model
with the nearest-neighbor hopping matrix elements uniformly
distributed over the interval t j ∈ [0, 1]. The numerical data
shown in Fig. 14 fully confirm the analytical prediction, with
the coefficient c ≈ 0.5. Thus we can write down the density
of states around the lowest energy state ε1 as a function of the
length L:

ν(0, L) ∼ exp(c
√

L)

L
3
2

. (37)

This behavior is not of power-law type, i.e., it is not char-
acterized by a critical exponent in the usual sense. We can
define, however, an L-dependent scaling exponent x1(L) =
−∂ ln ν/∂ ln L, with the result

−x1(L) = c

√
L

ln(L)
− 3

2
. (38)

The result (38) for the scaling dimension of the density of
states is valid both for the Majorana and complex fermions,
since these models are equivalent in the absence of interaction.
(The only difference is that the number of states is halved in
the case of Majoranas.) On the other hand, we will show that
the scaling dimension �

(U )
2 of the interaction is completely

different in these two models. We will explore the scaling of
interaction by a numerical approach, supporting the results by
analytical arguments.

A. Scaling of interactions

In order to determine the scaling of the interaction op-
erators, we express the interaction matrix elements in terms
of linear combinations of products of single-particle eigen-
functions. These expression in terms of the eigenfunctions are
then numerically averaged over the disorder. The numerical
results will be also supported by analytical considerations
(Appendix D).

We start by writing the most general noninteracting Hamil-
tonian of a 1D system of size L of symmetry class BDI [56]:

H = 1

2
(c†

A c†
B)

(
0 h
h 0

)(
cA

cB

)
, (39)

where h is a real matrix and cA,B, c†
A,B are onsite operators

acting on the two sublattices. In the case of the complex
fermionic chain, these are fermionic creation and annihilation
operators, in the case of the Majorana chain we have cA =
γA = c†

A and cB = iγB = −c†
B, where γA,B are the real Majo-

rana operators in Eq. (12). Diagonalizing the L × L matrix
in Eq. (39), one can rewrite the Hamiltonian in the basis of
operators which correspond to the single particle excitations
of the system,

H = 1

2
(d†

+ d†
−)

(
ε 0
0 −ε

)(
d+
d−

)
, (40)

ci =
∑

α

Ui,αdα. (41)

Here, ε is a diagonal matrix with eigenvalues 0 < ε1 < ε2 <

. . . < εL/2. In the case of complex fermions, the eigenvectors
Uiα are just the conventional single-particle wave function
�α (i). The ground state |�〉 of the Hamiltonian can be
written in terms of the operators d and the zero-particle
state |0〉:

|�〉 =
∏

α,εα<0

d†
α|0〉. (42)

This immediately yields the action of the d operators on the
ground state:

dα|�〉 = 0, for εα > 0, (43)

d†
α|�〉 = 0, for εα < 0. (44)

A general q-body interaction operator can be expressed as
sum of products of annihilation and creation operators of the
following type:

Ô =
q∏

i=1

c†
ai

2q∏
j=q+1

caj

=
∑

{αi,α j }

q∏
i=1

Uai,αi d
†
αi

2q∏
j=q+1

Uaj ,α j dα j . (45)

The expectation value of the operator Ô over any eigenstate of
a noninteracting system can now be calculated by substituting
Eq. (41) into Eq. (45):

〈Ô〉 =
∑

{αi,α j }

∏
i, j

Uai,αiUaj ,α j

〈
q∏

i=1

d†
αi

2q∏
j=q+1

dα j

〉
. (46)

The expectation value that stands as a last factor on the
right-hand side of Eq. (46) is nonzero only if the states αi

and α j are pairwise identical; in this case, it is equal to +1
or −1, depending on parity of the permutation of indices. The
right-hand side of Eq. (46) thus represents an algebraic sum
of products of single-particle eigenfunctions.
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The terms in Eq. (46) are therefore the matrix elements of
the interaction operator expressed as products of the eigen-
vector amplitudes Uiα . For the conventional case of two-body
interaction, q = 2, on which we focus below, Eq. (46) reduces,
in accordance with the Wick theorem,to a sum over pairs of
states α1, α2. For a given choice of sites a1, . . . , a4 and eigen-
states α1 and α2, there will be two different terms in Eq. (46)
(plus analogous terms obtained by an interchange α1 ↔ α2),
that have a meaning of Hartree and Fock terms. These two
terms correspond to the order of subscripts α1α2α1α2 and
α1α2α2α1 of d operators in Eq. (46). As usual, the Fock term
will enter with a relative minus sign due to Fermi statistics.
We will see below that, in close analogy with Refs. [53–55],
a major cancellation between the Hartree and Fock terms will
play a crucial role for the RG irrelevance of the interaction
in the case of complex fermions. In the case of Majorana
system, there is a third term, originating from the following
order of indices α1α1α2α2, as discussed in detail in Sec. V C.
It has a meaning of the Cooper term, and its emergence it is
not surprising since Majorana excitations are characteristic for
superconducting systems. As we show below, the presence of
this term spoils the cancellation, making the total interaction
matrix element relevant in the RG sense.

In general, the disorder averaged value of matrix elements
under consideration is a function of the system size and of
the energies of the q = 2 eigenvectors involved. To obtain
the scaling of these functions numerically, matrices of the
form Eq. (39) for different system sizes were generated and
the lowest 20 eigenvectors calculated. Then for each pair
of eigenvectors the corresponding matrix elements entering
Eq. (46) were calculated. This procedure yields pairs of
energies and the associated matrix elements, which then have
to be averaged over disorder configurations. This is done by
making a histogram and averaging the matrix elements over
each energy bin. It is worth emphasizing that for the cases
of logarithmic dependence of the matrix elements on energy,
the correct choice of averaging procedure is crucial. In these
cases, the bin sizes are chosen such that the number of data
points is the same in every bin.

Even though we deal here with eigenstates of a nonin-
teracting problem, the corresponding numerical analysis is
a rather challenging endeavour. This is particularly true in
the regime of strong Hartree-Fock cancellations that plays
a central role below. In this situation, the default double
precision that provides approximately 15 decimal digits is
by far insufficient. As will be shown below, the Hartree
and Fock terms can be the same within hundreds of dig-
its for large systems. The calculations have therefore been
performed with at least 500 decimal digit floating point
arithmetics.

Since for large (L � 1) systems full diagonalization be-
comes slow [typically O(L3)] and memory intensive [at least
O(L2)], a transfer matrix approach is chosen to compute the
first few eigenvectors Ui,εi . The characteristic polynomial λ(ε)
is evaluated by L column expansions in O(L2). The first
20 eigenenergies εi closest to zero are obtained as roots of
λ(ε). The εi are plugged into the transfer matrix equation
(B1) to find Ui,εi . For all following calculations, the hopping
parameters are chosen to be uniformly distributed over the
interval t j ∈ [0, 1].

B. Complex fermion chain

We start with the model of the complex fermionic chain
described by Hamiltonian (2). Due to chiral symmetry, each
state with positive energy has a partner state with negative en-
ergy. For zero chemical potential, in the noninteracting ground
state, all states of negative energy are occupied and all of
positive energy are free. The relevance of the interaction in the
infrared limit is controlled by its matrix elements evaluated
on low-lying eigenstates. To obtain the appropriate eigenstate
correlation function, we inspect the expectation value of the
interaction, Eq. (46). For each pair of sites i and j, we have a
contribution

〈c†
i c†

i+rcici+r〉 =
∑
αβγ δ

UiαUiβUi+r,γUi+r,δ〈d†
αd†

βdγ dδ〉

=
∑
{αβ}

(UiαUiαUi+r,βUi+r,β

−UiαUiβUi+r,αUi+r,β ), (47)

with the summation in the last expression going over pairs of
filled states. The two terms in brackets after the last equal-
ity sign in Eq. (47) correspond to the conventional Hartree
and Fock diagrams. We define the corresponding correlation
functions of two single-particle eigenfunctions as functions of
energies, distance, and system size:

CH(εα, εβ, r, L) = 〈UiαUiαUi+r,βUi+r,β〉dis, (48)

CF(εα, εβ, r, L) = 〈UiαUiβUi+r,αUi+r,β〉dis, (49)

CHF(εα, εβ, r, L) =〈UiαUiαUi+r,βUi+r,β

− UiαUiβUi+r,αUi+r,β〉dis, (50)

where 〈. . .〉dis denotes the disorder averaging. Below, we
analyze the scaling of the full correlation function CHF =
CH − CF in order to determine the scaling exponent �

(U )
2

of the interaction. It was verified in Refs. [53–55] that this
scaling dimension also controls the scaling of interaction
matrix elements also in the second order of the perturbation
theory. We thus expect that that the analysis of the scaling of
the correlation function (50) with energy and the distance is
sufficient for establishing the relevance or irrelevance of the
interaction near the noninteracting fixed point.

The following comment concerning the r dependence is in
order here. Our DMRG results above dealt with short range
interaction r ∼ 1 only. At the same time, one may be also
interested in effects of long-range interaction, in which case
one needs to know the scaling of correlations functions of the
type (50) with r. Furthermore, the analysis of correlations of
eigenstates at the infinite-randomness fixed point constitutes
by itself a very interesting problem (with r dependence being
an important ingredient), as it represents a remarkable ex-
ample of strong-coupling Anderson-localization critical point
(see also a discussion in Sec. VI). Since the r dependence of
the correlation functions (48)–(50) can be tackled by the same
approach, we analyze below the correlation functions not only
for r ∼ 1 but also for arbitrary r. In the end, when we study
the RG relevance of the short-range interaction, we focus on
the correlations at r ∼ 1. This comment applies also to the
Majorana chain, Sec. V C.
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1. Single-wave-function correlations

Terms where the two wave functions are identical, i.e.,
α = β, do not contribute to the interaction matrix element CHF

as the Hartree and Fock terms cancel each other exactly. Nev-
ertheless, it is useful to start our analysis by considering the
single-wave-function correlations for two reasons. First, they
can be particularly well understood analytically and can serve
as a benchmark to our numerical calculations. Second, we will
see below that some of properties of the single-wave-function
correlations translate to correlations of two eigenstates that are
important for the interacting models. We define the two-point,
single-wave-function correlation function C2:

C2(εα, r, L) = 〈UiαUiαUi+r,αUi+r,α〉dis. (51)

For zero energy, the wave function Ur can be expressed
exactly in terms of a given realization of disorder [36]. The
zero-energy wave functions belong entirely to one of the two
sublattices (i.e., vanish on the other sublattice). If one looks at
the wave-function moments at a single point, their scaling is
similar to that of a fully localized wave function [36,56]:

〈
U 2q

r

〉 ∼ 1

L
, (52)

for q > 0. At the same time, the spatial decay of the correla-
tion function C2 at zero energy is only algebraic, which is a
property of a critical system [36]:

C2(0, r, L) ∼
{

r− 3
2 L−1, r even;

0 r odd.
(53)

For finite energy, this formula for even-r correlations is ex-
pected to hold as long as the distance r is smaller than the
localization length, r � ξε . The latter was predicted [36] to
scale with energy as

ξε ∝ | ln ε|2. (54)

Using Eq. (36) with n = 1, we see that ξε ∼ L for the lowest
eigenstate.

As to odd-distance correlations, they are not exactly zero
for a nonzero energy ε. Indeed, the absence of odd-distance
correlations, Eq. (53), is a consequence of the chiral symmetry
which is exact at ε = 0 but is violated at nonzero energy
and gets progressively more strongly broken when the energy
increases. Thus the odd-r correlations should be strongly
suppressed relative to even-r correlations at low energies, with
the suppression becoming stronger with lowering energy. As
shown in Appendix B, the corresponding suppression factor is
∼ε2 for odd r ∼ 1.

We confront now the analytical predictions with numerical
simulations. In Fig. 15, we plot there the r dependence of the
correlation function C2(ε1, r, L = 400), separately for even
and odd r. For even r, we observe the r−3/2 scaling, in
agreement with Eq. (53). This scaling holds with a good
accuracy up to r ≈ L/2. As to the odd-distance correlations,
they are strongly suppressed for small r in comparison to
even-distance ones, again in consistency with theoretical ex-
pectations. Curiously, when r approaches the system size L,
the odd correlations become much stronger that the even
correlations. This behavior will, however, play no role for

FIG. 15. Single-wave-function correlation function C2(ε1, r, L =
400) vs distance r for the lowest-energy state in a disordered
complex-fermion chain of size L = 400, for even and odd distances
r. For small even distances, C2 scales as r−3/2 in agreement with
Eq. (53). At distances r approaching L even correlations are strongly
suppressed. Odd correlations are strongly suppressed for small dis-
tances in consistency with Eq. (53) and with the result of Appendix B
but become large for r comparable to L.

our analysis, since we consider a finite-range interaction, i.e.,
r ∼ 1.

In Fig. 16, we show the numerically obtained energy
dependence of the correlation function C2 for fixed L = 1200
and fixed small separation r. Specifically, we choose r = 2 for
the even case and r = 1 for the odd case. It is seen that the
even-distance correlations are essentially independent of ε.
This is the expected behavior: indeed, for r ∼ 1, the condition
r � ξε is fulfilled as long as | ln ε| � 1, i.e., essentially in the
whole range of ln ε. On the other hand, the odd-distance cor-
relations strongly increase with energy. Specifically, the data

10−109 10−80 10−51 10−22

ε

10−198

10−128

10−58

1012

C
2
(ε

,r
,L

)

∝ ε2

L · C2,e C2,o

FIG. 16. Single-wave-function correlation function for short
even distance, LC2(ε, r = 2, L), and short odd distance, C2(ε, r =
1, L), vs energy ε in systems with size L from 100 to 10 000 (distinct
colors). For r = 2, the correlation function is independent on energy,
while for r = 1, it scales as ε2 (and thus is strongly suppressed at
low energy), as predicted analytically.
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FIG. 17. Single-wave-function correlation function for short
even distances C2(ε1, r = 2, L) (left) and short odd distances
C2(ε1, r = 1, L) (right) vs system size L. For r = 2, the data confirm
the analytically predicted scaling, C2 ∼ L−1, see first line of Eq. (53).
For odd distance, the correlation function decreases quickly with
L since the lowest energy ε1 approaches zero exponentially fast,
ε1 ∼ exp(−c

√
L) and in view of C2 ∝ ε2

1 , see Appendix B.

unambiguously demonstrate the ε2 behavior of C2(ε, r, L)
for small odd r discussed above and derived analytically in
Appendix B. It is worth emphasizing the enormously broad
range of variation of the energy ε and the correlation function
C2 (odd r) in Fig. 16: about 130 and 260 orders of magnitude,
respectively!

Finally, in Fig. 17, we show dependence of the correlation
function C2(ε1, r, L) on the system size L for even (r = 2)
and odd (r = 1) distance. In the even case, the correlation
function does not depend on energy for small r, so that
the fact that ε1 is different from zero and varies with L is
of no importance. The expected result is given by the first
line of Eq. (53). The numerical data in the right panel of
Fig. 17 confirm the predicted L−1 scaling. For odd r the
decay of C2(ε1, r, L) with L should be exponentially fast due
to C2(ε, r, L) ∼ ε2 and the fact that the energy ε1 approaches
zero exponentially with increasing L, see Eq. (36). This yields
the analytical expectation C2(ε1, r, L) ∼ exp(−2c

√
L), in full

agreement with the data in the right panel of Fig. 17.

2. Two-wave-function correlations

Matrix elements for two-wave-function correlations,
Eqs. (48)–(50), are calculated using two eigenstates with
different energies for a given disorder configuration, and
then averaging over disorder. The energy levels are on av-
erage distributed as εn ∼ exp(−c

√
L/n), which means that,

for L � 1 and n ∼ 1, one of the energies will almost al-
ways be much larger than the other one. Since the energy
breaks the chiral symmetry, it is expected that the matrix
elements will essentially depend only on the larger of the
two energies and only weakly on the lower one. To verify
numerically this expectation, we compare in the left panel of
Fig. 18 the Hartree-Fock correlation functions [see Eq. (50)]
CHF(ε1, ε3, r, L = 400) of the lowest and third lowest energy
levels with CHF(ε2, ε3, r, L = 400) of the second lowest and
the third lowest energy levels, for even r. As we will show
below, this correlation function exhibits, for low energies,
very strong dependence on the higher of the two energies.
At the same time, the two curves in the left panel of Fig. 18
are nearly identical (within statistical fluctuations), which
confirms the essential insensitivity to the value of the lower
energy. In the right panel of Fig. 18, we show analogous data

FIG. 18. (Left) CHF(ε1, ε3, r, L = 400) and CHF(ε2, ε3, r, L =
400) as functions of the even distance r. Two curves are essentially
identical, which confirms insensitivity of the correlation function
to the lower energy, as long it is much smaller than the larger
one. (Right) CHF(ε1, ε20, r, L = 400) and CHF(ε19, ε20, r, L = 400) as
functions of the even distance r. The two curves show again a similar
behavior but now there is a difference in a factor of order unity (≈3)
between them at small r. This is because in this plot we consider
higher-energy state, and, in particular, ε19 is close to ε20.

by choosing now a higher excited state ε20 and varying the
state with lower energy from ε1 to ε19. One still expects to see
the same scaling behavior for the two correlation functions;
however, since ε19 and ε20 are nearly equal for this value of L,
a difference in a numerical factor of order unity is expected.
This is exactly what is observed in the right panel of Fig. 18.
In the numerical analysis below, we will choose the state with
the lowest energy (ε1) as one of the two states for which the
correlation function is calculated. This energy is always much
smaller than another eigenstate energy (that will be denoted
as ε), which simplifies the scaling analysis at criticality.

The correlation functions at criticality depend thus on the
energy ε, the length L, and the distance r. As for the single-
eigenstate correlation function, Sec. V B 1, the behavior for
even and odd distances r is very different. At low energy
ε, and short even distances, it is natural to expect that CH

behaves, in similarity with with C2, as a power law in r
and L. Such a power-law behavior is also analogous to that
of eigenfunction correlation functions at critical points of
localization-delocalization transitions in systems of higher
dimensionality, see Ref. [56]. As to the expected for of the
energy dependence, we recall that, at the critical point that
we study, the logarithm of the energy scales as a power law
of the length, see Eq. (36). Therefore it is natural to expect
a power-law scaling of CH with respect to ln ε. Therefore,
for short even distances r and low energy ε, the correlation
function CH is expected to have the scaling form (see also
Ref. [61]):

CH (0, ε, r, L) ∼ | ln ε|α
rβLγ

, r even. (55)

This equation should hold at criticality, so that the neces-
sary condition is r � ξε . We determine now the exponents
α, β, and γ by a numerical analysis. We will also support
the numerical results by analytical considerations (details of
which are presented in Appendix D) yielding the values of the
exponents α and γ .

In the left panel of Fig. 19, the numerically obtained depen-
dence of the correlation functions on r is shown for even r. We
see that CH at not too large r scales r−β with β = 3/2. This
scaling is the same as for the single-eigenfunction correlation
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FIG. 19. Hartree, CH (ε1, ε2, r, L = 400), and Fock, CF (ε1,

ε2, r, L = 400), correlation functions and their difference
CHF(ε1, ε2, r, L = 400) plotted as functions of the distance r.
(Left) Even r. The scaling of CH at criticality (distance r much
smaller than the correlation length ξε), is of the r− 3

2 form, implying
that the index β in Eq. (55) is β = 3/2. The Fock term is nearly
equal to the Hartree term in this critical regime, so that CHF is very
strongly suppressed at small r. At r ≈ 40, the Fock term becomes
much smaller than the Hartree one and changes sign. (Right) Odd
r. In the critical regime (small r) the Hartree term is strongly
suppressed. The Fock term is still smaller, so that CHF � CH .

function C2, see Sec. V B 1. To find the exponent α in the
critical scaling of CH , Eq. (55), we show in the right panel
of Fig. 20 the dependence of correlation functions at small
even distance (r = 2) and fixed L on the energy. The slope
yields α = 1. To determine γ , we plot in the left panel of the
same figure the dependence on the system size L. Here the

FIG. 20. Hartree, Fock, and Hartree-Fock correlation functions
CH (ε1, ε, r = 2, L), CF (ε1, ε, r = 2, L), and CHF(ε1, ε, r = 2, L) for
a small even distance (r = 2). (Upper left) Scaling of CH ,CF with L
at ε = ε2. The slope yields the power-law scaling ∼L−3/2, implying a
relation γ − α/2 = 3/2 for the exponents in Eq. (55). (Upper right)
Scaling with energy at fixed L = 4000. The slope implies the scaling
∼| ln ε| for CH , implying the exponent α = 1 in Eq. (55). In both
panels, the Fock correlation function is nearly equal to the Hartree
one, which is a characteristic feature of the critical regime for even
r. As a result, CHF shown in lower panels is strongly suppressed with
respect to CH and CF . (Lower left) Scaling of CHF with L at ε = ε2.
(Lower right) Scaling of CHF with energy for L from 100 to 10 000.
The slope agrees with the analytical prediction CHF ∝ ε4.

FIG. 21. Hartree, Fock, and Hartree-Fock correlation functions
CH (ε1, ε, r = 1, L), CF (ε1, ε, r = 1, L), and CHF(ε1, ε, r = 1, L) for
a small odd distance (r = 1). (Left) Scaling with L at ε = ε2. (Right)
Scaling with energy. Different colors represent different lengths from
100 to 10 000. In both panels, the Fock correlation function is much
smaller than the Hartree one, so that CHF � CH . The dominant scaling
for both CH and CF is ∼ε2 (which translates into an exponential
length dependence in the left panel). The data for the Fock term
suggest an additional power-law dependence on length.

correlation functions are evaluated for two lowest eigenstates,
so that the energy ε is equal to ε2 = exp(−c

√
L/2). The ob-

tained scaling of CH is L−2; taking into account the | ln ε2| ∼
L1/2 factor originating from the energy dependence of CH , we
find that γ = 2. The scaling of CH in the critical regime is thus
given by

CH (0, ε, r, L) ∼ | ln ε|
L2r

3
2

, r even. (56)

The Fock correlation function CF for even r is found to behave
in exactly the same way. This is what should be expected:
indeed, a particular case of a small even r is r = 0, for which
CH and CF are identically the same. The | ln ε|L−2 scaling
of CH and CF for even r is confirmed also by an analytical
calculation of the averaged square of the Green function, see
Appendix D for details.

As was discussed above, the effect of the interaction is
controlled by the scaling of the Hartree-Fock correlation
function CHF = CH − CF . As the data in Fig. 20 clearly
demonstrate, this function is strongly suppressed (for small
even r) as compared to CH and CF . This is also what is
expected analytically: as shown in Appendix B, the suppres-
sion factor is ∼ε4. If the correlation function is evaluated
for two lowest eigenstates, the suppression factor becomes
∼ε4

2 ∼ exp(−4c
√

L/2). These analytical predictions are fully
confirmed by the numerical results, see Fig. 20.

We turn now to the critical behavior of the correlation
functions at odd r. We expect that odd-distance correlation
functions CH and CF are suppressed with respect to their
even-r counterparts. The reason for this is the same as for the
single-eigenfunction correlation function C2, Sec. V B 1: odd-
r correlations necessarily involve wave functions on different
sublattices. As shown in Appendix B, the suppression factor
for CH and CF with odd r is the same (∼ε2) as for C2. Again,
this translates into an exponential suppression with respect
to L.

This expectation is fully supported by the numerical results
shown in Fig. 21. Note that, in the case of odd r, the Fock term
is considerably smaller than the Hartree one (even though the
dominant scaling factor is the same). This, the Hartree-Fock
cancellation is not operative and CHF � CH .
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FIG. 22. RG irrelevance of interaction at the infinite-randomness
fixed point of the complex-fermion chain. Product ν(L)CHF(ε1,

ε2, r, L) of the Hartree-Fock matrix element at criticality multiplied
by the density of states plotted vs the system size L, for odd (r = 1,
blue symbols) and even (r = 2, red symbols). Both for even and odd
distances, the product decreases quickly with L (as an exponential of√

L), implying that the interaction is irrelevant.

We have thus found that the Hartree-Fock correlation
function CHF is strongly suppressed at criticality (i.e., at
short distances r and low energies, so that r � ξε). This is
valid both for even distances (due to cancellation between
the Hartree and Fock terms) and for odd distances (due to
different sublattices entering). The suppression factor is ∼ε4

for even r and ∼ε2 for odd r.
We can return now to the question of RG relevance of

the interaction which is determined by Eq. (29). The right-
hand side of this equation characterizes the scaling of the
product of the interaction matrix element and the density of
states with the system size L. The matrix element to be used
here is the Hartree-Fock correlation function, see Eqs. (47)
and (50). If this product increases (decreases) with L, the
interaction is relevant (respectively, irrelevant). The density of
states increases exponentially with

√
L according to Eq. (37)

or, equivalently, as 1/ε with energy (up to logarithmic cor-
rection), see Eq. (34). On the other hand, the Hartree-Fock
correlation function decreases as ε2 (odd r) or ε4 (even r).
Thus the suppression of the Hartree-Fock correlation function
is stronger than the increase of the density of states, and
the product decays as a power of ε (and thus exponentially
with respect to

√
L). To illustrate this, we plot in Fig. 22 the

product ν(L)CHF(ε1, ε2, r, L) for small even and odd distances
(r = 2 and 1, respectively) as a function of L. We see that
both functions decrease exponentially with

√
L as expected.

This implies that the interaction in Eq. (2) is irrelevant in
the presence of disorder, and the system stays critical (at the
infinite-randomness fixed point), at least for sufficiently weak
interaction. This is in agreement with our DMRG results in
Sec. III and with real-space RG findings of Refs. [35,37].

We have focused above on the behavior of two-eigenstate
correlation functions at criticality (r � ξε), since such func-
tions emerge when one explores the effect of short-range
interaction (r ∼ 1). On the other hand, the behavior of the
correlation functions at r � ξε may be of interest in other
contexts. We briefly discuss this behavior in Appendix F.

C. Majorana chain

We turn now to the Majorana model. The simplest interac-
tion term in this model was presented in Eq. (13). However,
as was already mentioned before, any fourth order interaction
term containing an even number of Majoranas on even sites
(and an even number of those on on odd sites) is consistent
with the symmetries of the Hamiltonian. In fact, such terms
will be generated by RG even if one starts from the simplest
term only as in Eq. (13).

We generalize first the interaction in Eq. (13) by intro-
ducing a distance r separating two nearest-neighbor pairs of
Majoranas:

Hint =
L∑

j=1

γ jγ j+1γ j+rγ j+r+1. (57)

(We will assume r � 2 to be even but it is not particularly
important here). Such a term is analogous to the odd-r inter-
action term in the case of complex fermions, see Eq. (3), since
it involves two operators on even sites and two on odd sites.

We express the Majorana operators γi in terms of the
Bogoliubov operators dα using the definitions cA = γA = c†

A

and cB = iγB = −c†
B, and then diagonalizing the Hamiltonian

matrix, see Sec. V A. At variance with the complex fermion
case, these 2L Bogolyubov operators are not independent:
each operator is related to its chiral conjugate with inverse
sign of the energy, d†

α = dᾱ . Thus we can express the Majo-
rana operators by using only wave functions and Bogolyubov
operators associated with positive energies:

γ j =
∑
εα>0

Uα, j (dα + d†
α ) ( j even), (58)

γ j =
∑
εα>0

iUα, j (dα − d†
α ) ( j odd). (59)

Via the same token, the whole Hilbert space of the problem
is obtained by acting with operators d†

α with εα > 0 on the
vacuum state.

Substituting Eq. (59) into an interaction term in (57), one
can evaluate the expectation value of the interaction term over
any basis state of the noninteracting Fock space. For example,
averaging over the noninteracting vacuum (that is annihilated
by all dα with positive energies), we get

〈γkγk+1γk+rγk+r+1〉
= −

∑
α>0;β>0

(Uk,αUk+1,αUk+r,βUk+r+1,β

+ Uk,αUk+1,βUk+r,αUk+r+1,β

− UkαUk+1βUk+r,βUk+r+1,α ). (60)

Three terms here correspond to the expansion of a Pfaffian
that is a general form of the Majorana Wick’s theorem [62].

The matrix element in Eq. (60) consists of three terms. The
first of them is similar to a Hartree term in the sense that
amplitudes of each eigenstates enter at spatial points separated
by a minimal distance (one site). The other two terms are
similar to Fock terms. In full analogy with the case of complex
fermions, we define correlation functions depending on two
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FIG. 23. Eigenstate correlation functions (61)–(64) correspond-
ing to the four-point Majorana interaction for two lowest-energy
eigenstates with even r � 2 in the system of size L = 400. For
sufficiently short distances, r < ξε (critical regime), the term CF,1,o

is dominant and r-independent. The magnitude of all terms is rather
small in view of the ε2 suppression that is demonstrated in Fig. 24.

energies, distance r, and the system size L: εα, εβ , system size
L and distance r:

CH,o(εα, εβ, r, L) = 〈Uk,αUk+1,αUk+r,βUk+r+1,β〉dis, (61)

CF,1,o(εα, εβ, r, L) = 〈Uk,αUk+1,βUk+r,αUk+r+1,β〉dis, (62)

CF,2,o(εα, εβ, r, L) = 〈Uk,αUk+1,βUk+r,βUk+r+1,α〉dis, (63)

CHF,o(εα, εβ, r, L) =〈Uk,αUk+1,αUk+r,βUk+r+1,β

+ Uk,αUk+1,βUk+r,αUk+r+1,β

− Uk,αUk+1,βUk+r,βUk+r+1,α〉dis.

(64)

The subscript “o” serves to indicate that, as was explained
above, these correlation functions bear analogy with odd-r
correlations introduced for the model of complex fermions.

The same analytical consideration as were used in the case
of correlation functions (48)–(50) with odd r suggest that all
the correlation functions (61)–(64) should be suppressed by
the factor ∼ε2. We show now by numerical analysis that the
correlation functions (61)–(64) indeed behave in a way very
similar to the correlation functions (48)–(50) with odd r. In
Fig. 23, we show the r dependence of the correlation functions
(61)–(64) in a system of length L = 400. We observe that
in the critical regime of not too large r (the condition is
r � ξε) the function CF,1,o dominates. It is also seen that the
magnitude of this term is quite small. To understand the source
of this smallness and its parametric dependence, we show in
Fig. 24 the dependence of the correlation functions on system
size L and on the energy ε. The right panel clearly shows the
ε2 scaling that is expected from the analytical argument and
is fully analogous to the scaling in Fig. 21. This is translated
into an exponential scaling with respect to

√
L of correlation

FIG. 24. (Left) Scaling of the correlation functions
CH,o(ε1, ε2, r = 2, L), CF,1,o(ε1, ε2, r = 2, L), CF,2,o(ε1, ε2, r = 2, L),
and CHF,o(ε1, ε2, r = 2, L), Eqs. (61)–(64) with respect to system
size L. (Right) Scaling of the same correlation functions with energy.
Different colors represent L from 100 to 10 000. The data clearly
demonstrated the ε2 scaling that is also expected analytically.

functions evaluated on two lowest-energy states, as is seen in
the left panel of Fig. 24 and is again in full analogy with the
corresponding behavior in Fig. 21.

The ε2 scaling of the correlation functions (61)–(64) im-
plies the RG irrelevance of the corresponding interaction
term. Indeed, the density of states increases only as 1/ε with
logarithmic correction, see Eq. (34), and thus the suppres-
sion of the interaction wins over the increase of the density
of states. We will verify this numerically below (Fig. 27).
As explained above, the reason behind the ε2 suppression
of the matrix elements is the fact that both even and odd
sites are involved. This tells us which correlation functions
may escape such a suppression: those that involve sites of
one sublattice only, i.e., with all distances between the sites
being even. We thus consider such a generalized interaction
term:

Ô = γkγk+2γk+rγk+r+2, (65)

with an even r � 4. Such a term is allowed by symmetries and
will be generalized by RG from the original interaction. This
leads us to introduce the corresponding generalization of the
correlation functions (61)–(64):

CH,e(εα, εβ, r, L) = 〈Uk,αUk+2,αUk+r,βUk+r+2,β〉dis, (66)

CF,1,e(εα, εβ, r, L) = 〈Uk,αUk+2,βUk+r,αUk+r+2,β〉dis, (67)

CF,2,e(εα, εβ, r, L) = 〈Uk,αUk+2,βUk+r,βUk+r+2,α〉dis, (68)

CHF,e(εα, εβ, r, L) =〈Uk,αUk+2,αUk+r,βUk+r+2,β

+ Uk,αUk+2,βUk+r,αUk+r+2,β

− Uk,αUk+2,βUk+r,βUk+r+2,α〉dis.

(69)

The subscript “e” indicates that all distances between the sites
involved are even, in analogy with correlation functions (48)–
(50) at even r.

In view of the analogy that we have just emphasized,
we can expect that (i) the correlation function CH,e scales
similarly to CH , (48), and (ii) the correlation functions CF,1,e

and CF,2,e scale in the same way and, moreover, are equal in
the leading order to CH,e, in analogy with the corresponding
behavior of CF , (49). However, since we now have three terms
rather than two, the strong Hartree-Fock compensation should
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FIG. 25. Correlation functions CH,e(ε1, ε2, r, L = 400), CF,1,e(ε1,

ε2, r, L = 400), CF,2,e(ε1, ε2, r, L = 400), and CHF,e(ε1, ε2, r,
L = 400) evaluated on two lowest-energy eigenstates, as functions
of even r. The functions CH,e, CF,1,e, and CF,2,e are nearly equal
to each other and scale as r−3/2. In CHF,e, two out of three terms
approximately cancel, leaving CHF,e � CH,e.

not happen, leaving us with CHF,e � CH,e. These expectation
are fully supported by the numerical simulations. In Fig. 25,
we show the r dependence of the correlation functions (66)–
(69) evaluated on two lowest-energy eigenstates in a system
of size L = 400. All four correlations functions CH,e, CF,1,e,
CF,2,e, and CHF,e are nearly equal in the critical regime (not
too large r) and show the r−3/2 scaling in analogy with CH

and CF . In fact, the overall behavior of the correlation function
CH,e (CF,1,e and CF,2,e) in Fig. 25 is remarkably similar to
that of CH (respectively, CF ) in Fig. 19. We turn now to the
scaling of the correlation functions (66)–(69) with energy ε

and length L, see Fig. 26. The figure is very similar to the
upper two panels of Fig. 20 and confirms that CH,e, CF,1,e,
and CF,2,e scale exactly in the same as CH with even r, (56).
Since the Hartree-Fock compensation is not operative now, the
correlation function CHF,e scales in the same way.

Since the correlation function CHF,e decreases with L in
a power-law fashion only, and the density of states increases
in an exponential way, they product should clearly increase

FIG. 26. Correlation functions (66)–(69) with r = 4. (Left) Scal-
ing with the system size L of the correlation functions evaluated on
two lowest-energy eigenstates. The slope corresponds to a power
law with an exponent 3/2. (Right) Dependence on energy at fixed
L = 4000. The slope corresponds to the | ln ε| scaling. The total
scaling with L and ε is therefore the same as for the complex-fermion
correlation function CH with even r, Eq. (56).
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FIG. 27. RG (ir)relevance of interaction at the infinite-
randomness fixed point of the majorana chain. Product
ν(L)CHF,{e,o}(ε1, ε2, r, L) of the Hartree-Fock correlation function
and the density of states is plotted vs the system size L. Blue
symbols: νCHF,o for r = 2 quickly decreases with L, implying RG
irrelevance of the corresponding interaction terms. Red symbols:
νCHF,e for r = 4 quickly increases with L, indicating RG relevance
of the corresponding interaction term.

exponentially. This is explicitly demonstrated in Fig. 27. For
comparison, we also show there the product νCHF,e that de-
creases with increasing L as discussed above. The exponential
increase of νCHF,e indicates the RG relevance of the corre-
sponding interaction term. This explains why the interaction
drives the system away from the infinite-randomness fixed
point and establishes the spontaneous symmetry breaking and
localization, as exhibited by the DMRG results, Sec. III B.

At this point, the following comment is in order. The
completeness of eigenstates in combination with the chiral
symmetry implies that

∑
εα>0 Uk,αUk+r,α is equal to zero for

any even r �= 0. As a result, the correlation functions (66)–
(69) are zero when summed over all states with positive
energies. Exactly such sums will arise if we calculate the
expectation of the interaction (65) over the vacuum state (or,
more generally, over any Fock-space basis state). However,
what we are actually interested in is not this expectation value
but rather the effect of nondiagonal matrix elements of the
interaction. In more conventional problems, it turns out that
it is sufficient to study the scaling of the expectation value
to understand the effect of the interaction. It turns out that
the situation with the term of the type (65) in the present
problem is more delicate. The full analysis of the effect of
nondiagonal matrix elements of such an interaction at the
infinite-randomness fixed point is a very challenging task that
we leave to future work. We expect that two properties of
the correlation functions (66)–(69) that we have identified
above—namely, (i) the contributions that, when multiplied
with the density of states, strongly increase with L and (ii) the
absence of Hartree-Fock cancellation of such contributions—
will be also key ingredients of such a more sophisticated
analysis, thus governing the RG relevance of the interaction
for the disordered Majorana chain.

VI. SUMMARY AND OUTLOOK

The main goal of this work was the investigation of
the low-energy physics of a chain of Majorana fermions in
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the presence of interaction and disorder. One of intriguing
questions was a difference between this interacting Majorana
problem and the 1D model of interacting complex fermions
with chiral symmetry that belongs to the same symmetry
class BDI. In the absence of interaction, both models are
equivalent (apart from halving the number of states in the
Majorana case), and flow into the same infinite-randomness
fixed point. It turns out that the interaction makes them
drastically different. To explore and understand the physics
of these models, we have used a combination of several
computational and analytical approaches, including DMRG,
mean-field analysis, and two different types of RG (around
the clean interacting fixed point and around the noninteracting
disordered fixed point). The latter type of RG required inves-
tigation of statistical properties of eigenfunction correlations
at infinite-randomness fixed point, which has turned out to be
a very interesting and nontrivial problem by itself. Our key
results can be summarized as follows:

(1) We have carried out the DMRG analysis of the models
(in their spin representations), by calculating the entanglement
entropy as well as the spin-spin correlation functions. This
has allowed us to determine the corresponding phase diagrams
and to understand some physical properties of the emerging
phases. More specifically:

(i) we have first considered an interacting Majorana chain
with staggering, see Figs. 3 and 4 for the color-code represen-
tation of the entanglement entropy and the spin correlations in
the interaction-staggering plane. The obtained phase diagram
is shown in Fig. 5. On the no-staggering (self-dual) line, we
observe the Ising (central charge c = 1/2) and Ising + LL
(c = 3/2) phases, in agreement with Ref. [26]. Away from
the self-dual line (i.e., in the presence of staggering), we find
gapped phases as well as a LL critical phase with c = 1.
The distinct character of phases manifests itself in the spatial
dependence of the spin-spin correlation functions, Fig. 6. The
c = 1 critical phase can be understood as the result of gapping
the Ising sector of the LL + Ising phase, with LL sector
remaining gapless. The gapped phases on both side of the
self-dual line are topologically distinct. We have also found
interesting parts of the gapped phases with entanglement
entropy showing relatively sharp maxima at points where the
antiferromagnetic ordering of spins experience certain “phase
slips.”

(ii) We have then applied the DMRG analysis to interacting
disordered Majorana chains. Here we focused on the systems
without staggering, which are critical in the absence of dis-
order. In the case of attractive interaction, our DMRG results
on entanglement show that the system remains critical also
in the presence of disorder. Moreover, as shown in Fig. 7,
we find (within the numerical accuracy) the same value of
the central charge, c = 1/2, as for the clean system. The
situation is radically different for the repulsive interaction,
where we find that the system gets localized. This happens
already for weak repulsion (for which the clean system hat
c = 1/2 central charge), as is seen from the behavior of
the entanglement entropy, Fig. 8. The behavior of the spin
correlation function, Fig. 9, demonstrates that the system
finds itself spontaneously in one of two topological phases.
A similar behavior is observed for the intermediate strength
of the interaction, Figs. 10 and 11. Thus an interplay of

repulsive disorder and interaction leads to a spontaneous
symmetry breaking that results in localization and topological
ordering.

(iii) In the case of disordered interacting complex fermions,
the DMRG shows (both in the cases of attraction and re-
pulsion) the same behavior as for the noninteracting model.
Specifically, the found value of the central charge is c = ln 2,
Fig. 12, which is a hallmark of the infinite-randomness fixed
point.

(2) As a first attempt to add analytical understanding to the
numerical results, we have developed a weak-disorder RG in
spirit of Giamarchi-Schulz. This was done in the vicinity of
all three clean critical theories: c = 1/2 and 3/2 for Majorana
chain and c = 1 for complex fermions. In all the cases, the
disorder is RG-relevant and drive the system away from the
corresponding clean fixed point, towards the strong-disorder
regime. Therefore this approach is not sufficient for exploring
the infrared behavior of the models.

(3) The flow of disorder to strong coupling has motivated
an alternative RG analysis, in which the starting point is
the noninteracting disordered theory that is at the strong-
randomness fixed point. Investigation of the effect of inter-
action requires understanding of the scaling of eigenfunction
correlations at this fixed point. This theory is a remarkable
strong-disorder Anderson-localization critical theory, and the
corresponding eigenfunction statistics is also highly interest-
ing on its own, so that we have studied it in some detail. For
the Hartree-type correlations of two eigenfunctions at even
distance r, we have determined, by combination of numerical
and analytical means, the critical scaling (56). This formula
shows that, in analogy with Anderson-transition critical points
in higher dimensions, correlations are strongly enhanced at
criticality (small ε) and at small r. On the other hand, for
odd r, the correlations turn out to be strongly suppressed
at criticality, in view of the chiral symmetry. Furthermore,
we show that a strong cancellation between the Hartree and
Fock terms leads to a strong suppression of Hartree-Fock
correlation function also for even r. We have shown that
this suppression overweights the divergence of the density
of states at criticality, Fig. 22. As a result, the interaction
turns out to be RG-irrelevant at the strong-disorder fixed point
for the complex-fermion model, in full consistency with the
corresponding DMRG results.

For Majorana problem, the interaction matrix elements
involves four sites. For even separation between the sites,
the critical scaling of the corresponding eigenstate correlation
functions, Fig. 25, is analogous to that of two-point correlation
function CH , Eq. (56). The crucial difference is that in the Ma-
jorana case, for given two eigenstates and a give set of spatial
points there are three contributing correlations functions in-
stead of two (Hartree and Fock) in the complex-fermion case.
As a result, the Hartree-Fock cancellation is not operative in
the Majorana problem, and the interaction is relevant at the
infinite-randomness fixed point. This is again consistent with
the DMRG results and explains a dramatic difference between
the behavior of interacting disordered Majorana chains and
that of its complex-fermion counterpart.

Before closing the paper, we make several comments on
possible extensions of our work that represent prospective
directions for future research.
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(i) It would be interesting to extend our analysis of dis-
ordered interacting Majorana systems to higher-dimensional
systems including quasi-1D (ladders) and 2D geometry. Clean
version of such models was studied in Ref. [63].

(ii) Another potential extension concerns the symmetry
class. We recall that the Majorana model that we have con-
sidered in this paper belongs to the symmetry class BDI. If
the sublattice symmetry is violated, the system will be in the
symmetry class D. It would be interesting to study the inter-
acting Majorana models of this symmetry class in 1D, quasi-
1D, and 2D geometries. In particular, an intriguing question
is how generic is the difference between interacting Majo-
rana and complex-fermion models from the same symmetry
class.

(iii) Our numerics show that the behavior of the disordered
Majorana chain differs strongly for attractive and repulsive
interaction. Specifically, we find localization in the repulsive
case, whereas the system remains critical for attractive g, see
right panel of Fig. 7. Analytical understanding of the impact
of the sign of the interaction would be desirable. Further,
the physics of the disordered attractive interaction case itself
deserves a more detailed study. The numerical data suggest the
value c = 1/2 of the central charge, different from the value
c = (ln 2)/2 characterizing the noninteracting system. This
difference is consistent with our finding that the interaction
in Majorana chain is relevant at the infinite-randomness fixed
point of the noninteracting system. On the other hand, we also
know that the disorder is relevant at the clean fixed point, so
that the coincidence of the found central charge with that of
the clean system appears surprising. Further investigation of
other physical observables should help to clarify the precise
physical nature of this phase.

(iv) The spontaneous symmetry breaking in disordered
interacting Majorana chains, which leads to localization and
topological order, calls to exploring the physics of these
systems at high temperatures. It is expected that they will un-
dergo a many-body (de-)localization transition accompanied
by restoration of symmetry. Transitions between many-body
localized and ergodic phases have attracted a great deal of
attention in recent years [64–67].

(v) A complete analysis of statistical properties of vari-
ous eigenfunction correlations (also those including a larger
number of eigenstates and/or spatial points) at the infinite-
randomness fixed point represents a very interesting (and also
very challenging) problem. This fixed point represents an
intriguing example of a strong-disorder Anderson-localization
critical theory. In fact, it was argued in Ref. [68] that a
“superuniversality” holds in the sense that the same fixed point
describes critical theories of all five symmetry classes (BDI,
AIII, CII, D, DIII) that can host 1D topological insulators
according to the “periodic table.” This fixed point exhibits

criticality in various observables, but at the same time many
properties are similar to those in the localized phase. In this
respect, this noninteracting 1D critical point bears a certain
similarity with the transition between the localized and er-
godic phases on random regular graphs [69] that serves as a
toy model for the many-body localization transition.

(vi) Another interesting generalization of our models is
including disorder in the interaction terms. For relatively weak
randomness of the interaction, the results derived here are
expected to retain validity, since such terms are generated
anyway during RG flow. On the other hand, if the random
interaction is a dominant part of the Hamiltonian, the mod-
els will resemble those of Sachdev-Ye-Kitaev (SYK) type
[70]. The scenario of not fully quenched kinetic energy is
considered in Refs. [71,72], where coupled quantum dots are
studied. It would be interesting to see whether the SYK-like
physics may emerge in our model in the case of strong random
interaction. In this case, one could study a crossover between
the SYK and the infinite-randomness fixed point.
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APPENDIX A: WEAK-DISORDER RG AROUND THE
ISING + LL FIXED POINT OF THE INTERACTING

MAJORANA CHAIN

In this Appendix, we provide details of the weak-disorder
RG treatment of the interacting Majorana chain in the Ising +
LL fixed point, Sec. IV C. The starting point is the effec-
tive mean-field Hamiltonian (25) including the third-nearest-
neighbor hopping as well as a weak randomness in the
nearest-neighbor hopping t + δt j , supplemented with the in-
teraction term gγ jγ j+1γ j+2γ j+3.

Using the low-energy expansion (26) for the nearest-
neighbor hopping operator γ jγ j+1 yields oscillatory contri-
butions with wave vectors ki = 0, k0, k0 + π , 2k0, 2k0 + π ,
and π that can be dropped in the clean case. In the presence
of randomness, they couple, however, to the corresponding
Fourier harmonics of disorder δt j . We employ the replica trick
to average over disorder. As a result, the following terms in the
action representing effective “interactions” between different
replica species a and b are generated:

Sk0 = −8(1 − cos k0)

πa
Dk0

∫
dxdτdτ ′ ∑

a,b

[
iγ a

L γ b
L sin(φa + θa − φb − θb)

+ iγ a
R γ b

R sin(φa − θa − φb + θb) − iγ a
L γ b

R sin(φa + θa − φb + θb)
]
,

Sk0+π = −8(1 + cos k0)

πa
Dk0+π

∫
dxdτdτ ′ ∑

a,b

[
iγ a

L γ b
L sin(φa − θa − φb + θb)
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+ iγ a
R γ b

R sin(φa + θa − φb − θb) − iγ a
L γ b

R sin(φa − θa − φb − θb)
]
,

S2k0 = − 1

π2a2
D2k0

∫
dxdτdτ ′ ∑

a,b

cos(2φa − 2φb) sin(2θa) sin(2θb),

S2k0+π = − 1

(πa)2
D2k0+π

∫
dxdτdτ ′ ∑

a,b

cos(2φa − 2φb),

Sπ = − 8

πa
Dπ

∫
dxdτdτ ′ ∑

a,b

[
4γ a

L γ a
R γ b

Rγ b
L + cos2 k0 cos(2θa) cos(2θb)

]
. (A1)

Each term Ski is labeled by the corresponding momentum
component ki. Some of the terms allow for a simple physical
explanation. In particular, the action term S2k0+π represents
the backscattering between the right and left Fermi points of
the emergent Luttinger-liquid sector, while Sπ corresponds to
backscattering processes commensurate with the lattice. The
RG equations summarized in Table I and Eq. (28) are then
inferred in analogy with Ref. [51]. The most relevant terms
are S2k0+π and Sπ . The contribution of the term S2k0+π to the
renormalization of K , Eq. (28), is analogous to backscattering
in Giamarchi-Schulz RG. For the other term, Sπ , the duality
exchanging φ ↔ θ and K ↔ K−1 may be used to find the
contribution to K .

While the forward scattering can be completely gauged
away in the standard Giamarchi-Schulz RG, here the transfor-
mation gauging it out generated additional terms. However,
a direct inspection shows that they are irrelevant in the RG
sense.

The interaction generates a replica-diagonal term that cou-
ples the Luttinger-liquid and Majorana sectors:

Sint = −g′
∫

dxdτ
∑

a

γ a
L γ a

R (�L�R + �
†
L�

†
R)

= − 2g′
∫

dxdτ
∑

a

γ a
L γ a

R cos(2θa). (A2)

This term is RG-irrelevant in the range of interest, K < 1; the
corresponding dimensional coupling is denoted y′ in Table I.
Higher terms respecting the symmetry are, of course, also
generated. It can be checked by dimension counting that all
terms arising due to interaction remain irrelevant in the range
1/4 < K < 1.

APPENDIX B: ORIGIN OF LOW-ENERGY SUPPRESSION
OF WAVE FUNCTION CORRELATIONS IN DISORDERED

COMPLEX-FERMION CHAIN

In this Appendix, we present analytical arguments explain-
ing the origin of the suppression of eigenstate correlations in
a complex-fermion chain at low energies found numerically
in Sec. V B. An eigenvector Ui+1,ε of Hamiltonian (39) fulfills
the following transfer matrix equation:(

Ui+1,ε

Ui,ε

)
=

(
ε/ti+1 −ti/ti+1

0 1

)(
Ui,ε

Ui−1,ε

)
. (B1)

For zero energy, ε = 0, two sublattices are decoupled, so
that the wave function lives on one sublattice. For finite (but

small), ε the wave function on the second sublattice is sup-
pressed by ε. This implies the suppression of the correlation
functions C2(ε, r, L), CH (εα, εβ, r, L), and CF (εα, εβ, r, L) for
odd r by a factor ∼ε2

>, where ε> is the larger of two energies
εα, εβ . This suppression is indeed numerically observed, see
Fig. 16 and the right panel of Fig. 21 which make evident the
ε2
> scaling of the odd-r correlation functions. As is seen in this

figure, for odd r, the Fock term is substantially smaller than
the Hartree one, so that there is no cancellation between them
and CHF � CH .

For even r, an even stronger suppression holds for the
Hartree-Fock correlation function. As an example, consider
r = 2. Using the transfer-matrix equation (B1), we get the
relation∣∣Ui,εα

∣∣2∣∣Ui+2,εβ

∣∣2 + ∣∣Ui+2,εα

∣∣2∣∣Ui,εβ

∣∣2

− 2Ui,εα
Ui+2,εα

Ui+2,εβ
Ui,εβ

= 1

t2
2+i

(
ε2
α

∣∣Ui+1,εα

∣∣2∣∣Ui,εβ

∣∣2

− 2εαεβUi,εα
Ui+1,εα

Ui+1,εβ
Ui,εβ

+ ε2
β

∣∣Ui,εα

∣∣2∣∣Ui+1,εβ

∣∣2)
.

(B2)

The left-hand side of Eq. (B2) is the difference between the
Hartree and Fock terms that enters the correlation function
CHF for r = 2. On the other hand, the right-hand side is the
linear combination of CH and CF terms for r = 1, each of
them multiplied by a factor quadratic in energies. We have
thus proven that CHF for r = 2 is suppressed by an additional
factor ∼ ε2

> in comparison with the r = 1 correlation function
CHF � CH ,

CHF(εα, εβ, 2, L) ∼ ε2
>CHF(εα, εβ, 1, L). (B3)

The same argument holds for other even r. This is fully
supported by the numerical data, as shown in Fig. 28 where
we plot the ratio CHF(ε1, εn, 2, L)/CHF(ε1, εn, 1, L) multiplied
by ε−2

n for different n, as a function of L. We remind
the reader that εn scales exponentially as a function of L
and n, see Eq. (36). Each of the factors CHF(ε1, εn, 2, L),
CHF(ε1, εn, 1, L), and ε−2

n , when taken separately, changes
within an enormous range of many dozens of decades, see,
e.g., Figs. 20 and 21. On the other hand, the product plotted
in Fig. 28 changes only weakly (at most linearly in L, which
means logarithmically in ε), in full agreement with the analyt-
ical argument.

Since we have shown above that the odd-r correlation
function in the right-hand side of Eq. (B3) scales as ε2

>, the
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FIG. 28. Ratio CHF(ε1, εn, 2, L)/CHF(ε1, εn, 1, L) multiplied by
ε−2

n for the first twenty levels n (in distinct colors) as a function
of L. The data show only a weak (at most linear) dependence on L
(that corresponds to a logarithmic energy dependence), which should
be contrasted to the exponential L dependence of both entering
correlation functions CHF and of the energy εn. This confirms the
analytic prediction in Eq. (B3), with possible logarithmic-in-energy
corrections.

even-r Hartree-Fock correlator should scale as ε4
> according

to this equation. The ε4
> scaling of CHF for even r is indeed

observed numerically, see Fig. 20.

APPENDIX C: DISORDERED MAJORANA CHAIN WITH
MEAN-FIELD TREATMENT OF INTERACTION IN THE

ISING + LL PHASE

In this Appendix, we present an analysis of the disordered
Majorana chain that treats disorder exactly and the interac-
tion on the mean-field level. This approach is in a sense
complementary to those in the main text of the paper. In
the weak-disorder RG of Sec. IV, the interaction was treated
exactly and the disorder was considered as a perturbation.
Contrary to this, the analysis of Sec. V considered disorder
exactly and the interaction perturbatively. Here, we treat the
disorder by using the field-theoretical σ model approach. This
treatment is essentially exact, in analogy with Sec. V. The key
differences with Sec. V are that (i) we consider a sufficiently
strong repulsive interaction for which the clean system is in
the Ising + LL phase, and (ii) we include the interaction on
the mean-field level only. This allows us to obtain the phase
diagram of the system in the plane spanned by the disorder
strength and the staggering. The phase diagram contains four
distinct topological phases. Of course, we know from Sec. V
and from the numerical study in Sec. III B that including
effects of interaction beyond the mean-field level destabilizes
the system on the critical line. This means that the transitions
between the topological phases are in fact not of second order
(as found in the mean-field treatment below) but rather of first
order. On the other hand, the phase diagram is expected to
remain applicable also beyond the mean-field level.

At a mean-field level with respect to the interaction,
the third-nearest-neighbor hoppings are generated and the
nearest-neighbor hopping is renormalized. The full mean-
field Hamiltonian, including the randomness δt j in the

nearest-neighbor hopping, reads

HMF
I+LL = i

2

∑
j

[(t1 + t2 + (−1) j (t1 − t2) + 2δt j )γ jγ j+1

+ ((t ′
1 + t ′

2) + (−1) j (t ′
1 − t ′

2))γ jγ j+3]. (C1)

By choosing t1 �= t2 or t ′
1 �= t ′

2, the system can be staggered.
The random component δt j of the hopping is assumed to have
Gaussian statistics, with zero average.

The formalism presented in Refs. [73,74] for a particular
model can be extended to the case of generic banded Hamil-
tonians. For convenience, we have performed computations in
class AIII instead of BDI (i.e., allowing for complex δt j). The
results for AIII shown here remain essentially the same for
the class BDI as can be checked numerically using transfer
matrices.

The calculations proceed by integrating out the disor-
der using the supersymmetry formalism. After Hubbard-
Stratonovich decomposition and saddle-point expansion
(which yields the self-consistent Born approximation), one
arrives at a nonlinear sigma model describing the disordered
wire. The action describes the soft modes T ∈ GL(1|1):

S[T ] = χ̃str(T ∂T −1) − ξ̃ 2

4
str(T ∂2T −1). (C2)

There are two coupling constants here: ξ̃ has a meaning of
the bare conductance, and χ̃ of the bare topological index.
Under RG, these coupling constants get renormalized. The
theory thus exhibits a two-parameter RG flow, which is largely
analogous to the Khmelnitskii-Pruisken flow for the 2D theory
describing the quantum Hall effect.

Except for the case of half-integer bare values, χ̃ flows
to the nearest integer value, which is the actual topological
index χ . Half-integer values of χ̃ are stable under RG-flow
and correspond to critical theories at the boundary of two
topologically distinct phases. To determine the phase diagram,
one thus should compute the dependence of the bare index χ̃

on parameters of the chain. These dependencies are obtained
when one derives the σ model from the microscopic model,
as sketched above. We skip details of this calculation, since
it is analogous to that carried out for a different microscopic
model in Ref. [74]. A general 1D noninteracting Hamiltonian
H with chiral symmetry and with translational invariance in
average can be written as

H = hn

∑
i

a†
i+nbi +

∑
i

rn,ia
†
i+nbi + H.c. (C3)

Here, ai and bi are operators on two sublattices, hn are the
average hopping matrix elements, and rn,i are random contri-
butions to hopping that are characterized by zero mean and by
the variance

〈rn,ir
∗
m, j〉 = wnδi, jδn,m. (C4)

We find the following result for the bare index χ̃ in terms of
the parameters of H :

χ̃ =
∑

q

h−(q)v+(q)

�2
0 + h+(q)h−(q)

+
∑

n

nun, (C5)
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FIG. 29. Phase diagram of the mean-field Hamiltonian (C1) de-
scribing the Ising + LL phase of the disordered Majorana chain.
The parameters t ′

1 = −0.7 and t2 = t1 = t = 1 are fixed. The phase
diagram is shown in the plane spanned by disorder w and the hopping
t ′
2. The zero staggering corresponds to t ′

2 = t ′
1 = −0.7. Black lines

are phase boundaries as obtained analytically via mapping on the
σ model from the condition that the bare index χ̃ is half-integer.
Colored regions are four distinct topological phases with the values
of the topological index χ equal to −1 (red), 0 (green), 1 (blue), and
2 (yellow), as obtained from the transfer-matrix numerics. A perfect
agreement between numerical and analytical results is observed. At
zero disorder, w = 0, and zero staggering, t ′

1 − t ′
2 = 0, three critical

lines meet, yielding a critical theory with central charge c = 3/2.

where

h−(q) =
∑

n

hne−inq, (C6)

h+(q) =
∑

n

hneinq, (C7)

v+(q) =
∑
m,n

(n − m)unhmeimq, (C8)

un = w2
n∑

m w2
m

, (C9)

and the self-energy �0 is a solution of the equation(∑
n

w2
n

) ∑
q

1

�2
0 − h+(q)h−(q)

= 1 (C10)

representing the self-consistent Born approximation.
Our Hamiltonian (C1) is a particular case of Eq. (C3). The

nearest- and third-nearest-neighbor hopping of Eq. (C1) are
encoded in terms of Eq. (C3) in h1 = t1, h2 = t ′

1, h0 = t2,
and h−1 = t ′

2. Further, the randomness in the nearest-neighbor
hopping of Eq. (C1) translates into u0 = 1/2 and u1 = 1/2.
The resulting phase diagram in the parameter plane spanned
by disorder strength w and staggering t ′

1 − t ′
2 is shown in

Fig. 29.

We have compared the analytical results (black lines show
the corresponding phase boundaries in Fig. 29) with those of
direct transfer matrix numerics. Four topological phases(with
χ = −1, 0, 1, and 2) as obtained by the latter approach are
shown by different colors in Fig. 29. An excellent agreement
between the analytical and numerical data is observed. This
is quite nontrivial since (i) the σ model derivation holds in
the limit of large number of channels, N � 1, whereas our
model corresponds to N = 3, (ii) the analytical calculation
of parameters of the σ model is controlled fir weak disorder,
w/t � 1, whereas we find a very good agreement also for
w/t ∼ 1.

The self-duality transformation ensures that the zero-
staggering line (t ′

2 = −0.7 in Fig. 29) is critical within this
mean-field analysis. An important observation is that the crit-
ical line is adjacent only to 0 (green) and 1 (blue) topological
phases for finite disorder.

In the clean DMRG analysis, Sec. III A, only two distinct
topological phases were observed, which correspond to the
green and blue phases of Fig. 29. The other two phases
(red and yellow) can only be reached by adding the third-
nearest-neighbor hopping explicitly [26] since otherwise the
Hamiltonian (C1) with the corresponding parameters can not
be obtained as a mean-field Hamiltonian of an interacting
Majorana chain. When disorder is added to the mean-field
model, we observe that the parameter space for the red and
yellow phases shrinks.

APPENDIX D: ANALYTICAL APPROACH TO WAVE
FUNCTION CORRELATIONS

In this Appendix, we provide analytical results for the
scaling of eigenfunction correlation functions at the infinite-
randomness fixed point. These results complement, support,
and explain the corresponding numerical results in Sec. V.

In Ref. [36], the average of one Green’s function in a
noninteracting 1D model of class BDI was computed by
means of supersymmetry formalism that allowed to map the
problem onto quantum mechanics of a SU(1|1) spin. In order
to obtain directly the correlation functions of two eigenstates,
one would need to average products of two Green’s functions
with the corresponding energy and spatial arguments. While
the mapping on a supersymmetric quantum mechanics can be
generalized to this situation, the solution of the corresponding
problem becomes extremely difficult. For this reason, we
choose below a slightly different approach and calculate, by
using the supersymmetry technique, the averaged square of
the Green’s function at an imaginary frequency. This average
is related, by virtue of a spectral decomposition, to the two-
eigenstate correlation functions. The resulting conclusions on
the scaling of the two-eigenstate correlations are in agreement
with our numerical findings in Sec. V.

We follow the formalism of Ref. [36] and map the original
lattice model with random hopping onto a continuous model
of a Dirac fermion with random mass, cf. Sec. IV A. The latter
is considered to be delta-correlated and Gaussian-distributed
disorder, with the strength W (which sets the ultraviolet cutoff
for the critical theory and can be set to unity). Within the
mapping onto the supersymmetric quantum mechanics, the
averaged Green’s function at an imaginary frequency iω and

134207-25



J. F. KARCHER, M. SONNER, AND A. D. MIRLIN PHYSICAL REVIEW B 100, 134207 (2019)

10−7 10−6 10−5 10−4 10−3 10−2

ω

10−10

10−7

10−4

10−1
e 1

(ω
),

e 2
(ω

)

G GG

FIG. 30. In this plot, the validity of Eqs. (D1) and (D2) for
〈G(iω)〉dis and 〈G(iω)G(iω)〉dis derived in a continuum-limit approx-
imation to the effective Schrödinger equation is verified numerically.
For this purpose, we plot e1(ω) = iω〈G(iω)〉dis − | ln(ω/a0)|−2 and
e2(ω) = 3ω2〈G(iω)G(iω)〉dis − | ln(ω/a0)|−2 computed numerically.
The disorder strength is set W = 1. The constant a0 � 0.8 is deter-
mined to minimize the errors ei. It can be seen that e1(ω) ∝ ω and
e2(ω) ∝ ω2.

with coinciding spatial arguments is obtained from the ground
state of the corresponding effective Schrödinger equation. We
obtain, in agreement with Ref. [36],

〈G(iω)〉dis = a1W

iω| ln(ω/a0W )|2 . (D1)

We have found the constants a1 and a0 by a numerical solution
of the effective Schrödinger equation of the supersymmetric
quantum mechanics; the results are a1 = 1 (which holds with
a very high accuracy and is apparently exact) and a0 � 0.8.
Extending this analysis to the averaged square of the Green’s
function, we obtain

〈G(iω)G(iω)〉dis = a2W

ω2| ln(ω/a0W )|2 , (D2)

where a2 = 1/3 (which again holds numerically with a very
high accuracy and should thus be exact). Equations (D1) and
(D2) are derived in the continuum-limit approximation to the
effective Schrödinger equation. We have verified, however, by
a numerical solution of the exact (discrete) equation that they
hold with an outstanding accuracy. Specifically, as shown in
Fig. 30, the relative correction to Eq. (D1) is of the order ω and
that to Eq. (D2) is of the order ω2. This means, in particular,
that all orders of expansion of Eqs. (D1) and (D2) in 1/| ln ω|
are fully reliable.

Now we connect these results to the correlation functions
of eigenstates ψα (r) (which are continuum limit counterparts
of the states Uiα studied numerically in Sec. V. Since all
arguments of Green’s functions that we consider are equal (we
set them r = 0), only eigenstates at this point will enter. Us-
ing the spectral decomposition of the single-particle Green’s
function, we get

〈G(iω)〉dis =
∑

α

〈
ψ2

α (0)

iω − εα

〉
dis

=
∫

dε L ν(ε)
〈ψ2

α (0)〉dis

iω − ε
. (D3)

The average entering here is 〈ψ2
α (0)〉dis = L−1 due to eigen-

function normalization. Further, the density of states is

ν(ε) � c2

ε|ln(ε/�)|3 , (D4)

see Eq. (34), where c ∼ 1 is the constant defined in Eq. (36)
and we have introduced the ultraviolet cutoff � ∼ 1. Substi-
tuting this in Eq. (D3), we get

〈G(iω)〉dis = c2

[
1

iω| ln ω/�|2 + ln 2

iω| ln ω/�|3

+ O(ω−1| ln ω|−4)

]
. (D5)

We see that Eq. (D5) is in full agreement with the result
(D1) of the supersymmetric calculation. Indeed, not only the
leading behavior agrees but also Eq. (D1) can be expanded
to bring it to the form (D5). This confirms that the formula
(D4) for the density of states that we have used when deriving
Eq. (D5) from the spectral decomposition (D3) is correct. One
can, of course, also obtain (D4) by performing an analyti-
cal continuation of Eq. (D1). Note, however, that we used
different models of disorder in the numerical and analytical
calculations, so that numerical value of the coefficient c2 in
Eq. (D4) cannot be directly obtained from the analytical result.

Having satisfied ourselves that the spectral decomposition
works properly for 〈G(iω)〉dis, we turn to 〈G(iω)G(iω)〉dis that
provides information about correlations of different eigen-
functions. The spectral decomposition now yields

〈G(iω)G(iω)〉dis =
∑

α

〈
ψ4

α (0)

(εα − iω)2

〉
dis

+
∑
α �=β

〈
ψ2

α (0)ψ2
β (0)

(εα − iω)(εβ − iω)

〉
dis

. (D6)

In Sec. V, we have found numerically the following
scaling of the eigenstates correlation functions entering
Eq. (D6): 〈ψ4

α (0)〉dis = aL−1, Eq. (53), and 〈ψ2
α (0)ψ2

β (0)〉dis =
bL−2 ln ε>, Eq. (56), where a and b are numerical coefficients,
and ε> is the larger of the two energies εα and εβ . Substituting
them into Eq. (D6) and rewriting the sum over energies as
integrals with the density of states (D4), we obtain

〈G(iω)G(iω)〉dis = c2

[
a

iω2| ln ω/�|2 + a − (2/3)bc2

iω2| ln ω/�|3

+ O(ω−1| ln ω|−4)

]
. (D7)

We observe now that two leading terms of Eq. (D7) fully
correspond to the expansion of the result (D2) of the
supersymmetry-formalism calculation. This proves that the
numerically found values of the exponents, α = 1 and γ = 2,
in the scaling of eigenstate correlations, Eq. (56), are indeed
exact.
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FIG. 31. Entanglement entropy S of the central bond vs system
size L of the interacting Majorana chain with staggering, Eq. (17).
The parameters t (1) = 1.00, t (2) = 0.72, g(1) = 1.5, and g(2) = 1.08
are chosen in such a way that the system belong to the red region in
Fig. 3. Apart from even-odd oscillations, the entanglement entropy
stays constant with system size. Thus the system is gapped for these
parameters.

APPENDIX E: ENTANGLEMENT ENTROPY IN GAPPED
REGIME OF THE MAJORANA CHAIN WITH REPULSIVE

INTERACTION AND STAGGERING

In the phase diagram of the clean interacting Majorana
chain with staggering (Fig. 3), we observe a region (plotted
in red) where application of formula (18) yields a very high
apparent central charge. This is in contrast to the dual region
(obtained by reflection with respect to the self-dual line)
where the formula yields a central charge of zero consistent
with the expectation of a gapped phase. Thus the region
above the critical line should be gapped as well. To check
this, we have calculated the entanglement entropy S at the
central bond for different system sizes. The result shown in
Fig. 31 unambiguously exhibits the area law for S (i.e., no
increase with L), so that the region is gapped. This is not in
contradiction with the high apparent central charge observed
in Fig. 3, since the formula (18) is guaranteed to be valid
only in conformal theories. On the other hand, in other gapped
regions the entanglement entropy did not show any anomalies
of this type. It is thus interesting to look more closely at this
region in order to understand the reasons for the anomalous
behavior of S there.

To shed light on the behavior of the entanglement entropy,
we compare in Fig. 32 the σ x correlator with the entangle-
ment entropy as function of bond position. The entanglement
entropy increases sharply around the central bond leading
to a spurious high value of the central charge if it is calcu-
lated by formula Eq. (18). The correlator 〈σ x

L/4σ
x
L/4+i〉 shows

two regions of antiferromagnetic order with a phase shift at
i = L/2.

Considering points in the phase diagram of Fig. 3 in a
narrow region between the red patch and the extended critical
region with c = 1. Here the σ x correlator looks very similar,
except that there is more then one node where the phase of the
antiferromagnetic ordering shifts. A characteristic example is
shown in the left panel of Fig. 33. By comparing this plot
with the entanglement entropy of the same system (right panel
of Fig. 33), we see that each of these nodes is associated
with a maximum in the entanglement entropy. We find that
the number of such nodes depends on parameters of the

FIG. 32. Spin-spin correlator 〈σ x (L/4)σ x (L/4 + i)〉 vs distance
i(left) and entanglement entropy at the bond i (right) of a system
with Hamiltonian (17) and parameters t (1) = 1.00, t (2) = 0.72, g(1) =
1.5, g(2) = 1.08, and L = 100. These parameters belong to the red
region in Fig. 3. The σ x spin component shows the antiferromagnetic
order but the π phase shifts occurs at the central bond. In view of
this, the spin correlator in the left panel takes there a zero value. The
entanglement entropy in the right panel has a peak around the same
spatial point.

Hamiltonian and on the system size. Furthermore, it also
depends on whether the system size is even or odd. This
explains the difference between even and odd system sizes in
Fig. 31. We leave a more detailed analysis of the physics in
this regime to future work.

We have verified that the peculiarity of this type does not
arise in other regions of the phase diagram in Fig. 3. In those
regions, the central charge obtained by fitting the x depen-
dence of the entanglement entropy S at fixed L according to
Eq. (18) is consistent with that found from the L dependence
of S .

APPENDIX F: CORRELATION FUNCTIONS
AWAY FROM CRITICALITY

In Sec. V B 2, we studied Hartree, Fock, and Hartree-Fock
correlations of two eigenfunctions. We focused there on the
critical regime of sufficiently small r, which is of particular
physical interest and also the one needed to describe the effect
of a finite-range interaction. For completeness, we discuss
here the range of large r, such that the system is away from
criticality. The scaling (56) of the correlation function CH is
expected to hold as long as the system is at criticality, i.e.,
at r < ξε . (The same applies to CF , which is nearly equal

FIG. 33. Spin-spin correlator 〈σ x (L/4)σ x (L/4 + i)〉 vs distance
i(left) and entanglement entropy at bond i (right) of a system with
Hamiltonian (17) and parameters t (1) = 1.00, t (2) = 0.90, g(1) = 1.5,
g(2) = 1.35, and L = 150. In the indices, L/4 denotes the integer part
[150/4] = 37. In the phase diagram of Fig. 3, these parameters put
the system just below the red patch, but still outside the LL region.
For these parameters and length, the antiferromagnetic ordering of
the σ x spin component changes phase several times, as seen in the
left panel. The entanglement entropy in the right panel exhibit peaks
at the corresponding bonds.
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FIG. 34. Numerically found position rmin of the minimum of
CH (ε1, ε2, r, L) with respect to r, as a function of length L. This
minimum determines the upper border of the critical regime, see
left panel of Fig. 19. The scaling rmin ∝ L is found, confirming the
expectation that the critical regime extends up to ξε with ε = ε2.

to CH in the critical regime.) According to Eqs. (54) and
(36), the localization length ξε is equal to the system size L
times some numerical coefficient, if we choose the second
level ε2 as the larger of two energies, as is done, e.g., in the
left panel of Fig. 19. In this figure, L = 400 and the critical
regime extends up to L � 20. In order to check that the upper
border of the critical regime is indeed equal to L times a
numerical coefficient, we plot in Fig. 34 the position rmin of
the minimum of CH (ε1, ε2, r, L) with respect to r, as a function
of L. As is clear from the left panel of Fig. 19, this minimum
essentially marks the upper border (with respect to r) of the
critical regime, which is expected to be ∼ ξε . We see that the
expectation that rmin scales as L is confirmed, i.e., the critical
regime extends up to ξε , as expected.

Now we turn to the behavior of the correlation functions
for r > ξε , i.e., outside of the critical regime. For separation
r ∼ L, the states are expected to lose all correlations, which
implies that

CH (ε, r ∼ L, L) ∼ 1

L2
. (F1)

FIG. 35. Correlation at large distances. (Left) matrix
elements CH (ε1, ε20, r = 150, L), CF (ε1, ε20, r = 150, L), and
CHF(ε1, ε20, r = 150, L) as functions of the system size L. (Right)
CH (ε1, ε, r = 1000, L = 1200), CF (ε1, ε, r = 1000, L = 1200), and
CHF(ε1, ε, r = 1000, L = 1200) as functions of energy ε. In both
panels, CH shows the behavior (F1) corresponding to the loss of
correlations. The Fock correlation functions is much smaller in this
regime, CF � CH .

The saturation of the correlation function CH at a value ∼1/L2

at large r is evident in the left panel of Fig. 19. As a further
check, we show in Fig. 35 the L dependence (left panel)
and ε dependence (right panel) of CH for r ∼ L. The figure
confirms that, in this regime, CH ∼ L−2 and is essentially
ε-independent.

It is interesting to notice that the critical behavior (56) at
its upper border r ∼ ξε ∼ ln2 ε yields CH ∼ 1/L2 ln2 ε, which
does not match Eq. (F1) due to an additional factor 1/ ln2 ε �
1. Thus there should be an intermediate regime for ξε < r < L
located between the critical regime (56) and the uncorrelated
regime (F1). This regime, where CH rapidly increases with r,
is clearly observed in the left panel of Fig. 19. We leave an
analysis of this regime to a future work.

Finally, we note that for large distances r > ξε (i.e.,
outside of the critical regime), the Fock term becomes much
smaller than the Hartree one, CH � CF , see Figs. 19 and 35.
Therefore the strong Hartree-Fock cancellation (which occurs
for even r) is only a property of the critical regime. Another
interesting observation is that the Fock term changes sign
around r ∼ ξε . This explains the dips in the curves for |CF |,
see Figs. 19 and 25.
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