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A Weyl semimetal is a three-dimensional topological gapless phase. In the presence of strong enough disorder
it undergoes a quantum transition towards a diffusive metal phase whose universality class depends on the range
of disorder correlations. Similar to other quantum transitions driven by disorder, the critical wave functions at
the semimetal–diffusive-metal transition exhibit multifractality. Using renormalization group methods we study
the corresponding multifractal spectrum as a function of the range of disorder correlations for generic disorder
including random scalar and vector potentials. We also discuss the relation between the geometric fluctuations of
critical wave functions and the broad distribution of the local density of states (DOS) at the transition. We derive
a new scaling relation for the typical local DOS and argue that it holds for other disorder-driven transitions in
which both the average and typical local DOS vanish on one side of the transition. As an illustration we apply
it to the recently discussed unconventional quantum transition in disordered semiconductors with power-law
dispersion relation near the band edge.
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I. INTRODUCTION

Whereas our basic understanding of solids is based on a de-
scription as a perfectly regular lattice of atoms, real materials
do not meet this requirement. The presence of disorder such
as lattice defects or impurities can obscure properties of ideal
solids, or even lead to new quantum phenomena such as the
Anderson localization [1]. Recently a new type of disorder-
driven quantum phase transition was discovered in three-
dimensional relativistic semimetals [2]. In these topological
materials, several bands cross linearly at isolated points in
the Brillouin zone: two bands in Weyl semimetals [3,4] and
four bands in Dirac semimetals [5–7]. Many aspects of rel-
ativistic semimetals were discussed in the past [8–10], but
the compounds that host them were identified experimentally
only recently [11,12]. These materials immediately attracted
a lot of attention because the relativistic nature of low energy
excitations lead to peculiar properties, such as the anomalous
quantum Hall effect [13], the chiral anomaly [14–17], and the
related negative magnetoresitance [18–20].

Disorder also leads to remarkable properties: while weak
disorder is irrelevant for relativistic electrons in three di-
mensions, a strong enough disorder drives the semimetal
towards a diffusive metal. The average DOS at the nodal
point, which plays the role of an order parameter, becomes
nonzero above the critical disorder strength �∗ and behaves
as ρ̄(0) ∼ (� − �∗)β , while the correlation length diverges
as ξ ∼ (� − �∗)−ν [21–29]. This disorder-driven transition
has been intensively studied using both numerical simulations
[30–35] and analytical methods [36–41]. The effects of rare
events have also been much debated [42,43]. Rare fluctuations
of disorder potential might create an exponentially small but
finite DOS in the semimetal phase, thus rounding the sharp
transition [44–49]: however, the probability of such fluctua-
tions turns out to be extremely small [50,51].

Besides the average DOS, other indicators help pinpoint
the critical behavior. In particular, the critical wave functions

exhibit a multifractal behavior at the semimetal–diffusive-
metal transition [38,52]. The inverse participation ratios Pq =∫

dr|ψ (r)|2q averaged over disorder scale with the system size
L as Pq ∼ L−τ̃q , where the multifractal spectrum exponent τ̃q

depends nonlinearly on q. The multifractal spectrum encodes
much more information about the transition than just the
behavior of the average DOS. Remarkably, the multifractal
spectrum at the semimetal–diffusive-metal transition differs
from any Wigner-Dyson universality class relevant for the
Anderson localization [53]. Using the ε = d − 2 expansion
we find that the nonlinearity of the multifractal exponent is of
order ε2 for the semimetal–diffusive-metal transition [38,52],
while for the unitary and orthogonal classes it is of order ε1/2

and ε, respectively [54].
The aforementioned studies disregard defects that are cor-

related over large distances. However, the presence of linear
dislocations or grain boundaries are known to generate long-
range correlations in the disorder distribution. Introducing
disorder correlations is also widely used in numerical sim-
ulations to decouple different Weyl cones by suppressing
intervalley scattering. Power-law correlations decaying with
the distance r as 1/ra may drive a continuous transition to a
new universality class [55,56], and numerical simulations sug-
gest that they modify the critical exponents at the Anderson
localization transition [57]. The effect of disorder correlations
on the semimetal–diffusive-metal transition was investigated
in Ref. [58]. It was found that for a < 2 the semimetal
phase is always unstable while for 2 < a < ac ≈ 2.8 disorder
drives the transition to a new universality class, whose critical
exponents depend on a. We thus expect multifractality to be
affected by disorder correlations.

In this paper we investigate the multifractal spectrum at
the semimetal–diffusive-metal transition in the presence of a
generic type of disorder. We study critical fluctuations of the
DOS and compute both the average local DOS and the typical
local DOS at the transition. The paper is organized as follows.
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Section II introduces the model of Weyl fermions in the pres-
ence of correlated scalar disorder. In Sec. III we compare the
multifractal spectra for the Anderson localization transition
and for the semimetal–diffusive-metal transition, and show
that the way the moments of the DOS distribution behave
make it possible to distinguish between different phases. In
Sec. IV we derive the scaling relations for the exponents β and
βtyp which describe the critical behavior of the average and
typical local DOS, respectively. In Sec. V we apply our scaling
relations to the unconventional disorder-driven transition in
semiconductors with power-law dispersion relation near the
band edge. Then in Sec. VI we present the renormalization
group picture, and derive the multifractal spectrum to two-
loop order. In Sec. VII we generalize our approach to vector
potential disorder, and show that this type of disorder does
not affect criticality even in the presence of long-range corre-
lations. Section VIII summarizes our findings.

II. MODEL

We consider a single Weyl node subject to scalar quenched
disorder. Though Weyl nodes always come in pairs of opposite
chiralities [59], we may neglect internode scattering provided
the correlation length ξd of disorder is much greater than the
inverse of the separation b of the nodes in the Brillouin zone
[29]. We assume that Coulomb repulsion between electrons is
negligible and that the node lies at the Fermi energy εF = 0.

The low energy Hamiltonian which describes noninteract-
ing three-dimensional Weyl fermions moving in the scalar,
time-independent potential V (r) created by impurities reads

H (r) = −ivF σ ·∂ + V (r)I, (1)

where vF is the Fermi velocity (from now on set to one),
σ = (σ1, σ2, σ3) are the Pauli matrices, and I is the identity
matrix. In order to use dimensional regularization we define
the Hamiltonian (1) in arbitrary dimension d by generalizing
the Pauli matrices to a Clifford algebra satisfying the anti-
commutation relations: γiγ j + γ jγi = 2δi jI (i, j = 1, . . . , d).
Since the fermions are noninteracting and the disorder poten-
tial is time independent, it is convenient to write down the
corresponding action at fixed Matsubara frequency ω as

S =
∫

dd r ψ̄ (r)[−iγ ·∂ − iω + V (r)I]ψ (r), (2)

where ψ̄ and ψ are two conjugate Weyl spinors. We assume
that the distribution of disorder potential is translationally
invariant, isotropic, and Gaussian with the mean value and
variance given by

V (r) = 0, V (r)V (0) = g(r), (3)

where the overbar indicates an average over many disorder
realizations. The short-range correlation g(r) is generally
approximated by a Gaussian function whose width ξd may
be set to zero close enough to the transition where ξ � ξd ,
so that g(r) ∼ �S δd (r). In numerical simulations on a lattice
one usually chooses ξd � b−1 to suppress internode scattering
and for small b there exists a wide range of scales at which the
effective correlations can be approximated by a power law.
In addition, the presence of extended defects in the form of

linear dislocations or grain boundaries can lead to a power-
law decay of the correlation [60] g(r) ∼ �Lr−a. Another
possible source for power-law correlations is the presence
of Coulomb impurities. However, in this case the system is
unstable with respect to the formation of electron and hole
puddles with localized states at zero energy. This creates
an algebraically finite DOS at zero chemical potential for
arbitrary weak disorder, which smears out the transition [61].
Since the short-range correlations are ultimately generated by
the renormalization flow, we account for both short-range and
long-range contributions and write in Fourier space [58]

g(k) = �S + �Lka−d . (4)

To average over disorder we use the replica trick. Introduc-
ing n replicas of the original system and averaging over the
potential distribution, we arrive at

Seff[ψ̄α, ψα] =
∫

k
ψ̄α (−k)(γ ·k − iω)ψα (k)

− 1

2

∫
ki

(�S + �L|k1 + k2|a−d )ψ̄α (k1)ψα (k2)

× ψ̄β (k3)ψβ (k1 + k2 − k3), (5)

where summation over repeated replica indices α and β is
assumed. The properties of the original system averaged over
disorder are recovered in the limit of n → 0.

III. MULTIFRACTAL SPECTRUM

The notion of multifractality has turned out to be useful
in many physical problems ranging from turbulence [62] to
disordered classical spin systems [63] and the Anderson local-
ization transition [54]. Similar to the latter example, the criti-
cal wave functions at the semimetal–diffusive-metal transition
exhibit multifractality so that their geometrical properties can
be described by the multifractal spectrum. As we show below,
this spectrum also encodes the scaling behavior of the whole
distribution of the local DOS at the transition. It is instructive
to compare the scaling properties of the wave functions and
local DOS fluctuations at the Anderson localization and the
semimetal–diffusive-metal transition and highlight the sim-
ilarities and differences between these two disorder-driven
quantum transitions.

Let us first recall the major results on the Anderson local-
ization transition. The statistical properties of wave functions
close to the mobility edge ωc can be described using either the
participation ratio or the inverse participation ratio, depending
on the phase from which we approach criticality.

In the region of localized states (ω < ωc) it is convenient
to introduce the inverse participation ratio (IPR) [64]

Pq(ω) =
∫

dd r
∑

i |ψi(r)|2qδ(ω − ωi )∫
dd rρ(r, ω)

, (6)

where ψi(r) is an eigenstate with energy ωi and ρ(r, ω) =∑
i |ψi(r)|2δ(ω − ωi ) is the local DOS. The IPR (6) gives the

q moment of the inverse volume spanned by the localized
wave function. It vanishes in the region of extended states
(ω > ωc), but decays in a power-law fashion in the region
of localized states (ω < ωc) as Pq(ω) ∼ (ωc − ω)πq in the
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thermodynamic limit. For a finite system precisely at the
mobility edge the IPR scales with the size of the system L as
Pq(ωc) ∼ L−τ̃q where τ̃qν = πq and ν is the critical exponent
for the correlation length ξ ∼ |ω − ωc|−ν .

In the region of extended states it is more convenient to
consider the participation ratio (PR) pq(ω) defined by

1

pq(ω)Ld (q−1)
=

∫
dd rρq(r, ω)

[
∫

dd rρ(r, ω)]q
, (7)

which gives the q moment of the fraction of sites occupied by
the wave function. Contrary to the IPR (6) the PR (7) vanishes
in the region of localized states (ω < ωc), but decays as
pq(ω) ∼ (ω − ωc)μq for ω > ωc in the thermodynamic limit.
The right-hand sides of both Eqs. (6) and (7) scale identically
with the size of the system L at the transition, which imposes
the relation πq = dν(q − 1) − μq between the two exponents
[64].

Introducing the scaling dimension x∗
q of the q moment of

the local DOS, such that ρq(r, ωc) ∼ L−x∗
q , and using Eq. (7)

we arrive at

τ̃q = d (q − 1) + �̃q, (8)

where we split the multifractal spectrum exponent into the
normal part d (q − 1) corresponding to the metallic phase
and the anomalous dimension �̃q = x∗

q − qx∗
1 . The anomalous

dimension �̃q gives the scaling behavior of the normalized q
moment of the local DOS,

ρ̃q ∼ L−�̃q , ρ̃ = ρ

ρ
. (9)

The Legendre transform of τ̃q,

f̃ (α) = αq − τ̃q, α(q) = d τ̃q/dq, (10)

is known as the singularity spectrum [54] and gives the fractal
dimension of the manifold spanning the points with the wave
function intensity |ψ (r)|2 ∼ L−α , i.e., the volume of this
manifold scales with the system size as L f̃ (α) [65].

The above picture can be contrasted with that for the
semimetal–diffusive-metal transition. In the latter case the
transition occurs at ω = 0 and is driven by the strength of dis-
order �. For instance, the correlation length diverges as ξ ∼
|� − �∗|−ν . The main difference, however, lies in the behav-
ior of the average DOS. While at the Anderson transition the
average local DOS varies smoothly without vanishing across
the critical point, in the case of the semimetal–diffusive-metal
transition it behaves as

ρ̄(�) ∼ (� − �∗)β (11)

in the metal phase (� > �∗), and vanishes in the semimetal
phase (� < �∗). The exponent β describing the scaling be-
havior of the average local DOS is related to the dynamic
critical exponent z by [30]

β = ν(d − z). (12)

As a consequence the IPR Pq(�,ω = 0) vanishes everywhere
in the thermodynamic limit, but its finite size scaling at the
critical point � = �∗ reads

Pq(� = �∗, ω = 0) ∼ L−τ̃q , (13)

with the exponent τ̃q given by Eq. (8). Remarkably, the q
moment of the fraction of sites occupied by the wave function
behaves as

pq(�,ω = 0) ∼
{

0, � < �∗,
(� − �∗)−�̃q/ν, � > �∗,

(14)

with �̃q < 0 for q > 1. Thus, the PR pq(�,ω = 0) for q > 1
can play the role of an order parameter.

It was recently argued that the presence of rare large
regions with strong disorder potential can create a finite DOS
at zero energy even for weak disorder, thus rendering the
transition to be avoided [44,45]. This would introduce a new
length scale above which the wave function is not multifractal,
or at least not with the same multifractal spectrum. However,
our results on the multifractal spectrum still apply below this
crossover length scale.

While the exponentially small DOS has been detected
numerically, the theoretical picture of this phenomenon is
still controversial. Two scenarios have been proposed. In the
first scenario, a zero energy state is created by an optimal
fluctuation of disorder potential (instanton) [44]. In three
dimensions, in order to (quasi)localize a relativistic particle,
the potential of the well has to decay with the distance r to
the center as a power-law 1/r4. However, as was shown in
Ref. [50] by expanding and integrating out the Gaussian fluc-
tuations around this instanton solution, the prefactor in front
of the exponentially small DOS vanishes at zero energy. In
the second scenario the finite DOS is generated by resonances
between two different rare regions with strong disorder [49],
but as was argued in Ref. [51] these resonances cannot create
states exactly at zero energy.

If the disorder potential is a random Gaussian field, the
probability to have the above large regions of strong disorder
potential is inversely proportional to the exponential of this
potential squared and integrated over space. It is clear that in
both scenarios this probability is much smaller than that in the
usual Lifshitz tail problems where the integrals are taken over
exponentially and not power-law decaying instanton solutions
[66]. This implies that the corresponding crossover length
scale has to be very large. Indeed, the critical behavior is
accessible in numerical simulation despite the presence of rare
events [45,46]. Moreover, we argue that the order parameter
(14) can be better used to characterize the transition in this
case. This is because the (quasi)localized zero energy states
decay as 1/r2 in three dimensions, and thus, cannot create
a finite pq(�,ω = 0) for � < �∗ since the fraction of sites
occupied by a normalizable wave function vanishes in the
thermodynamic limit.

IV. TYPICAL VS AVERAGE DOS

The local DOS has a broad distribution at the Anderson
transition so that typical and average local DOS behave quite
differently. The average DOS ρ(ω) = ρ(r, ω) varies smoothly
around the critical point and does not exhibit any qualita-
tive change upon localization. The typical DOS ρtyp(ω) =
exp ln ρ(r, ω) is finite in the delocalized phase, decreases
when approaching the transition, and vanishes in the localized
phase. The reason is that upon localization the local spectrum
changes from a continuous to an essentially discrete one.
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Since the local DOS directly probes the local amplitudes of
wave functions, the typical value of the local DOS is zero in
the last case.

A similar argument applies to the semimetal–diffusive-
metal transition where one also expects a broad distribution of
local DOS and different behaviors for the average and typical
DOS [39]. Contrary to the Anderson transition, both typical
and average DOS vanish in the semimetal phase but with
different exponents, in particular

ρtyp(�) ∼ (� − �∗)βtyp , (15)

where βtyp differs from the average DOS exponent β (12).
To determine the exponent βtyp, let us consider the distribu-

tion P (ρ̃, L) of the normalized local DOS ρ̃ = ρ/ρ in a finite
size system. Its moments follow the scaling law (9) and read

ρ̃q =
∫ ∞

0
dρ̃ ρ̃qP (ρ̃, L) = cqL−�̃q , (16)

where cq depends weakly on L. We now change variable from
ρ̃ to α such that [67] ρ̃ = L−α and P (ρ̃, L)dρ̃ = P̃ (α, L)dα.
We arrive at

ρ̃q =
∫

dα exp[ln L(g̃(α) − αq)], (17)

with g̃(α) = ln P̃/ ln L. Noticing the large prefactor ln L in the
exponential of Eq. (17), we apply the steepest descent method
and find that g̃(α) is the Legendre transform of the anomalous
dimension

g̃[α(q)] = αq − �̃q, α(q) = d�̃q/dq, (18)

and can be expressed in terms of the singularity spectrum
as g̃(α) = f̃ (α + d ) − d . This function peaks at α = α0 −
d , where α0 is the position of the peak of the singularity
spectrum. It gives the most probable scaling exponent which
describes the scaling behavior of the typical normalized local
DOS

ρ̃typ = exp
∫

dρ̃ P (ρ̃, L) ln ρ̃ ∼ Ld−α0 . (19)

From the scaling dimension of ρ̃typ we deduce that near the
critical point on the metal side of the transition,

ρ̃typ(�) ∼ (� − �∗)ν(α0−d ). (20)

Using Eqs. (11) and (12) and ρ̃typ = ρtyp/ρ̄ we find that the
typical local DOS vanishes at the transition according to
Eq. (15) with the exponent

βtyp = ν(α0 − z). (21)

We can compare this exponent with that for the typical DOS
at the Anderson transition given by the scaling relation βtyp =
ν(α0 − d ) [67,68]. It differs from Eq. (21) due to the smooth,
nonvanishing behavior of the average local DOS around the
localization point.

It turns out that numerical simulations give large errors
for the critical exponent ν, so that it is useful to derive from
Eq. (21) a scaling relation wherein ν is absent, as in

βtyp

β
= α0 − z

d − z
. (22)

For short-range (SR) correlated disorder, the numerical sim-
ulations of Refs. [68,69] give βSR = 1.4 ± 0.2, βSR

typ = 2.0 ±
0.3, and zSR = 1.46 ± 0.05. Using these values, we estimate
the position of the singularity spectrum peak at

αSR
0 = zSR + (d − zSR)

βSR
typ

βSR
= 3.7 ± 0.6. (23)

In Sec. VI we calculate the anomalous dimension �̃q and
the exponent α0 as a function of the disorder correlations
of Eq. (4) to two-loop order, and compare our analytical
prediction to Eq. (23).

The scaling relations (15) and (21) for the typical DOS
exponents constitute one of the main results of this work.
Before we use these results to describe the Weyl semimetal–
diffusive-metal transition we would like to emphasize that
they are more general and apply to other disorder-induced
transitions. As an illustration we consider the unconventional
transition in high-dimensional disordered semiconductors.

V. UNCONVENTIONAL TRANSITION IN DISORDERED
SEMICONDUCTORS

The relations for the critical exponents describing the
typical and average DOS behavior hold not only for the
Weyl semimetal–diffusive-metal transition, but also for other
disorder-driven transitions, provided that the critical wave
functions exhibit multifractality and both the typical and aver-
age DOS vanish on one side of the transition. Another exam-
ple of such a transition occurs in disordered high dimensional
semiconductors with dispersion relation Ek ∼ |k|α′

near a
band edge [70,71]. In this case the states near the bottom
of the band get renormalized in the presence of uncorrelated
random potential for d > 2α′. The average DOS vanishes at
the critical point according to Eqs. (11) and (12) where to first
order in ε′ = d − 2α′, the exponents read

νSem = 1

ε′ , zSem = α′ + ε′

4
. (24)

Here we adapt the notation of Refs. [70,71] by putting a prime
to distinguish from the symbols already used in the present
work. The critical wave functions exhibit multifractality with
the anomalous dimension given to one-loop order by [52]

�̃Sem
q = 1

2 q(1 − q)ε′ + O(ε′2). (25)

The singularity spectrum peak is then located at

αSem
0 = 2α′ + 3

2ε′ + O(ε′2). (26)

Using Eqs. (12) and (21) we find that the average and typical
DOS vanish as (11) and (15) with the exponents given to first
order by

βSem = 3

4
+ α′

ε′ , βSem
typ = 5

4
+ α′

ε′ . (27)

For the conventional case α′ = 2, criticality is observed only
in higher dimension, e.g., in d = 5 which can be modeled
numerically using a tight-binding model on a lattice or sim-
ulated using kicked quantum rotors [71]. In this situation
ε′ = 1 and Eqs. (24) and (27) give νSem = 1, zSem = 9/4,
βSem = 11/4, and βSem

typ = 13/4. Let us now turn back to the
Weyl semimetal–diffusive-metal transition.
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VI. RENORMALIZATION GROUP PICTURE

We now use a renormalization group (RG) approach to de-
rive the multifractal spectrum, which is necessary to obtain α0,
by computing the scaling dimension of a suitable composite
operator for the disorder averaged theory. Let us first recall
how to calculate the beta functions for the disorder strengths
�S (short-range correlated) and �L (long-range correlated)
following Ref. [58]. We define the renormalized action as

SR[ψ̄α, ψα] =
∫

k
ψ̄α (Zψγ ·k − iZωω)ψα

− μ−εZS�S

Kd

∫
ki

(ψ̄αψα )(ψ̄βψβ )

− μ−δZL�L

Kd

∫
ki

ka−d (ψ̄αψα )(ψ̄βψβ ), (28)

where Kd = 2/(4π )d/2�(d/2) and μ is the mass scale at
which we renormalize the theory. We use dimensional reg-
ularization to compute the renormalization Z factors, which
are introduced to render all correlation functions finite. Here
we adopt the double expansion in ε = d − 2 and δ = 2 − a
developed in Refs. [55,60,72]. The relation between bare and
renormalized variables is given by

ψ̊ = Z1/2
ψ ψ, ω̊ = ZωZ−1

ψ ω, (29)

�̊S = 2μ−ε

Kd

ZS

Z2
ψ

�S, �̊L = 2μ−δ

Kd

ZL

Z2
ψ

�L. (30)

where the upper circle denotes the bare quantity.
The renormalization factors ZS , ZL, Zω, and Zψ have been

computed to two-loop order in Ref. [58]. The beta functions
are defined as

βi(�S,�L ) = −μ
∂�i

∂μ

∣∣∣∣
�̊S,�̊L

, i = S, L (31)

and to two-loop order read

βS = −ε�S + 4�2
S + 4�S�L

+ 8�3
S + 20�2

S�L + 4�3
L + 16�S�

2
L, (32a)

βL = −δ�L + 4�2
L + 4�S�L + 4�3

L + 4�2
S�L + 8�S�

2
L.

(32b)

The beta functions (32) possess three fixed points (FPs) whose
stability depends on the values of ε and δ. The stability regions
of these FPs are summarized in Fig. 1.

(i) The Gaussian FP has �G
S = �G

L = 0, and its basin of
attraction in the plane (�S,�L ) at fixed ε and δ gives the
semimetal phase. It is unstable for δ < 0, which means the
semimetal phase is unstable for very long-range correlated
disorder.

(ii) The short-range fixed point (SR FP)

�SR
S = ε

4
− ε2

8
+ O(ε3), (33)

�SR
L = 0, (34)

has a single unstable direction for δ > δc = ε − ε2/4 +
O(ε3) and thus describes the transition leading to the same

a

d

0 1 2 3
2

3 Short-range

range-
Long

Metal

FIG. 1. Stability regions of different FPs in the plane (a = 2 +
δ, d = 2 + ε) [58]. For a < 2 the Gaussian FP is unstable and the
RG flow exhibits runaway reflecting instability of the semimetal
phase in the case of very LR correlated disorder: a diffusive metal
phase is settled for arbitrary weak disorder and the transition disap-
pears. The line ac(d ) = d − (d − 2)2/4 + O[(d − 2)3] separates the
regions where the critical behavior is controlled by the LR FP and
SR FP.

universality class as in the case of uncorrelated disorder. The
critical exponents to two loop are 1/νSR = ε + ε2/2 + O(ε3)
and zSR = 1 + ε/2 − ε2/8 + O(ε3).

(iii) The long-range fixed point (LR FP)

�LR
S = δ3

16(ε − δ)
+ O(ε3, δ3), (35)

�LR
L = δ

4
− δ2ε

16(ε − δ)
+ O(ε3, δ3), (36)

has a single unstable direction for 0 < δ < δc where
it leads to a new universality class with 1/νLR = δ +
δ2(2δ + ε)/4ε + O(ε3, δ3) and zLR = 1 + δ/2 which is ar-
gued to be exact.

We now show how to compute the multifractal spectrum
within this framework. The replica trick enables us to con-
struct a proper composite operator whose scaling dimension
corresponds to the moments of the local DOS [73],

Oq(r) =
q∏

α=1

|ψα (r)|2, (37)

where α stands for the replica index and the product in
Eq. (37) is taken over q distinct replicas. The scaling dimen-
sion x∗

q of the operator Oq can be straightforwardly computed
from the renormalization constant Zq, defined as

O̊q = ZqZ−q
ψ Oq. (38)

Renormalization condition (38) renders the renormalized ver-
tex functions with insertion of a single composite operator
(37) to be finite,

�̊
(N )
Oq

({r}; ω̊, �̊) = ZqZ
−N

2 −q
ψ �

(N )
Oq

({r}; ω,�,μ), (39)

where N is the number of external legs ψ̄, ψ . The renor-
malization constant Zq can be found from renormalization
of the vertex function �̊

(0)
Oq

. The one- and two-loop diagrams
contributing to this vertex function are shown in Figs. 2
and 3, respectively. The corresponding values of diagrams
with combinatorial factors are summarized in Table I.
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1

2

q

(a) (b) (c)

(d)

+

(e)

FIG. 2. We use the graphical conventions of Ref. [52], with the
difference that here each dashed line can represent either SR or LR
disorder vertices. (a) Bare vertex O̊q. The horizontal solid lines stand
for ψ̄αψα , α = 1, . . . , q; diagram (b) carries a loop which vanishes
in the limit n → 0; diagram (c) in which two lines of different
replicas are connected by a propagator is forbidden by definition
(37); diagram (d) has a combinatorial factor of 2q and its contribution
is �S/ε + �L/δ; and diagrams (e) cancel each other.

We can now write down the RG flow equation for the q
moment of the local DOS:[∑

i=S,L

βi(�)
∂

∂�i
+ z(�)ω

∂

∂ω
− xq(�)

]
ρq(�,ω) = 0,

(40)

where the β functions are given by Eqs. (32) and

z(�) = 1 + ηω(�) − ηψ (�), (41a)

xq(�) = (d − 1 + ηψ )q − ηq, (41b)

η j (�) = −
∑
i=S,L

βi
∂ ln Zj

∂�i
, j = ψ,ω, q. (41c)

We can solve Eq. (40) using the method of characteristics.
In the vicinity of a FP �∗ = (�∗

S,�
∗
L ) with one unstable

direction we find that

ρq(�,ω) = ξ−x∗
q f (ωξ z, |� − �∗|ξ 1/ν ), (42)

where x∗
q = xq(�∗) and ξ is the correlation length. Using

Eq. (41c) we find

ηψ (�) = −2�2
S + 2�2

L − 4ε

δ
�L(�S + �L ), (43a)

ηq(�) = q

[
2(�S + �L ) − 6�2

S +
(

1 − 7ε

δ

)
�2

L

−�S�L

(
11 + 4ε

δ
− 3δ

ε

)]
+ q2

[
6�2

S

+3

(
5 − δ

ε

)
�S�L + 3

(
1 + ε

δ

)
�2

L

]
, (43b)

ηω(�) = ηq=1(�). (43c)

From the last equation we recover for q = 1 the dynamic
critical exponent x∗

q=1 = d − z, as expected. Using Eqs. (8)
and (41b) we obtain

�̃q = q(1 − q)

[
6�2

S + 3

(
5 − δ

ε

)
�S�L + 3

(
1 + ε

δ

)
�2

L

]
.

(44)

To compute the critical anomalous dimension we have to
evaluate (44) at the corresponding FP �∗.

(i) For δ > δc the critical behavior is controlled by the SR
FP. Substituting (33) and (34) into (44) we recover the result
of Refs. [38,52],

�̃SR
q = 3

8 q(1 − q)ε2 + O(ε3). (45)

(ii) For 0 < δ < δc the critical behavior is controlled by
the LR FP. Substituting (35) and (36) into (44) we find the
anomalous dimension corresponding to the new universality
class

�̃LR
q = 3

16 q(1 − q)δ(δ + ε) + O(ε3, δ3). (46)

It is easy to check that both results match on the line δc = ε +
O(ε2) which separates the two regions of stability. For δ = 0,
�̃q vanishes, which is consistent with the disappearance of the
transition.

The singularity spectrum (9) corresponding to the multi-
fractal spectra (45) and (46) is quadratic, which implies a
log-normal distribution P (ρ̃, L) for the local DOS. It can be
expressed as

f̃ (α) = d − (α − α0)2

4(α0 − d )
, (47)

which has a maximum at α = α0.
(i) For SR correlated disorder (δ > δc), we find

αSR
0 = 2 + ε + 3

8ε2 + O(ε3). (48)

The [1/1] Padé approximant of Eq. (48) gives αSR
0 = 3.6

in three dimensions, in fair agreement with the numerical
prediction of Eq. (23).

(ii) For LR correlated disorder (0 < δ < δc), we find

αLR
0 = 2 + ε + 3

16δ(ε + δ) + O(ε3, δ3). (49)

In this case α0 is smaller and thus the distribution of local
DOS is thinner.
One can compare these results with that for the Anderson
localization transition. In the three-dimensional orthogonal
class one finds α0 = 4 to two-loop order, which is in excellent
agreement with the numerical result α0 = 4.03 ± 0.05 [74].
Thus multifractality is stronger at the Anderson localization
than at the SR semimetal–metal transition, which is itself
stronger than at the LR semimetal–metal transition.

Let us summarize our main findings. We have derived
new scaling relations (21) and (22) which presumably hold
not only for the Weyl semimetal–diffusive-metal transition,
but for all disorder-driven transitions wherein the typical
and average local DOS vanish on one side of the critical
point, as discussed in Sec. V. We have computed the mul-
tifractal spectra (45) and (46) of the critical wave functions
at the semimetal–diffusive-metal transition for SR and LR
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(a) (b) (c) (d) (e)

+

(f)

+

(g)

+

(h)

+

(i)

+

(j)

+

(k)

+

(l)

+ + +

(m)

+

(n)

+ + +

(o)

+

(p)

+ + +

(q)

+

(r)

+

(s)

+

(t) (u) (v) (w)

FIG. 3. (a)–(q) One-particle irreducible diagrams contributing to �
(0)
Oq

to two-loop order. These diagrams are topologically identical to those
considered in Ref. [52], but here each dashed line corresponds to either SR or LR disorder vertices (�S or �L), which makes the computation of
these diagrams drastically complicated. (r)–(w) Counterterm diagrams. The cross represents the one-loop correction to the quartic interaction
(dashed line), the propagator (solid line) or the operator Oq (wavy line).

correlations of disorder. This enabled us to find the position
of the peak in the singularity spectrum α0, which is consis-
tent with previous numerical simulations with SR correlated

disorder. To characterize completely the SR and LR universal-
ity classes, we now show that vector potential disorder is an
irrelevant perturbation.
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TABLE I. Poles of diagrams depicted in Fig. 3. Diagrams (h), (i), (m), (o), (q), and (s) cancel each other. The last three columns give the
terms proportional to �2

S , �S�L , and �2
L , respectively. In computing these diagrams one encounters many different types of integrals which can

be found in Appendix B of Ref. [72]. We express the vertices, propagators, and composite operators in terms of the renormalized parameters
(�S , �L , ω, and Oq) instead of the bare parameters (�̊S , �̊L , ω̊, and O̊q) and to compensate this reparametrization we add the counterterms
[diagrams (r)–(w)].

Diagram Combinatorial factor �2
S �S�L �2

L

(a) 4q 1
ε2 + 2

ε

1
εδ

+ 2
δ(δ+ε) + 3

δ
+ 1

ε

3δ−ε

δ(2δ−ε) + 3δ−ε

2δ2(2δ−ε)

(b) 4q − 1
2ε2 − 1

ε
− 2

δ(δ+ε) − 2
δ

− 1
2δ(2δ−ε) − 1

2δ−ε

(c) 8q 1
2ε2 + 1

ε

2
δ(ε+δ) + 1

ε
+ 1

δ

1
2δ2 + 1

δ

(d) 8q 1
2ε

1
2ε

+ 1
2δ

− δ−ε

2δ(ε+δ)
1
2δ

− δ−ε

4δ2

(e) 2q(q − 1) 1
ε2 + 2

ε

2
εδ

+ 2
ε

+ 2
δ

1
δ2 + 2

δ

(f) 8q(q − 1) 1
ε

1
ε

+ 1
δ

1
δ

(g) 8q(q − 1) 1
ε

1
ε

+ 1
δ

1
δ

(j) 4q(q − 1) 1
ε2 + 1

2ε

1
εδ

+ 2
δ(δ+ε) + 1

2ε
+ 1

δ+ε

3δ−ε

2δ2 (2δ−ε)
+ 3δ−ε

4δ2

(k) 2q(q − 1) 1
ε2 + 1

2ε

1
εδ

+ 2
δ(δ+ε) + 1

2ε
+ 1

δ+ε

3δ−ε

2δ2 (2δ−ε)
+ 3δ−ε

4δ2

(l) 4q(q − 1) − 1
2ε2 − 1

2ε
− 2

δ(δ+ε) − 2
ε+δ

− 1
2δ(2δ−ε) − 1

2δ

(n) 8q(q − 1) − 1
2ε2 − 1

2ε
− 2

δ(δ+ε) − 2
ε+δ

− 1
2δ(2δ−ε) − 1

2δ

(p) 4q(q − 1)(q − 2) 1
ε

1
ε

+ 1
δ

1
δ

(r) 2q(q − 1) − 4
ε

− 4
ε

− 4
δ

− 4
δ

(t) 2q(q − 1) − 2q
ε

− 2q
ε

− 2q
δ

− 2q
δ

(u) 2q − 4
ε2 − 4

ε
− 8

εδ
− 4

ε
− 4

δ
− 4

δ2 − 4
δ

(v) 2q − 2q
ε2 − 2q

ε
− 4q

εδ
− 2q

ε
− 2q

δ
− 2q

δ2 − 2q
δ

(w) 4q − 1
ε

− 1
ε

− 1
δ

− 1
δ

VII. VECTOR POTENTIAL DISORDER

Uncorrelated vector potential disorder is known to have no
effect on criticality at the semimetal–diffusive-metal transi-
tion [22]. In this section we demonstrate the irrelevance of
vector potential disorder even in the presence of LR disorder
correlations, unless it is so long-range correlated (a < 2) that
it destabilizes the semimetal phase. Since the time-reversal
symmetry of the Weyl Hamiltonian is accidental it is natural to
include a general disorder potential that breaks time-reversal
invariance,

V (r) =
3∑

μ=0

Vμ(r)σμ, (50)

where σ0 = I is the identity matrix, σi with i = 1, 2, 3 are the
Pauli matrices, V0(r) is a scalar potential, and Vi(r) is a random
vector potential. We assume the absence of mutual correla-
tions between different components of disorder potential and
that the strength of disorder is isotropic, i.e.,

Vμ(r)Vμ′ (0) = gμ(r)δμμ′ (51)

for μ = 0, . . . , 3, with g1(r) = g2(r) = g3(r).
In the case of vector potential disorder, dimensional reg-

ularization leads to the appearance of evanescent operators
already at one-loop order [38]. To avoid this problem we adopt
here a different regularization scheme based on the so-called
εm expansion (see Ref. [75] for further details). In this scheme
we work in fixed dimension d = 3 and regularize the effective

action in the ultraviolet by setting

g0(k) = �k−m, gi(k) = κk−l (52)

for i = 1, 2, 3, and expand in the small parameters εm = 1 −
m and εl = 1 − l . This scheme has the advantage to preserve
a finite Clifford algebra of γ matrices [76] and to include
naturally long-range correlations, with independent and tun-
able parameters am = 2 + εm and al = 2 + εl for scalar and
vector potential disorder, respectively. We can study the short-
range correlations simply by choosing εm = 1 or εl = 1. The
renormalized action now reads

SR[ψ̄α, ψα] =
∫

k,ω

ψ̄α (Zψγ ·k − iZωω)ψα

− μ−εm Z��

Kd

∫
ki,ωi

k−m(ψ̄αψα )(ψ̄βψβ )

− μ−εl Zκκ

Kd

3∑
i=1

∫
ki,ωi

k−l (ψ̄ασiψα )(ψ̄βσiψβ ).

(53)

The relations between bare and renormalized parameters are
similar to Eqs. (29) and (30):

ψ̊ = Z1/2
ψ ψ, ω̊ = ZωZ−1

ψ ω, (54)

�̊ = 2μ−εm

Kd

Z�

Z2
ψ

�, κ̊ = 2μ−εl

Kd

Zκ

Z2
ψ

κ. (55)
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Metal

Semimetal

FIG. 4. Renormalization flow and phase diagram for εm = 1 and
εl = 1 (short-range disorder). The black dots are the Gaussian and
nontrivial (scalar) fixed points. The red thick line is the separatrix
between the Gaussian basin of attraction (semimetal phase) and the
runaway behavior (metal phase). For small � its asymptotics is given
by κ ≈ −3εl ln(�)/32.

We compute the renormalization constants Z�, Zκ , Zψ , and Zω

in the minimal subtraction scheme to one-loop order:

Z� = 1 + 4�

εm
+ 12κ

εl
+ O(�2, κ2), (56)

Zκ = 1 − 4�

3εm
+ 4κ

3εl
+ O(�2, κ2). (57)

Zψ = 1 − 2�

3εm
+ 2κ

3εl
+ O(�2, κ2) (58)

Zω = 1 + 2�

εm
+ 6κ

εl
+ O(�2, κ2). (59)

The beta functions are defined as in Eq. (31),

β� = −μ
∂�

∂μ

∣∣∣∣
�̊,κ̊

, βκ = −μ
∂κ

∂μ

∣∣∣∣
�̊,κ̊

, (60)

and have the following expressions:

β� = −εm� + 16
3 �2 + 32

3 �κ, (61)

βκ = −εlκ. (62)

Notice that the one-loop terms of Zψ and Zκ cancel out in the
beta function βκ . These flows are consistent with those found
in Dirac semimetals when only chiral preserving disorder is
allowed [75], and with previous studies of disordered Weyl
nodes using the Wilson renormalization scheme [22]. Figure 4
shows the renormalization flow in the case of SR correlated
disorder (εm = 1 and εl = 1). Apart from the trivial Gaussian

fixed point, the only nontrivial FP is

�∗ = 3εm

16
, κ∗ = 0. (63)

The corresponding stability matrix has eigenvalues εm and
−εl so that the FP (63) is relevant (and thus controls crit-
icality) for εl > 0. This conclusion holds whether disorder
is short range (εm = 1 or εl = 1) or long range (0 < εm < 1
or 0 < εl < 1), but the region of stability for the semimetal
phase shrinks with decreasing εl until it disappears at εl = 0.
Hence vector potential disorder does not affect criticality.
We do not claim, however, that the presence of only vector
potential disorder cannot induce a transition, which naively
follows from the one-loop RG flow shown in Fig. 4. Indeed
the separatrix in Fig. 4 may hit the κ axis if higher order
terms were included in the beta functions, which would be
consistent with the numerical simulations of Ref. [22].

VIII. SUMMARY

We have studied the multifractality of critical wave func-
tions at the Weyl semimetal–diffusive-metal transition for the
most general disorder, including random scalar and vector
potentials with both short-range and long-range correlations.
Using a renormalization group method we have computed the
multifractal spectrum to two-loop order as a function of the
disorder correlation exponent a. The multifractal spectrum
is an alternative way to characterize the transition, which is
both richer and more accurate than the conventional critical
exponents.

We have related the multifractal spectrum to the distribu-
tion of the local DOS fluctuations and studied the behavior
of the average and typical local DOS near the critical point,
which scale as power laws with two different exponents β and
βtyp, respectively. We have derived the new scaling relation
(21), which is in fair agreement with the known numerical
results for uncorrelated disorder, and valid for other quantum
disorder-driven phase transitions in which both the average
and typical local DOS vanish on one side of the transition.
In particular, the relation holds for the unconventional quan-
tum transition in disordered semiconductors with power-law
dispersion relation near the band edge. We are confident
that our findings will stimulate new numerical studies on
multifractality and the effects of disorder correlations at the
Weyl semimetal–diffusive-metal transition and other disorder-
driven quantum phase transitions.
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