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Robust cluster expansion of multicomponent systems using structured sparsity
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Identifying a suitable set of descriptors for modeling physical systems often utilizes either deep physical
insights or statistical methods such as compressed sensing. In statistical learning, a class of methods known
as structured sparsity regularization seeks to combine both physics- and statistics-based approaches. Used in
bioinformatics to identify genes for the diagnosis of diseases, group lasso is a well-known example. Here
in physics, we present group lasso as an efficient method for obtaining robust cluster expansions (CEs) of
multicomponent systems, a popular computational technique for modeling such systems and studying their
thermodynamic properties. Via convex optimization, group lasso selects the most predictive set of atomic clusters
as descriptors in accordance with the physical insight that if a cluster is selected, its subclusters should be too.
These selection rules avoid spuriously large fitting parameters by redistributing them among lower-order terms,
resulting in more physical, accurate, and robust CEs. We showcase these features of group lasso using the CE of
the bcc ternary alloy Mo-V-Nb. These results are timely given the growing interest in applying CE to increasingly
complex systems, which demand a more reliable machine learning methodology to handle the larger parameter
space.
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I. INTRODUCTION

Model building in physics requires both physical insights
and statistics. In the cluster expansion (CE) of multicompo-
nent systems [1], physical insights prescribe that the ener-
gies of atomic configurations obey a generalized Ising-like
Hamiltonian. The energy E (σ ) of an atomic structure σ can
be expanded in terms of atomic clusters α, where the cluster
correlation functions �α (σ ) serve as the basis set and the ef-
fective cluster interactions (ECIs) Vα serve as the coefficients:

E (σ ) =
∑

α

�α (σ )Vα. (1)

Statistically optimal values of the ECIs could be obtained via
fitting to Eq. (1) the energies of a training set of structures,
usually calculated from first principles. When appropriately
truncated, the CE is an accurate model for efficiently pre-
dicting the energies [2–6] or associated properties [7–12] of
different atomic configurations.

However, selecting the appropriate set of atomic clus-
ters as descriptors is challenging: selections based on phys-
ical intuition are not robust, while those based on statis-
tics are not physical. Initially, CE was largely applied to
binary alloys [2,13–26]. Thereafter, it has been applied to
more complex systems, including ternary to quinary al-
loys [5,6,12,27–29], semiconductors [7,30], battery materi-
als [31,32], clathrates [33,34], magnetic alloys [35–37], and
nanoscale alloys [3,4,11,38–42]. In complex systems, the
reduced symmetry increases the number of symmetrically
distinct clusters, exacerbating the cluster selection problem.
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With growing enthusiasm in applying CE to higher compo-
nent systems, such as high-entropy alloys [12], it is timely
to introduce an improved machine-learning procedure for
creating reliable CEs with physically meaningful and robust
ECIs.

Currently, there are two prevalent approaches for cluster
selection. The first emphasizes using physical insights, such
as via specific priors in the Bayesian framework [43] or via se-
lection rules to incorporate smaller clusters before larger ones
[44,45]. The second approach espouses using sparsity-driven
regularization such as compressed sensing [6,33,34,46–49].
Fundamentally, CE is a standard linear regression problem
y = Xβ—the response yi is the first-principles energy of the
ith structure in the training set {σ }, the coefficient β j is the
ECI of the jth cluster, and the component xi j of the design
matrix X is the correlation function � j (σi) of structure i with
respect to cluster j. Typically, the optimal β̂ is given by the
regularized least-squares solution

β̂ = argmin
β

∥∥y − Xβ
∥∥2

2 + g(β ), (2)

where the �p norm is defined by ‖z‖p = (
∑

i |zi|p)1/p
. The

penalty function g(β ) constrains β to reduce overfitting and
is key to high prediction accuracy for structures outside the
training set. In compressed sensing [50,51], the least absolute
shrinkage and selection operator (lasso) g(β ) ∝ ‖β‖1 selects
atomic clusters by favoring parsimonious models [48,49];
such models are more interpretable and simpler for quick
computation, for example, in Monte Carlo simulations.

In this paper, we present group lasso regularization [52]
as an efficient method for obtaining reliable CEs of mul-
ticomponent systems. As an example of structured sparsity
in machine learning, group lasso combines sparsity-driven
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FIG. 1. The constraints on {β1, β2, β3} in (a) lasso and (b) group
lasso regularizations. The corners and edges (in light blue) of these
constraints correspond to sparse solutions. In (b), coefficients β1 and
β2 are grouped, while β3 remains a singleton. This grouping favors
solutions with β1, β2 either both being zero or both being nonzero.

regularization with physical insights to select atomic clusters
as descriptors. We show that even with the large parameter
space of ternary alloys and beyond, the resulting truncated
CE remains sparse and robust with interpretable ECIs. With
a specially constructed convex penalty g(β ), group lasso
imposes the physical insight that a cluster is selected only after
all its subclusters. These selection rules avoid spuriously large
fitting parameters by redistributing them among lower-order
terms, resulting in more physical, accurate, and robust CEs.
We will demonstrate these features of group lasso via the CE
of the ternary bcc alloy Mo-V-Nb.

II. METHODS

A. Group lasso

Group lasso is an extension of the well-known lasso reg-
ularization [53,54]. Using the nonanalyticity of the penalty
functions, both methods favor sparse solutions to the linear
regression problem y = Xβ. For example, the lasso penalty is
g(β ) = λ‖β‖1 with hyperparameter λ, which has been studied
in the context of compressed-sensing CE [48,49]. In this case,
the sparsity of the regularized solution from Eq. (2) can be
understood in the dual picture

β̂ = argmin
β

∥∥y − Xβ
∥∥2

2, ‖β‖1 < τ, (3)

where τ is inversely related to λ. Figure 1(a) illustrates the
constraint ‖β‖1 < τ for β ∈ R3. This constraint shrinks the
least-squares solution to one that tends to lie on the corners
and edges of the constraint highlighted in Fig. 1(a). The
resulting regularized solution is therefore sparse with some
β̂i vanishing. In conventional lasso, the sparse solution is
determined from a statistical fit, with little room for incor-
porating pertinent physical insights. In contrast, group lasso
seeks a more physically meaningful solution by ensuring that
physically related coefficients are either all zero or all nonzero
together as a group. For example, when applied to gene
expression data for the diagnosis of diseases in bioinformatics,
group lasso ensures that genes with coordinated functions are
either all excluded or all included in the model [55]. For CE,

we will use group lasso to impose physical cluster selection
rules.

In group lasso, the coefficients β are partitioned into J
groups θ1, . . . , θJ , where θ j ∈ Rp j is a group of p j coeffi-
cients. Let Zj be the matrix formed by the columns of X cor-
responding to the group θ j . Then, the regularized solution is

β̂ = argmin
β

1

2

∥∥∥∥∥∥y −
J∑

j=1

Zjθ j

∥∥∥∥∥∥
2

2

+ λ

J∑
j=1

√
p j‖θ j‖2, (4)

with hyperparameter λ. Notice that unlike in the least-squares
term, the �2 norm in the penalty is not squared and is therefore
nonanalytic. It is this nonanalyticity that imposes sparsity.

In the dual picture, the unregularized least-squares solution
is now constrained by

J∑
j=1

√
p j‖θ j‖2 < τ. (5)

Figure 1(b) illustrates this group lasso constraint for the case
with three coefficients and the groups θ1 = (β1, β2) and θ2 =
β3. In this case, Eq. (4) simplifies to

β̂ = argmin
β

1
2‖y − Xβ‖2

2 + λ
(√

2
√

β2
1 + β2

2 + |β3|
)
. (6)

Compared to the lasso case in Fig. 1(a), sharp corners and
edges (representing sparse solutions) are now at β1, β2 �=
0, β3 = 0 and β1 = β2 = 0, β3 �= 0. Group lasso thus favors
solutions with β1, β2 either both being zero or both being
nonzero. In general, coefficients in the same group θ j are
either all zero or all nonzero.

When each group in Eq. (4) is a singleton, that is, p j = 1
for all j, the regularized solution reduces to that of lasso,

β̂lasso = argmin
β

1
2‖y − Xβ‖2

2 + λ‖β‖1. (7)

We will use this to benchmark the performance of group lasso.
Since the penalty terms for both lasso and group lasso are
convex, the regularized solutions can be efficiently obtained
by convex optimization. Note that the weights

√
p j in the

penalty term of Eq. (4) ensure that groups of different sizes are
penalized equally. Without these weights, a group with many
coefficients will unfairly dominate the penalty term. We next
discuss the cluster selection rules we wish to impose using
group lasso.

B. Hierarchical cluster selection rules

In CE, the energy of an atomic configuration is expanded
in terms of the atomic clusters and their associated ECIs. In
general, since a cluster b is a higher-order correction to its
subcluster a ⊂ b, the ECI βb �= 0 only if the subcluster ECI
βa �= 0. That is, a CE should include a cluster only if all its
subclusters are also included. This is the hierarchical cluster
selection rule we adopt here. Similar rules have been used
for the CEs of binary systems [3,4,41,43–45,56,57]. Here, we
extend such rules to alloy systems with more components.

Without vacancies, an m-component system requires the
tracking of m − 1 independent atomic species. For m � 3,
the key distinction from binaries is that for a given cluster,
multiple decorations (of independent atomic species) need to
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FIG. 2. Atomic clusters of a bcc ternary system, with atomic
species distinguished by colors. (a) Examples of the smallest pair,
triplet, and quadruplet. (b) A graphical representation of the subclus-
ter relations. Each bubble contains a cluster shown as a 2D schematic,
with lines connecting it to all its subclusters with one fewer atom.
The clusters in the dashed box correspond to those in (a). The
highlighted vertices form a set of clusters obeying the hierarchical
selection rules, while those with a red border do not.

be accounted for when considering subcluster relations. For
a given independent decoration, the correlation function in
Eq. (1) is defined as the number of clusters present in the
atomic structure. For example, Fig. 2(a) shows three decorated
clusters of a ternary system on a bcc lattice. The pair a, triplet
b, and quadruplet c are related by a ⊂ b, a ⊂ c, and b �⊂ c.
These relations are represented graphically in Fig. 2(b), where
each bubble contains a cluster [shown as a two-dimensional
(2D) schematic] with lines connecting it to its subclusters
with one fewer atom. The three clusters in Fig. 2(a) cor-
respond to those in the dashed box in Fig. 2(b). The set
of highlighted clusters (bubbles with yellow background) is
an example satisfying the hierarchical cluster selection rules,
while the set with red borders does not. Our work aims to use
group lasso to obtain cluster sets that obey the hierarchical
rules.

C. Cluster selection with group lasso

Imposing the cluster selection rules using group lasso is
a subtle but important point. This is because the hierarchical

rules require overlapping groups of ECIs, which are incom-
patible with how group lasso is formulated in Sec. II A. The
solution is to use a variant of group lasso known as overlap
group lasso [58].

To show how this variant of group lasso can impose the
cluster selection rules, we consider just two clusters c1 ⊂ c2

and the corresponding ECIs β1 and β2. To have β2 �= 0 imply
β1 �= 0 (as per the selection rules), we first write β1 = θ11 +
θ21 and β2 = θ22. Then, grouping together θ21 and θ22, we
apply group lasso using Eq. (4) to find the optimal θ11, θ21,
and θ22:

θ̂ = argmin
θ

1
2‖y − x1(θ11 + θ21) − x2θ22‖2

2

+ λ
(|θ11| +

√
2
√

θ2
21 + θ2

22

)
. (8)

As discussed, the form of group lasso’s penalty ensures that
θ21 and θ22 are either both zero or both nonzero. Consequently,
β2 �= 0 implies that β1 �= 0 (almost surely), but we can still
have β2 = 0 with β1 �= 0. This is precisely the selection rule
corresponding to the subcluster relation c1 ⊂ c2.

For a general set of p clusters {c1, . . . , cp}, group lasso
can similarly impose the selection rules. First, we write the
ECIs β = (β1, . . . , βp)T as a sum of p groups of coefficients:
β = ∑p

j=1 ν j , where ν j ∈ Rp is a vector constrained to be
zero everywhere except in positions corresponding to c j and
its subclusters. That is, we fix v j,k = 0 for all k such that
ck �⊆ c j . Then, the group lasso solution for the unconstrained
components is analogous to Eq. (8):

ν̂ = argmin
ν

1

2

∥∥∥∥∥∥y − X
p∑

j=1

ν j

∥∥∥∥∥∥
2

2

+ λ

p∑
j=1

√
p j‖ν j‖2, (9)

where p j is the number of subclusters of c j (including c j

itself). That is, p j is the number of unconstrained components
in ν j .

Here, we verify that Eq. (9) works as intended: the selec-
tion of a cluster c j should imply the selection of its subcluster
cl ⊂ c j . Given β j �= 0, we have νk, j �= 0 for some k such that
c j ⊆ ck . Then, for a subcluster cl ⊂ c j (and hence cl ⊂ ck),
the ‖vk‖2 term in the penalty ensures that νk,l �= 0. Conse-
quently, βl �= 0, as required.

III. RESULTS

We showcase the features of group lasso via the CE of
the bcc ternary alloy Mo-V-Nb, whose constituent elements
are well-known refractory metals. Previously, CE was used
to study the ground states of binary alloys V-Nb [59] and
Mo-Nb [60,61]. Here, we benchmark the performance of
group lasso [Eq. (9)] against lasso [Eq. (7)]. The former
method imposes the hierarchical cluster selection rules, while
the latter performs regularization based just on statistics. The
value of the hyperparameter λ in each method is fixed by
cross validation (CV). Our training structures have small unit
cells with up to six atoms. We use 239 clusters consisting of
pairs, triplets, and up to six-body clusters, with 1654 cluster
selection rules. As we will see, group lasso tends to produce
CEs that are more physical, accurate, and robust than those
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FIG. 3. The values of 239 ECIs based on 800 training structures.
Pairs, triplets, quadruplets, five-bodies, and six-bodies are colored
blue, orange, green, red, and purple, respectively. The ECIs from
group lasso are well behaved—larger clusters generally have smaller
ECIs—while for lasso, several isolated spikes corresponding to large
ECIs are observed among the higher-order clusters (quadruplets and
beyond).

from lasso. The Appendix contains further technical details
about our implementation.

Physicalness. Figure 3 shows the values of the ECIs based
on 800 training structures. The group lasso ECIs, by construc-
tion, obey all the cluster selection rules, and they satisfy the
physical intuition that ECIs generally weaken with increasing
cluster size. This behavior suggests that the CE is converging,
given our initial pool of clusters. In contrast, the lasso ECIs
obey only ∼87% of the rules, and numerous large clusters
have abnormally large ECIs. Therefore, via the selection rules,
group lasso redistributes these spurious spikes in lasso among
lower-order terms. While this redistribution decreases sparsity
(205 nonzero ECIs for group lasso vs 180 for lasso), CEs from
group lasso have more physical trends in the ECIs than those
from lasso. These general behaviors are observed regardless
of the training set choices.

Accuracy. In addition to the training structures, we also
have 500 test structures with large 16-atom unit cells not used
for training. For both lasso and group lasso, Fig. 4 shows
the CV scores and test errors decreasing as the number of
training structures increases, signifying the convergence of
the CEs. For either method, the CV scores and test errors are
comparable. These observations imply that the lasso class of
methods is able to distill the essential physics from training
with just small structures, reliably predicting the energies of
larger structures not in the training set. This is advantageous
for ternary alloys and beyond because of the huge number
of large structures in these systems. For all training set
sizes, group lasso is consistently more accurate than lasso
(smaller CV scores and test errors). Therefore, the incorpo-
ration of physical hierarchy improves not only the physical
interpretability of the ECIs but also the predictive capability of
the CE. Group lasso reduces overfitting by redistributing the
contributions from unphysical spikes in lasso’s ECIs among
numerous smaller clusters that are more important.

Robustness. The ECIs of a robust CE should converge
towards the true physical values when more training structures
are used. As such, a lack of robustness is signified by ECIs

group lasso CV lasso CV

group lasso test lasso test
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training set size

er
ro
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FIG. 4. Fivefold cross-validation (CV) scores and test errors for
group lasso and lasso versus training set size. The errors of group
lasso are consistently lower than lasso’s. The error bars for the CV
scores correspond to one standard deviation among the five folds.

wildly fluctuating with respect to the size of the training set.
The degree of fluctuations can be concisely illustrated using
the root-mean-square (rms) of the ECIs in each cluster cate-
gory (pairs, triplets, . . ., six-bodies). Figure 5 shows that the
five rms ECIs from group lasso are largely stable with respect
to the number of training structures. However, the ECIs from
lasso tend to vary wildly for the higher-order clusters. This
distinction shows that group lasso produces CEs that are more
robust; the ECIs are more physically interpretable for group
lasso (especially for higher-order clusters), as they tend to
fluctuate less with different training sets.

rm
sE
C
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FIG. 5. The rms ECIs with respect to the number of training
structures for different category of clusters, namely, from top to
bottom, pairs, triplets, quadruplets, five-bodies, and six-bodies. For
higher-order clusters, the ECIs of group lasso tend to fluctuate much
less than those of lasso.

134108-4



ROBUST CLUSTER EXPANSION OF MULTICOMPONENT … PHYSICAL REVIEW B 100, 134108 (2019)

IV. DISCUSSION AND CONCLUSION

As mentioned in Sec. II B, similar hierarchical cluster
selection rules have been used for CE [3,4,41,43–45,56,57].
Compared to previous works, the combination of these rules
with sparsity-driven regularization in our work leads to more
robust ECIs. This is because regularization shrinks the values
of the selected ECIs to avoid spuriously large terms. Fur-
thermore, since previous methods involve evaluating differ-
ent combinations of clusters separately to find the optimal
one, these methods become less computationally feasible for
ternary systems and beyond, where many more combinations
of clusters need to be explored. This is so unless the search
space is shrunk by imposing additional selection criteria; for
example, if an n-body cluster is included, then all n-body
clusters of smaller spatial extent are also included [44,45].
We do not impose these additional criteria in our work; they
might be too restrictive for ternaries and beyond because, for
example, the inclusion of A-B pairs up to a certain spatial
extent should not impact the spatial extent of pairs for other
decorations (i.e., B-C, A-C).

In Ref. [56], the authors studied the invariance of CE
under linear transformations of the site occupation variables.
The authors showed that invariance is preserved only when
the hierarchical cluster selection rules are obeyed. We em-
phasize that our group lasso implementation obeys the hi-
erarchical rules, whereas standard lasso does not. Hence,
our work presents a way for preserving the invariance
of CE.

In conclusion, we presented group lasso [52] as an efficient
method for producing reliable CEs of multicomponent alloys,
resulting in accurate and robust surrogate models for predict-
ing thermodynamic properties. A type of structured sparsity
regularization, group lasso combines statistical learning with
physical insights to select atomic clusters as descriptors for
the CE model. Via convex optimization, group lasso imposes
the cluster selection rules that a cluster is selected only after
all its subclusters. These rules avoid spuriously large fitting
parameters by redistributing them among numerous lower-
order terms, resulting in more physical, accurate, and robust
CEs. These results are timely given the growing interest in ap-
plying CE to increasingly complex systems, where the larger
parameter space demands a more reliable machine learning
methodology to construct robust models. Furthermore, this
work should inspire applying structured sparsity in modeling
other physical systems.
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APPENDIX

In this Appendix, we present the technical details of our
implementation of cluster expansion (CE) and group lasso.

1. First-principles calculations

The energies of the training and test structures are cal-
culated based on density functional theory (DFT) with the
Vienna Ab initio Simulation Package (VASP) [62,63]. We
use the Perdew, Burke, and Ernzerhof exchange correlation
based on the generalized gradient approximation [64,65]. The
projector augmented-wave potentials are used with the outer p
semicore states included in the valence states [66,67]. Plane-
wave cutoffs are set to 520 eV, and all atomic coordinates
(including lattice vectors) were fully relaxed until the calcu-
lated Hellmann-Feynman force on each atom was less than
0.015 eV/Å. Calculations are not spin polarized as Mo, Nb,
and V are not known to be strongly magnetic. The k-point

mesh is generated using a � grid and density of 200 Å
−3

.

2. Normalization choice for cluster correlations

The general expression for CE given by

E (σ ) =
∑

α

�α (σ )Vα (A1)

can be rewritten to account for the degeneracy of the clusters
in a specific lattice [68]. For any rescaling factor ηα > 0,
Eq. (A1) is invariant under the transformation �α (σ ) →
�α (σ )ηα and Vα → Vα/ηα . The choice of ηα depends on
whether degeneracy factors are subsumed into �α (σ ) or Vα .
Here, we choose ηα such that �α = Nα/Ñα , where Nα (Ñα) is
the number of clusters in the structure that are symmetrically
equivalent to cluster α, (without) taking into account the
decorations. This normalization gives 0 � �α � 1 for all α,
which is convenient because the convergence of Vα with re-
spect to cluster size would directly reflect the convergence of
the CE.

In practice, we use occupation variables ξ to describe the
atomic species at each lattice site of a structure: ξA(σ j ) equals
1 (0) if site j in structure σ is (not) occupied by species A ∈
{Mo, V, Nb}. Note that this is distinct from the orthogonal
basis in an alternate CE formalism [1]. Then, the correlation
function of structure σ with respect to cluster α is computed
using

�α (σ ) = 1

Ñα

∑
c

∏
j∈c

ξc j (σ j ), (A2)

where the sum is over all clusters c symmetrically equivalent
to α. The product is over all sites j in the cluster, with c j giving
the atomic species at site j. We reiterate that for ternary alloys
and beyond, decorations need to be taken into account when
considering symmetrically equivalent clusters.

3. Formation energy

In general, either the configuration energy E (σ ) or the
formation energy EF (σ ) could be used to train the CE. In this
work, we use the latter, which is defined as

EF (σ ) = E (σ ) −
∑

A

ρA(σ )E
(
σ

pure
A

)
, (A3)

where ρA(σ ) is the concentration of species A in the structure
σ and σ

pure
A is the pure system of species A. With the CE of
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FIG. 6. The DFT formation energies EF of 1081 derivative struc-
tures with up to a six-atom unit cell in a bcc lattice, with respect to
compositions. Structures with EF > 0 are not shown. Redder (bluer)
points are structures with smaller (larger) unit cells. The blue translu-
cent surface is the ground-state hull, with ground-state structures
represented by larger points. The ternary plot shows the compositions
of the structures, with ground-state structures highlighted in white.

E (σ ) from Eq. (A1), the formation energy can be expanded in
terms of the ECIs:

EF (σ ) =
∑

α

[
�α (σ ) −

∑
A

ρA(σ )�α

(
σ

pure
A

)]
Vα. (A4)

Because the expression in the square brackets vanishes exactly
for the empty cluster and singlets, the formation energy is
expandable in terms of just pairs and larger clusters [57]. This
form of the formation energy also naturally gives EF = 0 for
pure systems. Then, writing Eq. (A4) as the linear regression
problem y = Xβ, we standardize the columns of X to have
unit �2 norm before applying group lasso (or lasso), as per
common practice [54]. That is, denoting the ith column of
X by xi, we apply the invariant rescaling xi → xi/‖xi‖2 and
βi → βi‖xi‖2 such that ‖xi‖2 = 1 for all i.

Nb

V

Mo

training

test

FIG. 7. A ternary plot showing the compositions of the 1081
training structures and 500 test structures.
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FIG. 8. Top: The fivefold cross-validation (CV) score of group
lasso with respect to the hyperparameter λ, using 800 training struc-
tures. The green vertical line denotes the minimum CV score. The
red vertical line is one standard error away from the minimum and
gives the optimal λ. Inset: a close-up of the same plot. Bottom: The
six ECIs of the nearest-neighbor (blue) and next-nearest-neighbor
(yellow) pairs with respect to λ.

4. Generation of training and test structures

Ideally, the structures in a training set should be sufficiently
varied to capture all important physics of the system. To cover
a wide range of the configurational space, training structures
can be selected either randomly [48,49] or systematically to
maximize the covariance matrix of the correlation functions
[69].

In practice, computational constraints limit the number of
DFT calculations and favor training structures with smaller
unit cells. This limitation is especially severe for ternary alloys
and beyond because the configurational space grows combi-
natorially with the number of atomic species. Therefore, we
select our training structures from a pool of 1081 derivative
structures, systematically generated up to a six-atom unit cell
[70,71]. Figure 6 shows the DFT formation energies and com-
positions of these structures. Notably, lower-energy structures
tend to have smaller unit cells. Following the smallest-first al-
gorithm [7], structures with smaller unit cells are chosen first.
We exclude the three pure systems because their formation
energies given by Eq. (A4) are identically zero.

To verify that such training sets suffice for ternary systems,
we test the CE trained using small structures against a test
set (holdout set) of larger structures. The test set consists of
500 randomly selected 16-atom derivative structures; this set
is not used to train our CE model, but it serves to determine the
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testing and prediction error. The ternary plot in Fig. 7 shows
the compositions of these test structures compared to those of
the training set.

5. Initial set of clusters

In our CE model, we treat V and Nb as the independent
species, while Mo is treated as dependent. As such, only
clusters formed by Mo and V atoms are required. In the bcc
lattice, we consider up to the ninth-nearest-neighbor (9NN)
pairs, triplets with a 5NN cutoff, and four-body to six-body
clusters with a 3NN cutoff. These correspond to an initial pool
of 239 symmetrically distinct clusters, consisting of 27 pairs,
84 triplets, 54 four-body clusters, 56 five-body clusters, and 18
six-body clusters. Among these clusters are 1654 subcluster
relations, which group lasso uses to derive the final truncated
CE based on the cluster selection rules.

6. Tuning of hyperparameter λ

Using the DFT formation energies of the training struc-
tures, we use group lasso to select a properly truncated CE
set from the initial 239 distinct clusters. The group lasso
minimization problem is efficiently solved using a block coor-
dinate descent algorithm [54], which reduces the multidimen-
sional minimization problem to a sequence of root-finding
problems in one dimension. Overfitting (underfitting) happens
when the hyperparameter λ is too small (large). The optimal λ

is selected based on a fivefold cross validation (CV) with the
one-standard-error rule [54], as illustrated in Fig. 8 (top). That
is, the optimal λ corresponds to the most regularized model
with a CV score within one standard error of the minimal CV
score. The bottom plot of Fig. 8 shows coefficient shrinkage
and cluster selection in group lasso. As λ decreases, the model
becomes less regularized, and the ECIs generally increase; the
solution is also less sparse as more ECIs become nonzero.
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