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The investigation of higher-order elastic moduli of polycrystalline solids is a challenging task. For this purpose
the decomposition of the polycrystal Gibbs free energy at hydrostatic pressure in terms of the finite strain
tensor components, taking into account the fourth-order contributions, is given. We give the definition of the
fourth-order elastic moduli for the polycrystal (the fourth-order Lamé coefficients) at an arbitrary pressure. We
obtain the relationships between the Lamé coefficients of the fourth order at pressure P with the corresponding
constants of the single-crystal grains constituting the polycrystal. The case of the arbitrary grain symmetry
and, in particular, when the grains have a cubic lattice, is considered. The calculation results for the second-,
third-, and fourth-order Lamé coefficients of the series metals with cubic structure grains at P = 0 are analyzed.
For polycrystalline tungsten, the dependence of the fourth-order elastic constants on pressure in the range of
0–600 GPa is presented.
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I. INTRODUCTION

The higher-order elastic constants are important in solid-
state physics, because they characterize the anharmonicity of
the crystal lattice. First of all, it concerns the third- and fourth-
order elastic constants (TOECs and FOECs, respectively).
The second-order elastic constants (SOECs) define the linear
response. TOECs and FOECs define the nonlinear response
of single crystals on finite deformations. The dependence of
sound velocity from the applied load [1,2], the wave-form dis-
tortion of ultrasonic finite-amplitude waves passing through
a solid, and the amplitude of the second and third harmonic
[3–6] allow to estimate the ideal strength and ductility of
metals [7], and so on.

The polycrystalline materials are more important from
a practical point of view. Modern engineering and func-
tional materials usually have a complex and often disor-
dered/amorphous structure. The most convenient way to de-
scribe the elasticity of these materials is to use the isotropic
media description. The elastic moduli of polycrystals (Lamé
coefficients) can be obtained by averaging the single-crystal
different-order elastic constants over all the orientations
of grains [8–11]. The relations between the second-order
Lamé coefficients (SOLCs), the third-order Lamé coefficients
(TOLCs), and the elastic constants of single crystals at normal
pressure are given in Refs. [9–13]. Generalization of these
relations for polycrystals at arbitrary hydrostatic pressure P
is given in Ref. [14]. Note that the corresponding relations for
the fourth-order Lamé coefficients (FOLCs) are absent in the
literature.

The experimental definition of the higher-order elastic con-
stants of single crystals and polycrystals is a difficult problem
even at ambient pressure. Therefore, theoretical modeling is
important for the calculations of the nonlinear elastic con-
stants of loaded materials. Density functional theory (DFT)
straightforwardly allows us to perform the “first-principles”

calculations of crystal energy for the different volumes of unit
cell (at the different pressures). This gives us the possibility to
calculate the different-order elastic constants of single crystals
at a given pressure [15–17]. The relations between the Lamé
coefficients and the different-order elastic constants of a single
crystal also allow estimation of the nonlinear elastic properties
of a polycrystal at a given P, which is important for technical
applications.

In the present work the relations between the FOLCs and
FOECs are obtained. The cases when single-crystal grains
have arbitrary symmetry and, in particular, cubic symmetry
are considered.

II. LAMÉ COEFFICIENTS OF ISOTROPIC SOLID

Consider the isotropic solid that is in the equilibrium state
at given pressure P and temperature T, and it experiences the
small but finite deformation ηi j . We call “loaded” the initial
state under hydrostatic pressure and the final state “strained,”
corresponding to the deformation ηi j . To describe the strained
state we use the Lagrangian finite strain tensor [1]:

ηi j = 1
2 (αkiαk j − δi j ), (1)

where αk j = ∂rk/∂Rj is the deformation gradient, rk and Rj

are the Cartesian coordinates of an arbitrary point in the
solid in the deformed and initial states, respectively, and δi j

is the Kronecker symbol. Hereafter, the summation over the
repeated indices is performed from 1 to 3.

The Gibbs free energy G is used for the description of
the deformed isotropic solid at given P and T. G does not
depend on the choice of coordinate system. It is invariant
at the rotation and the translation of solid, as а whole. It is
possible only when the Gibbs energy is a function of the strain
tensor invariants. The strain tensor has the three invariants of
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the first, second, and third order over ηi j [1]:

I1 = η11 + η22 + η33, (2a)

I2 = (
η11η22 − η2

12

) + (
η11η33 − η2

13

) + (
η22η33 − η2

23

)
, (2b)

I3 = η11η22η33 + 2η23η13η12 − η11η
2
23 − η22η

2
13 − η33η

2
12.

(2c)

It is possible to decompose G over ηi j near the undeformed
state because the deformations are although finite but small.
The Gibbs free energy has a minimum in the equilibrium
state, so ∂G/∂I1|0 = 0, and the decomposition begins from
quadratic contributions over the deformation. We take into ac-
count only the fourth-order contributions. From the invariants
of Eqs. (2), it is possible to create the two quadratic scalars
(I2

1 , I2), the three cubic (I3
1 , I1I2, I3), and the four of the fourth

degree (I4
1 , I2

1 I2, I1I3, I2
2 ).

The third-order decomposition of energy over deformation
was considered in many papers [1,4,8,18–20]. In these papers,
various definitions of TOLCs were used. We give the three
most common definitions: Murnaghan (l, m, and n), Toupin
and Bernstein (ν1, ν2, and ν3), and Landau and Lifshits (A,
B, and C). The definition of TOLCs by Toupin and Bernstein
is more convenient (νi coincides with the independent elastic
constants of the isotropic solid), so we give the relations
connected with other definitions of TOLCs [19,20]:

ν1 = 2(l − m) + n = 2C,

ν2 = m − 1
2 n = B,

ν3 = n/4 = A/4. (3)

It is possible to present the expression for the Gibbs free
energy at given P and T on the unit of volume V0 in the initial
(undeformed) state, including the fourth-order contributions
over ηi j , as

�G

V0
= λ + 2μ

2
I2
1 − 2μI2 + ν1 + 6ν2 + 8ν3

6
I3
1 − 2(ν2 + 2ν3)I1I2 + 4ν3I3

+ 1

24
ξ1I4

1 −
(

ξ1 − ξ2

8
+ ξ4

3

)
I2
1 I2 +

(
ξ1 − ξ2

8
+ ξ4

3
− ξ3

)
I1I3 + 2

3
ξ4I2

2 . (4)

Here �G = G(P, T, η) − G(P, T, 0), λ and μ – SOLCs,
νi – TOLCs, ξi – FOLCs.

At such definitions of the second-, third-, and fourth-order
Lamé coefficients, they coincide with the elastic constants of
isotropic solid [9–14,19]:

λ = С
∗
12, μ = С

∗
44, (5a)

ν1 = С
∗
123, ν2 = С

∗
144, ν3 = С

∗
456. (5b)

For the definition of FOLCs we have [see below, Eqs. (18)]

ξ1 = С
∗
1111, ξ2 = С

∗
1122, ξ3 = С

∗
1144, ξ4 = С

∗
4444. (6)

Here the elastic constants of the isotropic solid C∗
αβ are given

in Voigt notation (11 – 1, 22 – 2, 33 – 3, 23 – 4, 13 – 5,
12 – 6). The decomposition of the elastic energy deformation,
including the fourth-order contribution (η4), is given in [6,21],
where the sound propagation in nonlinear isotropic solids was
considered and in Refs. [22] and [23] for the estimation of
the fourth-order shear moduli in the metallic glasses. But the
definition of FOLCs in these papers is not the same as in
Eq. (4).

The polycrystalline material can be considered as the
isotropic aggregate of single-crystal grains. These crystallites
are negligible in size compared with the specimen itself but
large enough to exhibit bulk elastic properties and orientated
in a completely random manner. To evaluate the isotropic
elastic constants (accordingly, Lamé coefficients) for such
systems the averaging methods, proposed by Voigt and Reuss
[10,11], are used. In the first case, when a polycrystal is
deformed the deformation distribution is uniform and is not
changed. Then the microscopic deformation in the single-
crystal grains is equal to the macroscopic or average de-
formation and, according to Voigt, the elastic constants of
a polycrystal (Lamé coefficients) are equal to the elastic

constant tensor, averaged over the all directions:

С
V
i jkl.. = (Ci jkl..)Av. (7)

Usually this procedure is called “homogenization.” In
the second case (Reuss approximation), the distribution of
stresses is uniform and constant, and the elastic compliances
of polycrystal are equal to the homogenized values of single-
crystal elastic compliances:

SR
i jkl.. = (Si jkl..)Av. (8)

In papers [9–14] the relations are given which connect
SOLCs and TOLCs with SOECs and TOECs of cubic and
hexagonal crystals at ambient and arbitrary pressure P.

III. LINEAR INVARIANTS OF THE FOEC TENSOR

To calculate the Voigt average (uniform strain approx-
imation) of the fourth-order elastic constants, the single-
crystalline FOECs must be averaged over the all orientations
of individual grains according to Eq. (7). With the rotation
of the Cartesian coordinate system, the components of the
eighth-rank tensor Ci jklmnpq are transformed according to the
following law [24]:

C
′
i jklmnop = aiqa jraksalt amuanvaowapxCqrstuvwx, (9)

where aiq, ... are the directional cosines between the coordi-
nate axes. The values of C′

i jklmnop averaged over all angles are
defined by the mean product of rotation matrices aiq, . . .. For
the small rank tensors (second, fourth) these values can be
defined easily by integrating over the Euler angles. However,
for the higher rank tensors this procedure becomes tedious
due to calculations of the large number of integrals with the
trigonometric functions. In the case of higher rank tensors, it is
convenient to use the method proposed in [25] for calculation
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of the Voigt average of the TOECs for cubic symmetry. This
method was used later in Refs. [10,26,27] for the definition of
the averaged TOECs

For random orientation, such a linear average can be cal-
culated from the condition that the linear invariants of the
two tensors representing the single crystal and the polycrystal
must be equal. The tensor of FOECs has four linear invariants
which are not changed at any orthogonal transformation of
the vector basis. To get these invariants, the rotation matrices
in Eq. (9) should be taken in pairs and their indices changed
in such a way that the product of each of these pairs becomes
a Kronecker δ [24]. For example, if one chooses i = j, k = l ,
m = n, and o = p, it follows that

L1 = C′
iikkmmpp = (aiqair )(aksakt )(amuamv )(apwapx )Cqrstuvwx

= δqrδstδuvδwxCqrstuvwx. (10a)

Taking i = m, j = n, k = o, and l = p, we get the second
invariant:

L2 = C′
i jkli jkl = δquδrvδswδtxCqrstuvwx . (10b)

Then, taking i = k, j = m, l = o, and n = p we get

L3 = C′
i jil jnln = δqsδruδtwδvxCqrstuvwx , (10c)

and with i = l , j = n, k = m, and 0 = p we get

L4 = C′
i jkik joo = δqtδrvδsuδwxCqrstuvwx . (10d)

As usual, the summation over the repeated indices from 1
to 3 takes place. In the general case (the triclinic symmetry),
the expressions for Li are given in Appendix A [Eqs. (A1)].

In the case of cubic symmetry (point groups
−
4 32, 432, 4

m

−
3 2

m , the 11 FOECs [1]), the expressions
for the linear invariants [Eqs. (10)] are

Lc
1 = 3C1111 + 24C1112 + 18C1122 + 36C1123, (11a)

Lc
2 = 3C1111 + 6C1122 + 12C1144 + 24C1155

+ 12C4444 + 24C4455, (11b)

Lc
3 = 3C1111 + 24C1155 + 12C1266 + 24C1456

+ 6C4444 + 12C4455, (11c)

Lc
4 = 3C1111 + 6C1112 + 18(C1155 + C1255 + C1266

+C1456). (11d)

Here Cαβγ δ are the fourth-order isothermal elastic constants of
a single crystal in Voigt notation at given P and T.

For Reuss averaging (the uniform stress approximation)
the linear invariants in the case of compliances are defined
by the same relations, Eqs. (11) where only the FOECs are
replaced by compliances Sαβγ δ with the same indexes (taking

into account the rules of recording the components of the
tensor Sαβγ δ in Voigt notation [28]).

IV. ELASTIC CONSTANTS OF LOADED CRYSTAL

The elastic constants in Eqs. (11) are defined by the relation
[14]

Ci jkl.. = 1

V0

(
∂nG

∂ηi j∂ηkl ...

)
T

, (12)

where n = 4. Since
�G

V0
= �F

V0
+ P

�V

V0
, (13)

where �F = F (P, T, η) − F (P, T, 0), �V = V − V0 are the
change of the Helmholtz free energy and volume, respectively,
due to the deformation given by the ηi j components, and
Ci jklmnpq are defined not only by the interatomic interaction
but also by the work of the external load due to the additional
small strain ηi j . Thus, Ci jklmnpq defines the elastic response of
the crystal at pressure P on a small deformation and fully de-
scribes the elastic properties under hydrostatic compression.

The decomposition of �F
V0

is as follows:

�F

V0
= − Pηi jδi j + 1

2
ci jklηi jηkl + 1

6
ci jklmnηi jηklηmn

+ 1

24
ci jklmnpqηi jηklηmnηpq + . . . , (14)

where

ci jkl.. = 1

V0

(
∂nF

∂ηi j∂ηkl ...

)
T

. (15)

The elastic constants ci jkl... [Eq. (15)], calculated at the
same volume, in contrast to Ci jkl... are defined only by the
interatomic interaction and so do not give the full picture
of the elastic behavior of the material. Note that under the
hydrostatic pressure the elastic constants Ci jkl... have the Voigt
symmetry relative to the index permutations [1]. The defini-
tion of the elastic constants ci jkl... for the unloaded crystal is
given in [29].

The relation between Ci jkl... and ci jkl... can be found using
Eqs. (12)–(15). The volume of the deformed crystal is ex-
pressed [1] by V = JV0, where J = det(αi j ). In the case of
pure deformation (no crystal rotation), the inversion of Eq. (1)
gives [16]

αi j = δi j + ηi j − 1
2ηkiηk j + 1

2ηrkηriηk j − 5
8ηk jηmkηmnηni.

(16)

The substitution of �F/V0 and �V/V0 in Eq. (13) allows
one to express Cαβγ δ via the elastic constant cαβγ δ and pres-
sure P. For crystals with cubic symmetry, the obtained results
are given in Table I [16].

TABLE I. The relations between Cαβγ δ and сαβγ δ for cubic crystal.

C1111 = c1111 − 15P C1123 = c1123 − P C1255 = c1255 + P C4444 = c4444 − 3P
C1112 = c1112 + 3P C1144 = c1144 + P C1266 = c1266 − P C4455 = c4455 − P
С1122 = с1122 + P C1155 = c1155 − 3P C1456 = c1456 − P

134107-3



O. M. KRASILNIKOV AND YU. KH. VEKILOV PHYSICAL REVIEW B 100, 134107 (2019)

V. RELATIONS BETWEEN THE FOLCs AND CUBIC FOECs

Now we express the fourth-order contribution in Eq. (4) via the strain tensor components using the connection I1, I2, and I3

with ηi j : (
�G

V0

)
4

= 1

24
ξ1

(
η4

11 + η4
22 + η4

33

) +
(

ξ1

24
+ ξ2

8
− ξ4

3

)[
η3

11(η22 + η33)

+ η3
22(η11 + η33) + η3

33(η11 + η22)
] + ξ2

4

(
η2

11η
2
22 + η2

11η
2
33 + η2

22η
2
33

)
+

(
ξ2

2
− ξ3

)
η11η22η33(η11 + η22 + η33) + ξ3

(
η2

11η
2
23 + η2

22η
2
13 + η2

33η
2
12

)

+
(

ξ1 − ξ2

8
+ ξ4

3

)[
η2

11

(
η2

12 + η2
13

) + η2
22

(
η2

12 + η2
23

) + η2
33

(
η2

13 + η2
23

)]

+
(

ξ1 − ξ2

8
+ ξ3 − ξ4

)[
η11η22

(
η2

13 + η2
23

) + η22η33
(
η2

13 + η2
12

) + η11η33
(
η2

12 + η2
23

)]

+
(

ξ1 − ξ2

4
− 2ξ4

3

)(
η11η22η

2
12 + η11η33η

2
13 + η22η33η

2
23

) +
(

ξ1 − ξ2

4
− 2ξ3 + 2ξ4

3

)

× η23η13η12(η11 + η22 + η33) + 2ξ4

3

(
η4

23 + η4
13 + η4

12

) + 4ξ4

3

(
η2

23η
2
12 + η2

23η
2
13 + η2

13η
2
12

)
. (17)

The connection between the isotropic elastic constants C∗
αβγ δ and FOLCs is obtained by comparing (17) with the same

decomposition for the cubic crystal [see Eq. (B3)]:

C∗
1111 = ξ1; C∗

1122 = ξ2; C∗
1144 = ξ3; C∗

4444 = ξ4; C∗
1112 = ξ1 + 3ξ2 − 8ξ4

4
;

C∗
1123 = ξ2 − 2ξ3; C∗

1155 = 3(ξ1 − ξ2) + 8ξ4

24
; C∗

1255 = ξ1 − ξ2 + 8(ξ3 − ξ4)

16
;

C∗
1266 = 3(ξ1 − ξ2) − 8ξ4

24
; C∗

1456 = 3(ξ1 − ξ2 − 8ξ3) + 8ξ4

96
; C∗

4455 = ξ4

3
. (18)

The linear invariants of polycrystalline solid, corresponding to the Voigt average and expressed via the Lamé coefficients, can
be obtained from Eqs. (11) and Eqs. (18). As a result,

Lis
1 = 3(3ξ1 + 24ξ2 − 24ξ3 − 16ξ4), (19a)

Lis
2 = 6ξ1 + 3ξ2 + 12ξ3 + 28ξ4, (19b)

Lis
3 = (33ξ1 − 21ξ2 − 24ξ3 + 64ξ4)/4, (19c)

Lis
4 = 3(57ξ1 − 9ξ2 + 24ξ3 − 104ξ4)/16. (19d)

TABLE II. Calculation results for Lamé coefficients of metals. All values are given in GPa (P = 0, T = 0 K).

Constant Cu Al Au Ag W

λ = C∗
12 94.56 53.16 164.6 104.3 206.7 [14]

μ = С
∗
44 55.56 29.96 28.32 43.28 150.1 [14]

C∗
11 = λ + 2μ 205.7 113.1 221.3 190.8 506.9

ν1 = C∗
123 −236.3 −15.2 −431.6 −240.4 −405.1 [14]

ν2 = C∗
144 −213.9 −133.8 −270.8 −181.6 −305.7 [14]

ν3 = C∗
456 −182.7 −119.6 −173.4 −138.2 −395.0 [14]

C∗
111 = ν1 + 6ν2 + 8ν3 −2981 −1775 −3443 −2436 −5399

ξ1 = C∗
1111 31857 20565 44560 31704 52698

ξ2 = C∗
1122 3407 480 4353 2787 6012

ξ3 = C∗
1144 1176 238.2 1216 912.4 1275

ξ4 = C∗
4444 2754 1631 3875 2139 2392
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Equating the invariants of Eqs. (11) and Eqs. (19) and solving the system of obtained equations relative to ξi, we get the relations
between FOLCs of polycrystal and the elastic constants of single-crystal grains for the cubic symmetry (Voigt approximation):

ξ1 = CV
1111 = 1

105 (35C1111 + 40C1112 + 18C1122 + 12C1123 + 24C1144 + 240C1155

+ 96C1255 + 144C1266 + 192C1456 + 48C4444 + 96C4455), (20a)

ξ2 = С
V
1122 = 1

35 (C1111 + 8C1112 + 14C1122 + 12C1123 + 16C1144 − 16C1266 − 32C1456 + 8C4444 + 16C4455), (20b)

ξ3 = CV
1144 = 1

105 (C1111 + 2C1112 + 12C1122 − 15C1123 + 39C1144 + 6C1155

−18C1266 + 36C1255 − 72C1456 + 12C4444 + 24C4455), (20c)

ξ4 = CV
4444 = 1

35 (C1111 − 4C1112 + 3C1122 + 6C1144 + 12C1155 − 12C1255 − 6C1266 + 9C4444 + 18C4455). (20d)

The expressions for ξi in the case of arbitrary sym-
metry of single-crystal grains are given in Appendix A
[Eqs. (A3)].

VI. NUMERICAL RESULTS AND DISCUSSION

We analyze the second-, third-, and fourth-order homog-
enized moduli (Lamé coefficients) of metals with a cubic
lattice, for which the full set of elastic constants exists. In
paper [30] the results of DFT calculations for all FOECs (P =
0, T = 0 K) of fcc metals (Cu, Al, Ag, and Au) are given. The
values of SOECs and TOECs are also given there. Using these
data, we have estimated the values of the second-, third-, and
fourth-order Lamé coefficients of these metals at P = 0.The
relations for calculating SOLCs and TOLCs were taken from
[11]. FOLCs for tungsten were calculated using the full set
of FOECs in the pressure interval 0–600 GPa (T = 0 K) [16].
For tungsten, the values of SOLCs and TOLCs were taken
from [14].

The results of our calculations, using the data for elastic
constants from [30,16], are given in Table II and in Figs. 1 and
2. As follows from Table II, the elastic moduli of polycrystals
C∗

αβ.. (Lamé coefficients) are increased by absolute value at

P

W
,F

O
LC

s
(G

P
 )a

(GP )a
0 100 200 300 400 500 600

0

50000

100000

150000

200000

250000

FIG. 1. The pressure dependence of FOLCs C∗
1111 (triangles) and

C∗
1122 (squares).

the transition from the second to the fourth order. It is seen
in Figs. 1 and 2 that with the pressure increasing, FOLCs
for W (for ξ2 = C∗

1122 and ξ3 = C∗
1144 at P > 100GPa) are

increased. The same behavior is demonstrated for the SOLCs
and TOLCs of tungsten [14].

VII. CONCLUSION

The definition of the fourth-order elastic moduli of poly-
crystals (the fourth-order Lamé coefficients) at arbitrary pres-
sure is given. The relations are obtained which define these
constants via the fourth-order elastic constants of the single-
crystal grains, which form the polycrystal. We have calculated
the second-, third-, and fourth-order Lamé coefficients of
some metals (fcc – Cu, Al, Au, Ag; and bcc – W) using
the available data of DFT calculations for elastic constants
at normal pressure and T = 0 K. Additionally, we calculated
the fourth-order Lamé coefficients in the pressure range 0–
600 GPa for tungsten using the existing data on fourth-order
elastic constants. The Lamé coefficients are increased by
about an order of magnitude at the transition from the second
to the third and fourth order. It is seen on the example of

0 100 200 300 400 500 600
0

5000

10000

15000

20000

P

W
,F

O
LC

s
(G

P
 )a

(GP )a

FIG. 2. The pressure dependence of FOLCs C∗
1144 (squares) and

C∗
4444 (triangles).
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tungsten that the Lamé coefficients of any order are increased
in absolute value with increasing pressure.
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APPENDIX A: LINEAR INVARIANTS AND LAMÉ
COEFFICIENTS IN THE CASE OF ARBITRARY

SYMMETRY

Using Eqs. (10), we will express the linear invariants Li

via FOECs in the general case (the triclinic symmetry). After
summation over the repeated indices we get

L1 = C1111 + C2222 + C3333 + 4C1112 + 4C1113 + 6C1122 + 6C1133 + 12C1123

+4C1222 + 12C1223 + 12C1233 + 4C1333 + 4C2333 + 4C3222 + 6C2233, (A1a)

L2 = C1111 + C2222 + C3333 + 4C4444 + 4C5555 + 4C6666 + 2C1122 + 2C1133

+ 4C1144 + 4C1155 + 4C1166 + 4C2244 + 2C2233 + 4C2255 + 4C2266 + 4C3366 + 8C4466

+8C4455 + 8C5566 + 4C3355 + 4C3344, (A1b)

L3 = C1111 + C2222 + C3333 + 2C4444 + 2C5555 + 2C6666 + 8C1456 + 8C2456 + 8C3456

+ 4C1155 + 4C1166 + 4C2244 + 4C3344 + 4C3355 + 4C4455 + 4C4466 + 4C2266

+4C5566 + 4C1266 + 4C1355 + 4C2344, (A1c)

L4 = C1111 + C2222 + C3333 + C1112 + C1113 + 3C1155 + 3C1166 + 3C1244 + 3C1255

+ 6C1266 + 3C1344 + 6C1355 + 3C1366 + C1222 + C1333 + C2223 + C2333 + 6C1456

+ 6C2456 + 6C3456 + 3C2266 + 3C3355 + 3C3344 + 3C2244 + 6C2344 + 3C2355 + 3C2366. (A1d)

Cαβγ δ are given in Voigt notations and are defined according
to Eq. (12).

Now we will obtain the expressions for the Lamé coeffi-
cients ξi via FOECs of single crystal for the case of arbitrary
symmetry. We get the system of linear equations relative to ξi

by equating the invariants Li [Eqs. (A1)] and Li
is [Eqs. (19)]:

3ξ1 + 24ξ2 − 24ξ3 − 16ξ4 = L1/3, (A2a)

6ξ1 + 3ξ2 + 12ξ3 + 28ξ4 = L2, (A2b)

33ξ1 − 21ξ2 − 24ξ3 + 64ξ4 = 4L3, (A2c)

57ξ1 − 9ξ2 + 24ξ3 − 104ξ4 = 16L4/3. (A2d)

The solution of this system is

ξ1 = 1
105 (a + 6b + 12c + 16d ), (A3a)

ξ2 = 1
35 (a + 4b − 4c), (A3b)

ξ3 = 1
420 (−5a + 39b − 54c + 24d ), (A3c)

ξ4 = 1
70 (3b + 3c − 4d ), (A3d)

where a = L1/3, b = L2/3, c = L3/3, d = L4/3.
The relations of Eqs. (20) are the particular case of

Eqs. (A3) when the polycrystal соntains the arbitrary-oriented
grains with cubic symmetry.

APPENDIX B: DERIVATION OF (20a) BY INTEGRATION
OVER THE ANGLES

To verify the relations (20), defining FOLCs of polycrystal
with the randomly oriented grains with the cubic symmetry,
we will obtain Eq. (20a) by integration over the Euler angles

in the process of calculating the elastic constant C∗
1111 of

polycrystal. For this we use the suggestion given in [9] in the
process of deriving the equation for TOLCs.

Let us say that the polycrystal undergoes uniaxial deforma-
tion η′

11 in the arbitrary rectangular coordinate system (1′, 2′,
3′). Then a monocrystalline grain in the own crystal axes (1,
2, 3) experiences the following deformations:

η11 = η′
11a2

11, η22 = η′
11a2

12, η33 = η′
11a2

13,

η23 = η′
11a13a12, η13 = η′

11a11a13, η12 = η′
11a11a12.

(B1)

Here ai j are the direction cosines between crystal axes (1, 2, 3)
and the prime axes (1′, 2′, 3′). If one denotes the angle between
the strain direction (1′) and the 3 axis of the crystal as θ and
the angle between the projection of the strain direction (1′)
onto the 1–2 plane and 1 axis of the crystal as φ, it follows
that

a11 = sin θ cos φ, a12 = sin θ sin φ, a13 = cos θ. (B2)

The fourth-order contribution over η in the elastic de-
formation energy for the cubic crystal is defined by the
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expression [16] (
�G

V0

)
4

= 1

24
C1111

(
η4

11 + η4
22 + η4

33

) + 1

6
C1112

[
η3

11(η22 + η33)

+ η3
22(η11 + η33) + η3

33(η11 + η22)
] + 1

4
C1122

(
η2

11η
2
22 + η2

11η
2
33 + η2

22η
2
33

)
+ 1

2
C1123η11η22η33(η11 + η22 + η33) + C1144

(
η2

11η
2
23 + η2

22η
2
13 + η2

33η
2
12

)
+ C1155

[
η2

11

(
η2

12 + η2
13

) + η2
22

(
η2

12 + η2
23

) + η2
33

(
η2

13 + η2
23

)]
× 2C1255

[
η11η22

(
η2

13 + η2
23

) + η22η33
(
η2

13 + η2
12

) + η11η33
(
η2

12 + η2
23

)]
+ 2C1266

(
η11η22η

2
12 + η11η33η

2
13 + η22η33η

2
23

) + 8C1456η23η13η12(η11 + η22 + η33)

+ 2

3
C4444

(
η4

23 + η4
13 + η4

12

) + 4C4455
(
η2

23η
2
12 + η2

23η
2
13 + η2

13η
2
12

)
. (B3)

Here ηi j is defined in accordance with Eqs. (B1) and (B2). For
all possible orientations of single-crystal grains, the homoge-
neous elastic energy is

(
�G

V0

)
4

=
∫ π/2

0 dφ
∫ π/2

0
�G
V0

(θ, φ) sin θdθ∫ π/2
0 dφ

∫ π/2
0 sin θdθ

. (B4)

The energy of polycrystals at the deformation η′
11 equals

(
�G

V0

)is

4

= 1

24
C∗

1111η
′4
11. (B5)

Because the contribution in the elastic energy due to grain
boundary mismatch is negligible, it is possible to believe that
the elastic energy of the polycrystal should be equal to the
average value of the elastic energy of single-crystal grains.

We will obtain ( �G
V0

)4 after integration according to
Eq. (B4) for each term in (B3). From the equality(

�G

V0

)
4

=
(

�G

V0

)is

4

,

we get the expression for C∗
1111 exactly compatible with

Eq. (20a), which was obtained through the linear invariants.
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