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Prospects for detecting individual defect centers using spatially resolved electron
energy loss spectroscopy
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We consider the prospects of locating and characterizing individual defect centers in bulk materials using
electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). We simulate
STEM-EELS maps for two important defect centers in diamond, namely, the negatively charged nitrogen-
vacancy defect and the neutral silicon-vacancy defect. We use density-functional theory to compute the defect
electronic structure and a Møller potential formalism to compute the inelastic electron scattering. Our results
indicate that it should be possible to use STEM-EELS to obtain the transverse locations of these defects to
within about 1 nm. We calculate the plane-wave scattering cross sections for these individual defects to be of the
order of 10−4 Å2, which indicates that the EELS signals should be within detectable limits. Calculated spectral
maps and scattering cross sections are given as a function of the defect orientation, and we show that the results
can be interpreted using a tight-binding description of the defect electronic structure.
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I. INTRODUCTION

Our ability to probe the atomic and electronic structures of
individual point defects embedded in materials remains one
of the last frontiers in materials characterization. Whereas in-
terfaces (two-dimensional defects) and dislocation lines (one-
dimensional defects) have been well studied at the atomic
level, the small volumes and weak signals associated with
individual point defects (zero-dimensional defects) make their
detection intrinsically challenging. Over the last decade, the
analysis of individual heavy dopant atoms within bulk mate-
rials using annular dark field imaging in a scanning transmis-
sion electron microscope (ADF-STEM) has seen significant
progress [1–6]. ADF-STEM has also been combined with the
detection of characteristic x rays to locate and unambiguously
identify dopant atoms in carbon materials [7]. There has
also been progress in imaging lighter dopants or vacancies
embedded in lower-dimensional materials [8,9]. But locating
lighter dopants or vacancies in three-dimensional (3D) mate-
rials remains extremely difficult. Nevertheless, point defects
of the latter type are crucial to the operation of many semi-
conductors, quantum computing materials, quantum sensing
materials, oxygen and hydrogen storage materials, etc. Highly
relevant examples include color centers in diamond and sil-
icon carbide, where light atoms such as nitrogen or silicon
paired with lattice vacancies form defect centers that can
emit light upon the decay of an excited state. The optical
and spin properties of these defect centers find application
in quantum computing and nanoscale sensing. Locating and
characterizing such defect centers typically relies on optical-
based techniques such as photoluminescence, where the spa-
tial resolution is usually diffraction limited by the wavelength
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of the light, and hence the properties of the defect centers are
typically measured as ensembles. However, ongoing efforts to
improve the performance of both individual and ensembles
of defect centers for quantum information and sensing are
driving the development of new characterization techniques
that aim to achieve higher spatial resolution. Hence the ability
to locate individual occurrences of such point defects with
high precision and to probe their electronic states and their
crystallographic environments with high spatial and energy
resolutions would be immensely valuable to many physicists,
materials scientists, and chemists.

Electron energy loss spectroscopy (EELS) provides a way
to detect point defects via their characteristic spectroscopic
signals, allowing the study both of point defects that emit
light and of those that do not (dark modes). Crucially, EELS
does not require the atomic number of a point defect to
differ greatly from that of the atoms surrounding it, making
this technique applicable to important points defects such
as nitrogen-vacancy (NV) centers in diamond. Using EELS,
point defects have already been located at submicron levels,
like with the characterization of NV concentrations in nan-
odiamonds [10] and reports of poorly understood defects in
BAlN thin films [11]. On the other hand, we expect that the
EELS signal (or any spectroscopic signal) associated with any
individual point defect to be very weak. Moreover, apart from
the weak signals, a grand challenge in detecting individual
point defects via EELS is the degree of spatial delocalization
given by v/ω: since it is inversely proportional to the energy
loss h̄ω, the resolution of spatial mapping becomes poor
(∼10 nm) for the excitation energies of interest (∼1 eV).

Here we analyze the prospects of using STEM-EELS to
locate individual point defects in 3D materials and to probe
their electronic signatures. As case studies, we consider the
negatively charged nitrogen-vacancy (NV−) center in dia-
mond, with a zero-phonon transition energy of ∼1.9 eV, and
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the charge-neutral silicon-vacancy (SiV0) center in diamond,
with a zero-phonon transition energy of ∼1.3 eV. The NV−

center has been studied for half a century [12], but continued
interest is spurred by its relevance as a room-temperature qubit
with well-established readout procedures [13,14]. When the
robust spin coherence of SiV0 is considered alongside ad-
vances in production and initialization [15,16], it also emerges
as a strong candidate for quantum information applications
[17]. Both defects show promise as single-photon emitters to
be used as building blocks in quantum information science,
quantum sensing, and metrology. We use density-functional
theory (DFT) to model the electronic structures of these
defects and apply the resulting wave functions to predict the
corresponding STEM-EELS maps. With this approach, we
are able to compute STEM-EELS maps for different defect
orientations, and we find plane-wave cross sections on the

order of 10−4 Å
2

and feasible spatial localization on the order
of 1 nm. As we will show, the STEM-EELS maps of these
defects can be intuitively understood using a tight-binding
description.

Our paper has the following order. First, we review the
theory of STEM-EELS (Sec. II) and describe our methods
(Sec. III). Then electronic structures are reviewed and spectral
maps are presented for NV− (Sec. IV) and SiV0 (Sec. V).
These results are discussed (Sec. VI) before we conclude.

II. THEORY OF STEM-EELS

We use a Møller potential formalism [18–20] to calculate
the probability of inelastic scattering of STEM beam electrons
which excite a defect center. For a defect electronic transition
ϕ0 → ϕn, the Møller potential (strictly a potential energy) is
given by

Vn(x) = e2
∫

d3x′ ϕ̄n(x′)ϕ0(x′)
|x − x′| . (1)

It is convenient to consider the quantity −eϕ̄nϕ0 as a charge
density, albeit a complex one, which we refer to as the
transition charge:

ρn(x) = −eϕ̄n(x)ϕ0(x). (2)

The Møller potential simply describes the instantaneous
Coulomb interaction between the beam electron and the tran-
sition charge ρn. Note that we are using nonrelativistic theory
in that retardation and magnetic interactions are ignored,
although we do use the relativistic expressions for the mass
and wavelength of the beam electrons when needed.

To calculate the inelastic scattering of beam electrons,
we adopt the projection approximation and assume that the
inelastic scattering is improbable enough that it is accurately
described by a first-order interaction. Under these approxi-
mations, the inelastic scattering can be regarded as taking
place within a plane coinciding with the point defect and
perpendicular to the optic axis ẑ. In this plane, the wave
function describing beam electrons in the nth inelastic channel
is given by

ψn(x) = − i

h̄v
Vn(x)ψ0(x), (3)

where v is the speed of the beam electrons, Vn(x) is the
projected Møller potential defined below, and ψ0 is the wave
function for the elastic channel.

The projected Møller potential is defined as

Vn(x) =
∫ ∞

−∞
dz Vn(x)eiωnz/v, (4)

where h̄ωn is the energy loss. The projected Møller potential
is conveniently calculated via Fourier space

Vn(x) =
∫

d2q
(2π )2

Ṽn(q)eiq·x, (5)

where

Ṽn(q) = − 4πeρ̃n(q)

q2 + ω2
n/v

2
. (6)

In this expression, ρ̃n is the Fourier transform of the projected
transition charge density

ρ̃n(q) =
∫

d2x ρn(x)e−iq·x, (7)

with the projected transition charge density itself being de-
fined by

ρn(x) =
∫ ∞

−∞
dz ρn(x)eiωnz/v. (8)

For STEM-EELS, the elastic wave function ψ0 is that
of a focused beam. The strength of the EELS signal corre-
sponds to the probability that beam electrons will be scattered
inelastically and admitted by the EELS collection aperture
in the diffraction plane. This probability is calculated by
integrating the squared modulus of the Fourier transform of
the inelastic wave function over those wave vectors admitted
by the collection aperture. In general, the inelastic wave
function will undergo elastic scattering from the atoms in the
sample downstream from the defect plane before reaching the
diffraction plane. However, for simplicity we neglect elastic
scattering of the beam electrons and further presume that all
inelastically scattered electrons are collected. The relatively
large inelastic delocalization length v/ω and the consequent
nanometer, rather than atomic-scale, spatial resolution mean
that these simplifications do not significantly affect our con-
clusions in what follows.

III. METHODS

Our DFT calculations were performed using the Vienna
Ab initio Simulation Package (VASP) [21–24]. We used a 4 ×
4 × 4 conventional supercell (43 × 8 − 1 = 511 atoms) with
�-point sampling and a 420-eV cutoff. Projector augmented-
wave pseudopotentials were used [25,26] under the gener-
alized gradient approximation [27]. Excited states were cal-
culated using an occupation constraint, as discussed below.
The pseudized wave functions in this approach match the
all-electron wave functions outside the atomic cores where
the pseudopotentials are deployed, so we expect the wave
functions for the defect states to accurately describe the defect
states as independent electron states, localized as they are in
the vacancy regions.
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FIG. 1. The atomic structure of the NV center in diamond
(carbon atoms are brown, the nitrogen atom is blue, and vacancy
is green). Carbon atoms immediately adjacent to the vacancy are
labeled C1,2,3. (This visualization, as well as the isosurface plots, was
built using VESTA [30]).

We constructed real-space electron wave functions on a 3D
grid using Fourier coefficients extracted via WAVETRANS [28].
The wave functions output by VASP were initially complex
valued but were made real valued by similarity transforma-
tions among degenerate states (see the Appendix). These
symmetrized wave functions were used to compute the real-
space transition charges [Eq. (2)]. Using the 3D transition
charge densities, we calculated the projected transition charge
densities on a 2D grid [Eq. (8)], padded the grid as needed for
convergence, and Fourier transformed the results to construct
the q-space projected Møller potentials [Eq. (6)]. Inverse
Fourier transformation yielded the projected Møller poten-
tials in real space [Eq. (5)]. Since the dielectric function for
diamond is fairly flat for the frequencies of interest [29],
we incorporated screening by dividing the projected Møller
potentials by the static dielectric constant.

IV. THE NV− DEFECT CENTER

This section contains our results for the NV− defect center
in diamond. This defect consists of a substitutional nitrogen
atom immediately adjacent to a carbon vacancy, with the
defect carrying an additional electron, making it negatively
charged. For definiteness we choose the N-V axis to lie along
the [111] crystallographic direction of the (nonprimitive) fcc
diamond unit cell, as in Fig. 1.

A. Electronic structure of NV−

The electronic structure and excited states of the 1.945 eV
transition of the NV− center have been extensively character-
ized, from both the directions of molecular-orbital and group
theoretic analysis [31–33] and of DFT [34–36], with recent
DFT analyses going so far as to incorporate the vibrational
[37–39] and surface [40] effects. Later, we will use DFT wave
functions to calculate the EELS scattering probabilities based
on the theory outlined in Sec. II. But first, we review the
electronic structure of the NV− defect from a tight-binding
perspective. The tight-binding approximation yields results
that are less accurate than those of DFT, but these results give
us physical insights that guide our interpretation.

For the tight-binding description, let c1,2,3 denote the
dangling bond orbitals from the three carbon atoms C1,2,3

immediately adjacent to the vacancy, as labeled in Fig. 1,
and let n denote the dangling bond orbital from the N atom.
Assuming no overlap between dangling bond orbitals, we can
form the following mutually orthogonal symmetry-adapted
orbitals for the C3v point group of the NV− defect:

⎛
⎜⎝

a1(1)
a1(2)

ex

ey

⎞
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⎞
⎟⎠,

(9)
where α denotes the degree of mixing of carbon and nitrogen
dangling bonds and β = √

1 − α2 preserves normalization.
Each symmetry-adapted orbital can have spin up or spin
down. For the NV− defect, these orbitals are populated by six
electrons: three from C1,2,3, two from the nitrogen atom, and
one excess dopant electron that makes the defect charged.

Figure 2 shows the electronic configurations predicted
by DFT [local spin-density approximation (LSDA)] for the
ground state and for the optically allowed excited state of
interest here. Spin-orbit interactions lift the degeneracy of
spin-up and spin-down orbitals, such that the ground state is
populated by an excess of spin-up electrons (similar to Hund’s
rule from atomic theory). The excited state corresponds to
the promotion of an electron from a↓

1 (2) to e↓
x or e↓

y . The
excited state is regarded as containing half-occupied e↓

y and
e↓

y orbitals, which preserves the C3v symmetry. The excitation
preserves electron spin (i.e., there are no spin flips). The
LSDA difference in system energy between the constrained
excited state and ground state is 1.708 eV, which should be
compared with the accepted experimental value of 1.945 eV.
The discrepancy of 0.23 eV is typical of such DFT predic-
tions, and apart from slightly affecting the predicted energy
position of the NV− spectral signature, it does not cause any
substantial inaccuracy in the present work. The relevant DFT
wave functions are also shown in Fig. 2; they qualitatively
resemble the symmetry-adapted orbitals given above.

It is also instructive to use the symmetry-adapted orbitals to
construct the transition charges ēxa1(2) and ēya1(2) and their
associated dipole moments. Assuming for simplicity that the
bond orbitals are completely separated in space, the transition
charges have the following simple approximate forms:

ēxa1(2) ≈ β√
6

(−|c1|2 + |c2|2),

(10)
ēya1(2) ≈ β√

18
(−|c1|2 − |c2|2 + 2|c3|2).

For convenience, we introduce x̂ and ŷ perpendicular to
the [111] N-V axis and ẑ parallel to it: x̂ = 1√

2
[1̄, 1, 0], ŷ =

1√
6
[1̄, 1̄, 2], ẑ = 1√

3
[111]. We then use an ansatz for the dipole

moments p1,2,3 of the dangling bonds |c1,2,3|2, consisting of
parallel component p‖ and a perpendicular component p⊥:

p1,2 = p⊥

(
∓

√
3

2
x̂ − 1

2
ŷ

)
− p‖ẑ,

(11)
p3 = p⊥ŷ − p‖ẑ.
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FIG. 2. Left: The DFT (LSDA) predicted ground and excited states of the NV− defect. Black and gray arrows represent the ground and
excited states, respectively, while solid and dashed arrows denote full and half occupancies, respectively. The ground state has a 3A2 (triplet)
electronic configuration. The optically allowed excited state is the 3E (triplet) configuration resulting from single-electron transitions from
a↓

1 (2) to e↓
x or e↓

y [34]. Right: Isosurface plots of the wave functions involved in the excitation (red is negative; blue is positive), viewed both
along and perpendicular to the [111] N-V axis (carbon atoms are brown, the nitrogen atom is blue, and vacancy is green).

Applying this ansatz to Eq. (10), the transition dipole mo-
ments adopt especially simple forms given by

p(ēxa1(2)) ≈ β√
6

(−p1 + p2) = βp⊥√
2

x̂,

(12)
p(ēya1(2)) ≈ β√

18
(−p1 − p2 + 2p3) = βp⊥√

2
ŷ.

Neither of these dipole moments has a parallel component.
Their forms imply that, in the decay of the excited state to
the ground state, the NV− center emits unpolarized photons
traveling along the N-V axis.

Figure 3 shows the transition charges formed from the DFT
wave functions in Fig. 2. The DFT transition charges show
good correspondence with the tight-binding expressions given

FIG. 3. The two transition charges for the NV− excitation shown
in Fig. 2. Each transition charge is viewed both along and perpendic-
ular to the N-V axis [111], and each has an obvious dipole character
indicative of an optically allowed excitation (cyan is negative; yellow
is positive).

above. Viewed along the [111] N-V axis, the DFT transition
charges possess an obvious dipole character indicative of an
optically allowed transition. From the DFT transition charges
we find βp⊥ ≈ 1.38 Å, which, for comparison, has the same
order of magnitude as that for a hydrogen 1s ↔ 2p transition.

B. Predictions of NV− STEM-EELS maps

Figure 4 demonstrates the calculation of the STEM-EELS
map of NV− viewed along the [111] N-V axis. The transition
charges in Figs. 4(a) and 4(d) are localized to within a few
bond lengths of the defect. By comparison, the Møller poten-
tials Figs. 4(b) and 4(e) extend over about 5 nm, attributable
to the inelastic delocalization at this relatively low energy loss
(∼1 eV). The STEM-EELS maps exhibit a similar degree of
delocalization. It would not be possible to observe the partial
STEM-EELS maps in Figs. 4(c) and 4(f), but only in the total
map shown in Fig. 4(g) [or Fig. 4(h)], which is the sum of
the two partial maps. The total STEM-EELS maps show three
symmetric lobes of higher intensity near the center of the
defect, corresponding to the positions of the three dangling
bonds c1,2,3 adjacent to the vacancy. The total map in Fig. 4(h)
includes the blurring effect of a Gaussian-shaped STEM probe
with 1 Å FWHM.

Figure 5 shows STEM-EELS maps of the NV− center
viewed along three orientations. The three orientations rep-
resent a rotation about the x̂ axis defined above, which lies
horizontal throughout Fig. 5. In each orientation, the lobes of
higher intensity correspond to the dangling bonds c1,2,3, as
seen in the projection. From the maps we conclude that it is
possible in principle to locate the NV− center transversely to
within about 1 nm. An extremely important consideration is
the intensity (scattering probability) obtained in the STEM-
EELS maps. From Fig. 5 we see that the intensity is approxi-
mately 10−6 over an area approximately 1 nm2. Figure 5 also
states the cross sections σ for exciting the NV− center using
an incident electron plane wave. The cross sections are the
integrals of the map intensities, and they provide convenient
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FIG. 4. Calculation of STEM-EELS maps for NV− viewed along the [111] N-V axis. (a)–(c) Projected transition charge, projected Møller
potential, and point-probe STEM-EELS map for transition a↓

1 (2) → e↓
x . (d)–(f) Analogous data for transition a↓

1 (2) → e↓
y . (g) Total point-probe

STEM-EELS map [sum of (c) and (f)] showing threefold rotational symmetry consistent with the C3v point group. (h) Total STEM-EELS map
for Gaussian probe with 1 Å FWHM.

measures of the scattering probabilities. The map intensities
and plane-wave cross sections are greatest when the defect
is viewed along the [111] N-V axis. A detailed discussion of
these points will be presented in Sec. VI.

V. THE SiV0 DEFECT CENTER

This section contains our results for the SiV0 defect center
in diamond. The unusual structure of this defect, shown in
Fig. 6, has been recognized since early DFT studies [41].
Unlike the NV center, where the nitrogen atom is only slightly
shifted from a carbon position in the undefected structure,
SiV0 adopts a split-vacancy configuration with the silicon
atom midway between two vacant sites. This results in a point
group symmetry of D3d , which is related to C3v by a direct
product with the inversion group: D3d = C3v × i.

A. Electronic structure of SiV0

The electronic structure of the SiV0 center has been treated
via quantum chemistry [42] and DFT approaches [43,44].
Experimental work in fully characterizing this defect is still
ongoing, but recent measurements [45] (correcting an earlier
claim [46]) support the identification of the 1.31-eV optically
allowed transition as a 3A2g → 3Eu transition, matching the
DFT prediction [43].

As before, we gain insight into these states from a tight-
binding model. Once again letting c1,2,3 denote the dan-
gling bond orbitals from the three carbon atoms C1,2,3,
we must also include c′

1,2,3 from the three carbon atoms
C′

1,2,3 for this geometry. The full tight-binding treatment
would require mixing with the valence orbitals of silicon,
but previous investigators [44] have found that the defect
states of interest are well described by the carbon orbitals
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FIG. 5. NV− in three orientations. STEM-EELS map for Gaussian probe with 1 Å FWHM, viewed along [111], [110], and [112̄], from left
to right. The green dot marks the position of the vacancy. The inclination with respect to the [111] N-V axis and the corresponding plane-wave
cross section are given in each case.
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FIG. 6. The atomic structure of the SiV center in diamond (car-
bon atoms are brown, the silicon atom is gray, and vacancies are
green). Carbon atoms C1,2,3 are labeled as per the NV center, and
carbon atoms C′

1,2,3 are related to those by inversion about the silicon
atom.

alone:

ag/u
1/2 = 1√

6
[(c1 + c2 + c3) ± (c′

1 + c′
2 + c′

3)],

eg/u
x = 1

2
[(c1 − c2) ± (c′

1 − c′
2)], (13)

eg/u
y = 1√

12
[(c1 + c2 − 2c3) ± (c′

1 + c′
2 − 2c′

3)].

In these expressions, the superscripts g and u denote the
gerade and ungerade states, corresponding to the upper and
lower signs, respectively. Ten electrons occupy these defect
states: six from the carbon orbitals, plus four from the silicon
valence, as illustrated by the leftmost panel of Fig. 7. The pro-
motion of fully occupied eu↓

x and eu↓
y states to half-occupied

eu↓
x /eu↓

y and eg↓
x /eg↓

y states preserves the D3d symmetry and
the electron spin. The DFT prediction for the transition energy
is 1.39 eV, which should be compared with the experimental
value of 1.31 eV. The relevant wave functions pictured on

the right in Fig. 7 qualitatively resemble their tight-binding
counterparts.

The transition described above leads to four separate tran-
sition charges. But if we assume once again for simplicity
that the bonds are separated in space, we find only three
independent transition charges:

ēg
xeu

x ≈ 1

4
(|c1|2 + |c2|2 − |c′

1|2 − |c′
2|2),

ēg
yeu

y ≈ 1

12
(|c1|2 + |c2|2 + 4|c3|2 − |c′

1|2 − |c′
2|2 − 4|c′

3|2),

ēg
xeu

y ≈ ēg
yeu

x ≈
√

3

12
(|c1|2 − |c2|2 − |c′

1|2 + |c′
2|2). (14)

To find the transition dipole moments, we reuse the ansatz
of Eq. (11) with the additional stipulation that the dipole
moments p′

1,2,3 of |c′
1,2,3|2 are related to p1,2,3 by inversion,

i.e., p′
1,2,3 = −p1,2,3. Inserting these expressions into Eq. (10),

we find that the dipole moments of ēg
xeu

x and ēg
yeu

y have compo-
nents along both ŷ and the symmetry axis ẑ, while the dipole
moments of ēg

xeu
y and ēg

yeu
x , equal in this approximation, lie

strictly along x̂:

p
(
ēg

xeu
x

) ≈ (2p1 + 2p2)/4 = −1

2
p⊥ŷ − p‖ẑ,

p
(
ēg

yeu
y

) ≈ (2p1 + 2p2 + 8p3)/12 = 1

2
p⊥ŷ − p‖ẑ, (15)

p
(
ēg

yeu
x

) ≈ p
(
ēg

xeu
y

) ≈
√

3

12
(2p1 − 2p2) = −1

2
p⊥x̂.

Figure 8 shows the transition charges formed from the
DFT wave functions in Fig. 7. As with the NV− transition
charges, there is an obvious dipole nature to these transition
charges when viewed along the [111] Si-V axis. Yet what
is strikingly different for the SiV0 case is that the dipole
character of ēg

xeu
x and ēg

yeu
y is even more pronounced when they

are viewed along [112̄], perpendicular to the symmetry axis.
Using the DFT transition charges, we find p⊥ ≈ 0.920 Å and

FIG. 7. Left: The DFT (LSDA) predicted ground and excited states of the SiV0 defect, with arrow conventions following those of Fig. 2.
The ground state has a 3A2g (triplet) electronic configuration. The optically allowed excited state is the 3Eu (triplet) configuration resulting
from a single-electron transition from eu

x or eu
y to eg

x or eg
y [43]. Right: Isosurface plots of the wave functions involved in the excitation (red is

negative; blue is positive), viewed both along and perpendicular to the SiV defect axis [111] (carbon atoms are brown, the silicon atom is gray,
and vacancy is green).
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FIG. 8. The four transition charges for the SiV0 excitation shown in Fig. 7. Each transition charge is viewed both along and perpendicular
to the SiV defect axis [111], and like the NV− excitation, each has an obvious dipole character indicative of an optically allowed excitation
(cyan is negative; yellow is positive).

p‖ ≈ 0.853 Å, consistent among all the transitions. Again,
these dipole moments have the same order of magnitude as
that for a 1s ↔ 2p transition in hydrogen.

As we discuss below, the fact that p‖ > p⊥/2 is significant
to the character of spectral maps obtained at different orienta-
tions. We also note that the p⊥ calculated for the SiV0 defect
is inconsistent with the p⊥ calculated from the NV− defect,
highlighting the quantitative limitations of the tight-binding
analysis.

B. Predictions of SiV0 STEM-EELS maps

Figure 9 shows STEM-EELS maps for the SiV0 defect
along three orientations. As with the NV− case in Fig. 5, the
maps in Fig. 9 indicate that it is possible in principle to locate
the defect to within about 1 nm. But the SiV0 maps are distinct
from those of the NV− case. At the [111] orientation the SiV0

map exhibits a sixfold rotational symmetry consistent with its
D3d point group. At the [112̄] orientation, the SiV0 map ex-
hibits two vertical lobes along the defect axis arising from the

dipole component along that axis, which is in contrast to the
lobes along x̂ for the NV− case. The SiV0 map intensities and
cross sections tend to be smaller than those for NV−, but the
same order of magnitude. Moreover, as SiV0 is rotated away
from the defect axis, the plane-wave cross section increases,
whereas under the equivalent rotation the plane-wave cross
section for NV− decreases.

VI. DISCUSSION

A key conclusion from the results in Figs. 5 and 9 is
that it is possible in principle to use STEM-EELS to locate
individual defect centers transversely to within about 1 nm.
Such precision is well beyond that permitted by the diffraction
limit in photodetection. We compare this precision to the
recent nanoscale characterization of the NV− charge envi-
ronment by microwave spectroscopy [47], which claimed the
localization of a positive charge to within 2 nm of a NV−

center by inference from orientation-specific measurements,
without the ability to localize the NV− defect itself. The
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FIG. 9. SiV0 in three orientations. STEM-EELS maps for Gaussian probe with 1 Å FWHM, viewed along [111], [110], and [112̄], from
left to right. The green dots mark the position of the split vacancy. The inclination with respect to the [111] defect axis and the corresponding
plane-wave cross sections are given for each case.
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STEM-EELS claim of 1-nm precision is consistent with the
inelastic delocalization v/ω that determines the upper bound
on the impact parameter at which a passing beam electron
can cause an excitation [48]. A precision of 1 nm would also
enable the crystallographic environment of the point defect to
be characterized using STEM imaging.

Another important consideration is whether the scattering
probabilities in Figs. 5 and 9 would allow the detection
of single-defect centers with a beam electron dose that the
sample could tolerate. For the NV− and SiV0 excitations
considered here, the cross sections for 60-keV plane-wave
electrons are in the ranges 1.6–3.2 × 10−4 and 0.7–1.6 ×
10−4 Å

2
, depending on orientation. By comparison, the cross

section for 60-keV plane-wave electrons to excite the C K
shell of a single carbon atom to within a 10-eV energy window
immediately above the ionization threshold (285 eV) is 2 ×
10−5 Å2. Compared with this common core-level excitation,
the NV− and SiV0 cross sections are 5–15 times larger. Given
this comparison and the fact that EELS experiments have
already detected single atoms via their core-level excitations
[9,49,50], our results indicate that detecting single-defect cen-
ters such as NV− and SiV0 with STEM-EELS is within reach.
Recent improvements in electron detection also enhance the
experimental feasibility. It will be important, however, to
minimize, or at least account for, low-loss background scat-
tering processes, such as Cherenkov radiation, which could
potentially mask the identification of the spectral signatures.
It will also be important to use a dose rate of beam electrons
that respects the excitation lifetimes of the defects (∼10–20 ns
for NV− and ∼1 ns for SiV0) so as not to cause significant
multiple excitations which may lead to their ionization.

The specific appearance and symmetries of the STEM-
EELS maps in Figs. 5 and 9 are determined by the nature
of the projected transition charges. Within the tight-binding
approximations of Secs. IV A and V A, the transition charges
for NV− and SiV0 can be written in terms of the dangling car-
bon bonds, so the maps in Figs. 5 and 9 can be interpreted as
representations of these dangling bonds, as seen in projection.

Regarding the dependence of the NV− and SiV0 cross
sections on orientation, we note that the cross section is
determined largely by the transition charges’ dipole moments.
More specifically, partial cross sections are mainly determined
by the component of these dipole moments lying perpendicu-
lar to the beam. For NV−, the cross section is largest at [111]
because at that orientation the dipole moments of ēxa1(2) and
ēya1(2) are both perpendicular to the beam. On rotating from
[111] to [112̄], the relevant component of ēxa1(2) is constant,
but that of ēya1(2) decreases to zero, and hence the NV− cross
section decreases accordingly. The SiV0 case is a bit more
involved: At the [111] orientation, the perpendicular compo-
nents of the four transition dipoles have equal magnitudes of
p⊥/2. On rotating from [111] to [112̄], the relevant dipole
components of ēg

xeu
x and ēg

yeu
y both increase since p‖ > p⊥/2

for this defect. This accounts for the increase in the SiV0 cross
section on rotating from [111] to [112̄].

We note that we have neglected the effect of phonons
on the excitation of defect centers in this work. Phonons
give rise to multiple peaks in excitation spectra, where each
peak corresponds to the creation of a specific number of

phonon quanta within the underlying electronic excitation.
In a photoluminescence spectrum, the zero-phonon line sits
at the upper edge of a sideband of lower-energy photons,
representing the relatively shallower transitions from the zero-
phonon electronic excited state to an n-phonon electronic
ground state. In the EEL spectrum, the sideband will manifest
at energies above the zero-phonon line, representing exci-
tations from the zero-phonon electronic ground state to an
n-phonon electronic excited state. But while luminescence
and excitation are not entirely symmetric (phonon states differ
for the excited and ground electronic states), the work of
Alkauskas and coworkers [38,51] has convinced us that in
either case phonons will spread the spectral intensity across
multiple peaks while having little effect on the total spectral
intensity.

Still, detectability prospects improve when the signal is
confined to a narrow energy range. This is one way that SiV0

might compete alongside NV− as an experimental candidate.
While the luminescence line shape for NV− is contained
mainly within an ∼0.4 eV window [38], at low temperatures
SiV0 emits primarily at its zero-phonon line [52]. However,
these energy ranges may not translate directly to the EEL
spectra. Electrons carry more momentum than photons, so
one should expect more phonons to be created by electron
beams and hence to see a slightly broader energy range in EEL
spectra than in photoluminescence spectra. For unambiguous
detection, one must have both an interaction cross section that
is acceptably large and a spread of spectral intensities over a
range that is acceptably small.

VII. CONCLUSIONS

We used density-functional theory and a Møller potential
scattering formalism to calculate STEM-EELS spectral maps
and plane-wave cross sections for two important defect cen-
ters in bulk diamond, namely, the NV− center and the SiV0

center. The calculations indicate that STEM-EELS should, in
principle, be able to locate individual occurrences of these
defects with a precision of around 1 nm, with plane-wave

scattering cross sections of the order of 10−4 Å
2
. The latter

cross sections are similar to or greater than core-level EELS
cross sections that have already enabled individual atoms to be
located. Similar conclusions are likely to apply to important
optically allowed transitions of other point defects. Thus we
are optimistic that such individual point defects in bulk mate-
rials can be successfully probed using STEM-EELS. Many
advanced materials applications utilize such point defects.
Hence our results indicate that STEM-EELS could become an
extremely valuable tool for the legion of physicists, chemists,
and materials scientists for whom an understanding of the
properties of such point defects is crucial.

APPENDIX: REAL-VALUED DFT WAVE FUNCTIONS

To connect with the tight-binding theory, the DFT wave
functions can be made real valued by transformation. For
nondegenerate wave functions, this requires only multiplica-
tion by an overall phase. But for degenerate wave functions,
a unitary transformation is required, which corresponds to a
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similarity transformation between irreducible representations
(irreps) of the relevant point group. While general approaches
exist for finding similarity transformations between irreps
[53], we have developed a useful simplified approach. Here
we provide details of this approach for the twofold-degenerate
NV− wave functions ex/y which form an E representation of
the C3v group.

The real wave functions ex/y that we seek form the follow-
ing real 2 × 2 irrep of C3v:

E =
(

1 0
0 1

)
, C3 =

(
− 1

2 −
√

3
2√

3
2 − 1

2

)
, C2

3 =
(

− 1
2

√
3

2

−
√

3
2 − 1

2

)
,

σ1 =
(−1 0

0 1

)
, σ2 =

(
1
2

√
3

2√
3

2 − 1
2

)
, σ3 =

(
1
2 −

√
3

2

−
√

3
2 − 1

2

)
,

(A1)

where C3 represents the threefold rotation about the defect
axis and σ1,2,3 represent reflections through the planes defined
by the symmetry axis and the carbon nuclei C1,2,3 of Fig. 1.
The matrix elements of the above representation have the gen-

eral form Mi j = 〈ei|Ô|e j〉, where Ô is a symmetry operation in
the group and i and j take on the values x or y. Likewise, the
matrix elements implied by the DFT wave functions e′

i have
the general form M ′

i j = 〈e′
i|Ô|e′

j〉. To obtain the real-valued
wave functions ex/y we must find a transformation matrix U
such that (

e′′
x

e′′
y

)
= U

(
e′

x
e′

y

)
, (A2)

where e′′
x/y differ from the desired wave functions ex/y at most

by an overall phase, which can easily be corrected at the end
of the procedure. The above U makes a backward similarity
transformation between the M ′ representation and the M
representation of Eq. (A1): M = U †M ′U . Since a similarity
transformation preserves eigenvalues, σ ′

1 must have eigenval-
ues of ±1 corresponding to orthonormal (column) eigenvec-
tors ê±. By construction, the 2 × 2 matrix U = (ê−, δê+) will
satisfy σ1 = U †σ ′

1U for any |δ| = 1. One then can use another
symmetry operator, such as C3 = U †C′

3U , to find a value of δ

that will complete the construction of an appropriate U .
This approach is extended fairly easily to the degenerate

SiV0 wave functions eg
x/y and eu

x/y, for which the relevant point
group is D3d .
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