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Machine learning the density functional theory potential energy surface
for the inorganic halide perovskite CsPbBr3

John C. Thomas ,* Jonathon S. Bechtel, Anirudh Raju Natarajan, and Anton Van der Ven†

Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USA

(Received 27 July 2019; published 2 October 2019)

The temperature and pressure dependence of structural phase transitions determine the structure-functionality
relationships in many technologically important materials. Harmonic Hamiltonians have proven successful in
predicting the vibrational properties of many materials. However, they are inadequate for modeling structural
phase transitions in crystals with potential energy surfaces that are either strongly anharmonic or nonconvex
with respect to collective atomic displacements or homogeneous strains. In this paper we develop a framework
to express highly anharmonic first-principles potential energy surfaces as polynomials of collective cluster
deformations. We further adapt the approach to a nonlinear extension of the cluster expansion formalism through
the use of an artificial neural net model. The machine learning models are trained on a large database of
first-principles calculations and are shown to reproduce the potential energy surface with low error.
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I. INTRODUCTION

Structural phase transitions are widespread among tech-
nologically important materials. Statistical mechanics ap-
proaches based on the quasiharmonic approximation are well
suited to describe the finite temperature thermodynamic prop-
erties of phases that reside at a local minimum of the potential
energy surface (PES) of a particular compound. The harmonic
approximation, however, breaks down for high-temperature
phases whose symmetry coincides with a saddle point on the
PES. These phases only emerge at elevated temperature due
to anharmonic vibrational excitations. A wide variety of high
temperature phases fall in this category. These include the bcc
forms of Ti, Zr, and Hf [1–3], the high temperature cubic form
of ZrO2 [4–6], hydrides such as TiH2 [7] and ZrH2 [8], as well
as many cubic perovskite phases, including halide perovskites
[9–11].

While direct ab initio molecular dynamics simulations can
be used to study the elevated temperature properties of an-
harmonically stabilized phases [12], the computational cost of
density functional theory (DFT) calculations often makes such
an approach intractable. An alternative is to rely on a model
that is capable of accurately interpolating and extrapolating
a limited number of DFT calculated energies within Monte
Carlo or molecular dynamics simulations.

Several methods have been developed to interpolate the
first-principles PES of a compound for the purpose of studying
group/subgroup structural phase transitions [7,8,13–24]. In
the study of group/subgourp structural transitions, the PES
is typically expressed as a function of descriptors of local
atomic structure. It is often convenient to formulate these
descriptors as nonlinear functions of atomic displacements
measured relative to the highest symmetry phase participating
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in the transition. However, a challenge of this approach is to
determine how the PES depends on these descriptors. In par-
ticular, the descriptors must be invariant to rigid translations
and rotations of the crystal, which comprise nontrivial and
highly nonlinear constraints.

Traditional approaches are based upon a Taylor expansion
of the PES in terms of the Cartesian components of atomic dis-
placement vectors. Each term of the Taylor expansion consists
of a constant, which can be treated as an adjustable parameter,
multiplied by a polynomial of the Cartesian components of the
displacement vectors belonging to clusters of sites in the crys-
tal. The harmonic approximation emerges as the lowest-order
truncation of the Taylor expansion and consists exclusively of
terms corresponding to point and pair clusters of sites. Since
polynomials of the components of displacement vectors are
not invariant to rigid translations and rotations of the crystal,
constraints must be imposed on the expansion coefficients,
which become increasingly onerous as the order of truncation
of the Taylor expansion increases.

The anharmonic cluster expansion [8] follows a similar
approach in that it expresses the PES as a sum of terms that de-
pend on deformations of clusters of sites. However, instead of
depending directly on the Cartesian components of displace-
ment vectors, each term corresponding to a cluster of sites
is expressed as a function of collective cluster deformation
coordinates that are formulated to be invariant to translations
and rotations of the cluster from the outset. The PES is then
represented as a linear expansion in terms of polynomials of
the collective cluster deformation variables. In the original
formulation of the method, a prerotation step was required
that relies on the computationally expensive Kabsch algorithm
to determine the collective cluster deformation variables from
the individual displacement vectors of the sites belonging to
each cluster.

The aims of this contribution are twofold. First, we intro-
duce new descriptors of cluster deformations that are invariant
to rigid translations and rotations of clusters of sites and
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FIG. 1. High temperature cubic α phase, intermediate tempera-
ture tetragonal β phase, and low temperature orthorhombic γ phase
of the CsPbBr3 perovskite which is the same phase sequence for
many inorganic halide Cs-based perovskites.

that can be evaluated rapidly without the need to resort to
the Kabsch algorithm. Second, we explore the use of neural
networks to identify the optimal functional dependence of
the PES on the collective cluster deformation variables. As
a model system, we focus on the halide perovskite CsPbBr3,
a representative compound from a very promising family of
chemistries for photovoltaic applications. The perovskite form
of CsPbBr3 undergoes a series of group/subgroup structural
phase transitions involving octahedral tilts as a function of
temperature. At high temperature, CsPbBr3 is stable in the
cubic perovskite crystal structure, denoted α. At 403 K, coop-
erative tilting of PbBr6 octahedra results in a β phase, having
tetragonal symmetry; cooling further, below 361 K, yields
a γ phase, having orthorhombic symmetry [25]. Structural
schematics of the α, β, and γ phases are depicted in Fig. 1.
Since the different phases of inorganic halide perovskites
can be connected by symmetry-lowering displacement modes
from the high temperature cubic phase, it is convenient to
parametrize the energy landscape in terms of distortions of
the cubic reference crystal.

II. METHOD

We start with the anharmonic cluster expansion approach
to representing the PES of a crystal. Within this approach, the
energy of a crystal as a function of atomic displacements �ui

relative to their sites i in a high symmetry reference crystal is
expressed as

E (. . . , �ui, . . . ) = Eo +
∑

α

�α
(
qα

1 , . . . , qα
Nα

)
, (1)

where Eo is the energy of the reference crystal and the
�α (qα

1 , . . . , qα
Nα

) are functions associated with clusters of sites

α. The variables �Qα = (qα
1 , . . . , qα

Nα
) are functions of the

displacements �ui of the sites of the cluster α, and uniquely
describe the degree to which cluster α is distorted relative to
its state in the reference crystal. The deformation variables
�Qα must be invariant to rigid translations and rotations of
the cluster to ensure that the energy of the crystal is itself
invariant to rigid translations and rotations. Both the defor-
mation variables �Qα and the cluster interaction functions �α

are zero in the reference crystal. The clusters that appear in
Eq. (1) usually consist of compact, nonoverlapping multibody
clusters such as tetrahedra or octahedra as well as terms for a
number of longer-range pair clusters.

In the anharmonic cluster expansion of Ref. [8], the cluster
interaction functions �α are expressed as an expansion of
cluster basis functions according to

�α
(
qα

1 , . . . , qα
Nα

) =
∑

m

V α
m φα

m

(
qα

1 , . . . , qα
Nα

)
, (2)

where the φα
m(qα

1 , . . . , qα
Nα

) are polynomials of the elements of
�Qα and are formulated to be invariant to symmetry operations
that map the reference crystal onto itself. The expansion coef-
ficients V α

m are determined by the chemistry of the compound
and can be treated as adjustable parameters to reproduce
DFT energies calculated for a sufficiently large training set
of vibrational excitations relative to the reference crystal. The
requirement that the cluster basis functions φα

m(qα
1 , . . . , qα

Nα
)

are invariant to symmetries of the reference crystal ensures
that the energy of any two distortion fields (. . . , �ui, . . . ) and
(. . . , �u′

i, . . . ) that are related by a symmetry operation of the
reference crystal have the same energy when evaluated with
Eq. (1). Polynomial basis functions φα

m extend to arbitrary
order, but in practice only terms up to order 4 or 6 in terms
of the elements of �Qα are kept.

In the next sections we introduce a set of collective cluster
deformation variables �Qα that uniquely describe deformations
of a cluster α and that are also invariant to any rigid translation
or rotation of the cluster. We then introduce an approach that
relies on neural networks to train cluster interaction functions
�α (qα

1 , . . . , qα
Nα

) that go beyond a linear expansion of cluster
basis functions as in Eq. (2).

A. Collective cluster deformation variables and symmetry
invariant descriptors of deformation

1. Pair distances as measures of cluster deformations

The starting ingredient to construct robust collective cluster
deformation variables is the collection of all pair distances
between the sites of a cluster α. This is motivated by the
following property: Given the set of all distances between
pairs of atoms in a particular deformed cluster α, it is
possible to exactly reconstruct the full geometry of α, to
within a rigid rotation and translation [26]. We introduce
�Dα = (d1, . . . , dl , . . . , dNα

) as comprising the pair distances
dl between sites of a nα-point cluster, where l indexes unique
i, j pairs of sites in the cluster and where Nα is the number of
unique pairs in a nα-point cluster [i.e., Nα = nα (nα − 1)/2].

We are not limited to pair distances in constructing ro-
tationally and translationally invariant deformation metrics
for clusters of atoms. Any smooth monotonic function of
the pair distances that can be inverted to reproduce the pair
distances can also be used to define deformation metrics. We
can thus fully specify the cluster geometry via the vector �Fα =
( f1, . . . , fl , . . . , fNα

), where fl = f (dl ) is such a function. A
simple choice for a deformation metric is the linear function
f (lin)(dl ) = (dl/d̃l − 1), where d̃l is the length of the pair l in
the reference crystal, though other functional forms have their
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FIG. 2. Graphical depictions of the quadratic, logarithmic, and
inverse expressions for the pairwise deformation metric, given by
Eqs. (3–5).

own advantages, such as

f (quad)(dl ) = (
d2

l /d̃2
l − 1

)
/2, (3)

f (log)(dl ) = ln(dl/d̃l ), and (4)

f (inv)(dl ) = (
1 − d̃2

l /d2
l

)
/2. (5)

These functions, which are depicted in Fig. 2, all become
equal to zero in the reference state (i.e., when dl = d̃l ) and
have identical slopes in the vicinity of the reference distance,
thereby being equivalent for very small deformations. How-
ever, the behavior of each function is quite distinct at large
deformations, as dl → 0 or dl → ∞.

2. Collective cluster deformation variables

While the vector �Fα fully determines the deformation state
of the cluster, any linear transformation

�Qα = U �Fα, (6)

where U is a full-rank Nα × Nα matrix, yields a vector �Qα that
also fully describes the cluster deformation state. A suitable
choice for U is motivated by symmetry considerations.

The symmetries of a cluster are described by the cluster
point group, which are the set of rotations and/or reflections,
centered at the cluster, that map the cluster onto itself [27].
For a cluster embedded in a crystal, the cluster point group
must also leave the crystal unchanged, and so the cluster point
group is a subgroup of the crystal space group.

Application of a cluster point group operation ĉ to a
cluster α may permute the sites of the cluster. Formally, if
the reference coordinates of the cluster are columns of the
3 × nα matrix Rα = (�rα

1 | · · · |�rα
nα

), then action of ĉ can be
expressed as

ĉ[Rα] = S(ĉ) Rα + T(ĉ), (7)

where S(ĉ) is an orthogonal 3 × 3 matrix (i.e., rotation, re-
flection, or rotoreflection) and T(ĉ) is a 3 × nα translation
matrix. The effect of a symmetry operation of the cluster on
its reference coordinates is simply to permute the coordinates.

This can equivalently be represented as

ĉ[Rα] = Rα W�(ĉ), (8)

where W(ĉ) is a nα × nα permutation matrix describing the
permutation of the columns of Rα .

Just as a symmetry operation ĉ permutes the coordinates of
the cluster, it also permutes the order of each distinct pair l =
(i, j). The application of a symmetry operation will therefore
reorder the elements of �Fα . This can expressed as

�F ′α = M(F )(ĉ) �Fα, (9)

where �F ′α and �Fα represent two deformations of the reference
cluster that are related to each other by the cluster point group
operation ĉ. The elements of M(F )(ĉ) are given by

M(F )
(i j),(kl )(ĉ) = W(ĉ)ikW(ĉ) jl . (10)

In the above equation we have used the compound indices
(i j) and (kl ) to indicate atomic pairs after and before applica-
tion of symmetry, respectively. The symmetry representation
M(F )(ĉ) is also a permutation matrix that describes the dis-
crete exchange of atomic pairs due to application of symmetry.

By combining Eqs. (6) and (9), we can determine the effect
of the application of ĉ on the collective cluster deformation
variables �Qα according to

ĉ[ �Qα] = U M(F )(ĉ) U−1 �Qα = M(Q)(ĉ) �Qα, (11)

where M(Q)(ĉ) is the matrix representation describing the
action of ĉ on �Qα .

Equation (11) motivates a choice for the matrix U relating
the sought after collective cluster deformation variables �Qα to
the elements of �Fα , which are each individually a function of
a pair distance in the cluster. We will use the matrix U that
simultaneously block diagonalizes all the symmetry matrices
M(Q)(ĉ) of the cluster point group. This choice for U generates
collective cluster deformation variables �Qα that reside in
subspaces that transform under symmetry according to the
irreducible representations of the cluster point group [28]. Not
only does this choice simplify the formulation of polynomials
of the elements of �Qα that are invariant to the symmetry
of the crystal, but it also ensures that the �Qα can serve
as order parameters with which to detect group/subgroup
symmetry breaking transitions [28–30]. The elements of U for
a tetrahedron cluster (assuming cluster point group Td ) and
an octahedron cluster (assuming cluster point group Oh) are
provided in the Supplemental Material [31].

3. Visualizing collective cluster deformations

We can visualize the collective distortions that are activated
upon independently varying a particular CCD component qα

n
by superimposing unit vectors proportional to ∂�rα

i /∂qα
n |qα

m �=n=0

at each site i of the cluster. While these partial derivatives can-
not be calculated directly, they can be obtained by inverting
the Jacobian matrix whose elements are Ji j ( �Rα ) = ∂qα

i /∂rα
j | �Rα

[32]. The inverse of the Jacobian has elements [J−1( �Rα )]i j =
∂�rα

i /∂qα
j | �Qα .

Figure 3 shows the collective deformation modes corre-
sponding to each element of �Qα for a tetrahedron cluster.
There are six such modes, with qα

1 corresponding to volu-
metric (i.e., symmetry-preserving) deformation. The modes
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FIG. 3. Visualization of the six CCDs of a tetrahedron cluster
having Td symmetry.

corresponding to (qα
2 , qα

3 , qα
4 ) belong to the T2 irrep of Td ,

and capture symmetry breaking to trigonal, orthorhombic,
and monoclinic point groups. The modes corresponding to
(qα

5 , qα
6 ) belong to the E irrep of Td , and capture symmetry

breaking to tetragonal and orthorhombic point groups.
Figure 4 shows the collective deformation modes corre-

sponding to each element of �Qα for a six-point octahedron
cluster having Oh point symmetry in its reference state.
There are 15 such modes, with qα

1 and qα
13 corresponding to

volumetric (i.e., symmetry-preserving) deformation. The
modes corresponding to (qα

2 , qα
3 , qα

4 ) belong to the T1u irrep
of Oh. The modes corresponding to (qα

5 , qα
6 ) and (qα

14, qα
15)

belong to the Eg irrep of Oh. The modes corresponding to
(qα

7 , qα
8 , qα

9 ) belong to the T2g irrep of Oh, while the modes
corresponding to (qα

10, qα
11, qα

12) belong to the T2u irrep.

4. Redundancy of cluster deformations parameters

A nonplanar cluster in three dimensions comprising nα

sites has 3nα − 6 deformational degrees of freedom after
removal of the six rigid translational and rotational degrees of
freedom. The dimension of the CCD vector �Qα , in contrast, is
nα (nα − 1)/2. This means that the number of CCD variables
will be greater that the number of independent deformational
degrees of freedom when nα is greater than 4. The realizable
values of the CCDs then reside on a 3nα − 6-dimensional
surface (differentiable manifold) within the nα (nα − 1)/2-
dimensional space spanned by the CCDs. This suggests a
degree of redundancy among the CCD variables, whereby
only 3nα − 6 of the nα (nα − 1)/2 CCD variables are strictly
necessary to characterize the deformation state of the cluster.
While this is generally the case when the CCD variables are
used to track deformations that preserve the topology of the
reference cluster, there are situations where all CCD values
are necessary to precisely reconstruct the geometry of the
deformed cluster.

As an example, the octahedron cluster depicted in Fig. 4
has 15 distinct CCDs but only 12 degrees of freedom. The
CCDs qα

1 and qα
13 are qualitatively similar, as are the pairs of

CCDs (qα
5 , qα

6 ) and (qα
14, qα

15). In addition to having identical
symmetry properties, these paired sets of CCDs also describe

FIG. 4. Visualization of the 15 CCDs of an octahedron cluster
having Oh symmetry.

qualitatively identical deformation modes, as demonstrated by
their visualized deformation trajectories in Fig. 4. The nature
of redundant CCDs is described in more detail in the Ap-
pendix, where a procedure is outlined to identify the most im-
portant CCD variables for topology preserving deformations.

5. Symmetry invariant polynomials of the collective cluster
deformation variables

The collective cluster deformation variables �Qα are con-
structed to be invariant to rigid translations and rotations of
the cluster and have been symmetry adapted such that they
transform according to the irreducible representations of the
cluster point group. The next task is to generate the poly-
nomial basis functions φα

m( �Qα ) appearing in Eq. (2). These
functions are to be invariant to the point group symmetry
of the cluster. Polynomial basis functions that are invariant
to all symmetry operations of a point group that act on the
arguments of the polynomial can be generated algorithmically
using the Reynolds operator. This is described in [8,29]. For
the φα

m basis functions, the approach requires the symmetry
representations M(Q)(ĉ) of each cluster point group symmetry
operation ĉ that acts on �Qα . Symmetry-invariant CCD polyno-
mials for the ideal four-site tetrahedron cluster and the ideal
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six-site octahedron cluster are provided in the Supplemental
Material Ref. [31].

B. Machine learning the potential energy landscape of a crystal

The anharmonic cluster expansion, Eqs. (1) and (2), can
serve to interpolate and extrapolate the energies of a limited
subset of first-principles calculations of different vibrational
excitations of the reference crystal. The adjustable parameters
V α

m that appear in Eq. (2) can be fit to a training set of DFT
energies using a variety of approaches that are commonly
used to parametrize other lattice models such as alloy cluster
expansions [33–36].

An alternative approach, which we pursue here, is to utilize
machine learning techniques to approximate the PES as a
highly nonlinear function of descriptors that measure the
distortion of the reference crystal. We rely on the anharmonic
cluster expansion as a starting point. Descriptors of crystal
distortions must satisfy several invariance relationships. First,
they must be invariant to rigid translations and rotations of
the crystal. Second, they must be invariant to the space group
symmetries of the reference crystal to ensure that symmet-
rically equivalent deformation states of the crystal evaluate
to the same energy. If the descriptors do not satisfy these
constraints, they would need to be learned, necessitating a
much larger training set.

The anharmonic cluster expansion can guide the identi-
fication of suitable descriptors. While the collective cluster
deformation variables �Qα are invariant to rigid translations
and rotations, they are not invariant to the symmetry opera-
tions of the crystal. The polynomial basis functions φα

m( �Qα ),
appearing in Eq. (2), however, are invariant to the symmetry of
the crystal and evaluate to the same value for all symmetrically
equivalent cluster deformations. Since they are a function of
the CCDs, they are also invariant to rigid translations and
rotations. A sufficient number of cluster basis functions φα

m
can therefore serve as a fingerprint for each symmetrically
distinct distortion state of a cluster.

The approach we follow to construct a machine-learned
model of the PES will rely on Eq. (1), but will relax the linear-
ity of the expansion in Eq. (2). Instead of expressing the clus-
ter interaction functions �α as a linear expansion of the cluster
basis functions φα

m, we will train a model that has a nonlinear
dependence on the basis functions {φα

m}, which are themselves
functions of the CCDs �Qα . We will explore two architectures
for this model: a cluster-centric architecture and a site-centric
architecture, relying on artificial neural networks in either case
to approximate the nonlinear functional form of �α .

1. Cluster-based neural net

To set up a cluster-based neural net description of the
PES, we first rewrite Eq. (1) in a manner that exploits the
symmetries of the reference crystal. Many clusters of sites
in the reference crystal are equivalent to each other by a
space group operation of the reference crystal. For a cluster
α, we denote the set of all symmetrically equivalent clusters
by �(α), referred to as the orbit of cluster α. By symmetry,
all clusters belonging to a particular orbit �(α) will have
the same cluster interaction function ��(α). The anharmonic

FIG. 5. Visualization of how (a) site-based and (b) cluster-based
models incorporate site-averaged basis functions or cluster-based
basis functions, respectively.

cluster expansion can then be rewritten as

E (. . . , �ui, . . . ) = Eo +
∑

α

��(α)
(
qα

1 , . . . , qα
Nα

)
. (12)

Importantly, this expression indicates that although a particu-
lar cluster, such as a nearest-neighbor Pb–Pb pair, is repeated
in all directions throughout the crystal, its pair interaction
function can be reduced to a single functional form ��(α) that
is then evaluated locally for each equivalent cluster.

Instead of relying on the linear expansion for
��(α)(qα

1 , . . . , qα
Nα

), we replace it with a neural net that
has as inputs, not the CCDs, but rather a sufficiently large
number of cluster basis functions {φα

m}. The energy expression
can then be written as

E (. . . , �ui, . . . ) = Eo +
∑

α

N�(α)
(
. . . , φα

m, . . .
)
, (13)

where a separate neural net N�(α) approximates the energy
contribution for each distinct cluster orbit. A visual interpre-
tation of the computational graph for a cluster-based neural
net model is depicted in Fig. 5(a).

2. Site-based neural net

An alternative approach to representing the PES is with a
site-centric expression. To this end, we define a site-centric
orbit �i(α) that contains all clusters β that are symmetrically
equivalent to cluster α and that also contain site i. The orbit
�i(α) then contains all clusters emanating from site i that
are symmetrically equivalent to α. In terms of the site-centric
orbits, we can rewrite the linear anharmonic cluster expansion
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as

E (. . . , �u j, . . . ) = Eo +
∑

i

∑
α

∑
m

1

nα

V α
m

∑
β∈�i (α)

φα
m( �Qβ ),

(14)

where the sum over α is restricted to include only one cluster
prototype for each symmetrically distinct cluster orbit. The
outer sum is over all sites i in the crystal, while the innermost
sum accumulates the combined contribution from all clusters
that are equivalent to α and that include site i. The factor
of 1/nα corrects for overcounting due to the fact that the
contribution for an individual cluster appears once for each of
its constituent sites. Equation (14) emerges upon combining
Eqs. (1) and (2) and exploiting the linearity in Eq. (2).

Equation (14) motivates the introduction of site-centric
correlation functions defined as

gi
α,m = 1

nα

∑
β∈�i (α)

φα
m( �Qβ ). (15)

The sum extends over all clusters β that are equivalent to α

by a crystal space group operation and that also include site
i, ensuring that gi

α,m is invariant to the subgroup of the space
group that maps site i onto itself. This property guaranties that
gi

α,m evaluates to the same value for all distortion fields that are
related to each other by a symmetry operation of the reference
crystal. A feature vector �Gi = (gi

α,1, . . . , gi
α,m, . . . , gi

α′,1, . . . ),
formed by the site-centric correlation functions, serves as
an arbitrarily detailed descriptor of the local distortion in
the vicinity of site i. The feature vector can be systemat-
ically improved by increasing the variety and cutoff range
of symmetrically distinct clusters α, α′, etc., constituting the
descriptor, as well as the order of their corresponding basis
functions.

A site-centric neural net description of the PES is thus
formulated in terms of the feature vector �Gi according to

E (. . . , �u j, . . . ) = Eo +
∑

i

N η(i)( �Gi ), (16)

where the total energy of the crystal is a sum over contribu-
tions from each individual site i. η(i) refers to the orbit of all
sites equivalent to site i with respect to the symmetry of the
reference crystal, such that there is a separate neural net N η(i)

for each symmetrically distinct site of the reference crystal.
The site-based neural net model is summarized in Fig. 5(b).

3. Artificial neural network

Whether working in the site-based or cluster-based archi-
tecture, we make use of artificial neural network models that
take as inputs �x (where xi could be either the local-orbit
summed basis functions in the site-based model, or simply
the evaluated basis functions in the cluster-based model) and
output an energy e. Artificial neural networks are hierarchical
recursive functions made up of activation nodes f j , each of
which represents a nonlinear function f at node j. A one-layer
neural net produces output e from inputs x as follows:

e = b(1) +
∑

j

w
(1)
j f j

(
b(0)

j +
∑

k

xkW
(0)

k j

)
, (17)

where b(1) is a bias term associated with the first layer, and
b(0)

j are bias terms associated with the input layer into node

j of the first hidden layer. W (0)
k j represents the weight matrix

connecting the input layer to the first hidden layer, and w
(1)
j

is the weight matrix connecting the hidden layer to the output
layer. The model variables are the weights and biases which
are trained through optimization techniques described below.
The activation function f j can take several forms including the
hyperbolic tangent, rectified linear unit, or logistic function. In
this study we use the hyperbolic tangent exclusively.

4. Objective function

In order to train the neural network model, we must
minimize a convex objective function. Here we choose an
objective function that penalizes the sum of the squares of the
differences in model energies and those calculated with DFT
for a large number of different vibrational excitations:


 =
∑

σ

[EANN(σ ) − EDFT(σ )]2, (18)

where σ denotes different vibrational excitations. The ob-
jective function is minimized with respect to the weights of
the neural network. Many optimization algorithms exist to
optimize the weights of the network function. We employed
the Adam algorithm in this study [37,38].

III. POTENTIAL ENERGY SURFACE OF HALIDE
PEROVSKITES

In this section we develop a neural network model of the
potential energy surface of CsPbBr3, a compound belonging
to a class of promising perovskite based materials for elec-
tronic and photovoltaic applications. CsPbBr3 undergoes a
series of group/subgroup structural phase transitions upon
cooling. At high temperature, CsPbBr3 is stable in a cubic
perovskite crystal structure, but transitions to tetragonal and
orthorhombic symmetries at lower temperatures due to tilting
of the PbBr3 octahedra. As with many halide perovskites, the
cubic and tetragonal forms of perovskite CsPbBr3 correspond
to saddle points on the potential energy surface of the com-
pound [39]. These phases only emerge at finite temperature
due to large scale anharmonic vibrational excitations.

A. DFT

Density functional theory calculations were performed us-
ing the Vienna ab initio simulation package (VASP) [40,41].
A plane wave basis set with an energy cutoff of 400 eV was
employed and projector augmented wave psuedopotentials
(PAW) [40,42]. The GGA-PBEsol functional was used to
approximate electron correlation and exchange [43]. Energies
were converged to within 1 meV/atom with respect to k-point
density and a 6 × 6 × 6 
-centered k-point mesh was used for
the CsPbBr3 unit cell. The VESTA program suite was used to
visualize crystal structures.

B. Training set

The training set is a critical component in a machine
learning problem. The resulting model is only as good as the
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FIG. 6. (a) Distribution of energies for all configurations in the
database. (b) All data is split into a training set and test set. The
training set is further subdivided into ten training folds and ten
validation folds for use in hyperparameter tuning.

training set. Each element of the training set, corresponding to
the energy of a particular state of strain and a particular set of
atomic displacements relative to the high symmetry reference
state, will be referred to as a configuration σ . The most im-
portant regions of the PES include the potential energy wells
in which the ground state structure resides. Therefore, much
effort was made to sample configurations near the ground
state structure along with the structures associated with the
intermediate tetragonal phase and the high temperature cubic
phase.

Sampling the PES was done in several ways. The starting
point began with the geometric relaxation of the 15 tilt sys-
tems as previously described in [39]. For each of these relaxed
structures, systematic displacement enumerations were made
in terms of symmetry-adapted displacement modes, i.e., the
displacement fields that block diagonalize the crystal sym-
metry representation. The same supercell (2 × 2 × 2) was
used for all of the tilt systems to avoid numerical errors
incurred when using differing k-point grids. Systematic strain
enumerations were also included on the primitive perovskite
structure, and the irreducible wedge of each subspace was
sampled in the volume 1 cell. In addition to systematic enu-
merations, stochastic sampling of strains and displacements
were made to generate more configurations. The strain and
displacement fields were chosen at random from an n sphere,
and the correlations were compared to existing configurations
to ensure uniqueness, i.e., that a very similar structure was not
already included in the database. Also interpolations between
structures were used for example between the three experi-
mentally observed phases. In total, 31 000 configurations were
calculated. Figure 6(a) shows a histogram of all energies in
the DFT dataset relative to the energy of the cubic perovskite
reference structure.

C. Hyperparameter tuning and model training

Training high-quality neural network models requires the
selection of optimal model hyperparameters specifying the
network architecture (i.e., number and connectivity of nodes)
and number of input descriptors. We used k-fold cross vali-
dation to determine which set of hyperparameters best gen-
eralize to holdout sets of model validation data. This process

is similar to model selection approaches in alloy cluster ex-
pansions, where a set of cluster basis functions are chosen to
minimize a cross-validation metric. Due to the large number
of input descriptors in an anharmonic cluster expansion, we
restrict ourselves to five sets of clusters: (1) 4 pairs + 1
octahedron, (2) 5 pairs + 1 octahedron, (3) 8 pairs + 1
octahedron, (4) 4 pairs + 1 triplet + 1 octahedron, and (5)
7 pairs + 1 triplet + 1 octahedron. The covalent bonding
within the octahedra of CsPbBr3 motivated the inclusion of an
octahedral cluster. For each cluster in the model, we tested two
groups of cluster basis functions to serve as input features: one
included all cluster basis functions of the CCDs up to second
order and another included all basis functions up to fourth
order. Additionally, we tested several network architectures by
varying the number of hidden layers and the number of nodes
per hidden layer, resulting in 400 unique hyperparameter sets.

Given a hyperparameter set, training the weights and biases
in a neural net requires an optimization scheme [37]. We
employed a batch training strategy with batch sizes of 2, 10,
100, and 1000 with at least 1000 training epochs per batch
size. The Adam optimizer was used to update model weights
and biases such that the least squares error of Eq. (18) was
minimized.

Validation and training sets were used to find ANN hy-
perparameters that resulted in the most generalizable models
with the smallest error. The total data set was split into a
training set (80% of data) and a test set (20% of data). The
test set was kept removed from any training iterations such
that it remained an unbiased evaluator of model performance.
k-fold cross validation with ten folds was used to find the
optimal hyperparameters (number of nodes, layers, and input
features in the ANN model). A model was trained on 90%
of the training dataset and a cross-validation error (CV) was
evaluated on the remaining 10%. This procedure is repeated
ten times leaving a different fold of the training dataset out
each time. The schematic in Fig. 6(b) depicts how the DFT
dataset was partitioned for model training and validation.

D. Optimal hyperparameters

Figure 7 displays the training results for the best perform-
ing set of hyperparameters. This set consists of basis functions
generated from seven pairs, one triplet, and one octahedral
cluster as pictured in Fig. 7(a). Four other combinations of
clusters were tested, but it was found that including more
clusters, and especially including the triplet cluster, resulted
in more robust models. The neural net training results are
displayed in Fig. 7 for the cluster-based model [Fig. 7(b)]
and the site-based model [Fig. 7(c)]. For each model, input
features up to order 2 or order 4 basis functions were tested
[rows of Figs. 7(b) and 7(c)] as well as number of hidden
layers [columns of Figs. 7(b) and 7(c)].

The site-based and cluster-based models perform similarly
with several key differences. First, the cluster-based models
generalize better to the validation set with smaller valida-
tion errors among all tested models. However, the site-based
models achieve smaller errors on the training folds. Large
differences between the training error and the validation error
indicate that the models tend to overfit the training data and
generalize poorly. The order 2 cluster-based model with one
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FIG. 7. (a) Clusters used in final model which includes seven pairs, one triplet, and one octahedron. Results of tenfold cross validation
for (b) cluster-based model and (c) site-based model. Training and validation (CV) average RMSE is plotted with error bars of 1 standard
deviation. In (b) and (c), left columns indicate one hidden layer while right columns indicate two hidden layers and top rows indicate second
order models while the bottom row indicates fourth order models.

hidden layer performed the best in terms of generalizability
with both the smallest validation error and the smallest differ-
ence between the training and validation errors. In particular
the order-2 cluster-based model with one hidden layer and
eight nodes per hidden layer had the smallest validation error
among all models and was therefore chosen as the best model
according to the cross validation scheme.

E. ANN fit evaluation

After finding the optimal hyperparameters for our model
[shown with the black circle on Fig. 7(b) indicating the order
2 cluster-based model with one hidden layer of eight nodes],
we retrained the model on the full training set and calculated
the error on the holdout set as shown in Figs. 8(a) and 8(b).
The training and test RMSE were similar to those found in the
hyperparameter tuning as expected. Additionally, we inves-
tigated the distribution of errors for different energy regions
as shown in Fig. 8(b). Interestingly, the model performs best
for the lowest energy configurations, meaning that it faithfully
reproduces the important ground state structures.

Figure 9 shows how the model reproduces the DFT po-
tential energy surface along important paths in the space
of atomic deformations. Figure 9(a) shows the energy as
a function of a linear interpolation between the cubic (α),
tetragonal (β), and orthorhombic (γ ) phases of perovskite
CsPbBr3. Also shown is the energy of the crystal as a function
of (b) in-phase octahedral tilt-mode amplitude, applied to the
ideal cubic structure, (c) volumetric strain deformations of
the crystal lattice, and (d) antiphase octahedral tilt ampli-
tude, applied to the ideal cubic structure. In all cases, the
model predictions align well with the DFT energy surface.
Furthermore, the model PES tends to be relatively smooth.
The results for this simple model indicate that neural networks
can reliably reproduce the potential energy surface of complex
compounds such as CsPbBr3, especially in the region of low
energy configurations.

IV. DISCUSSION

A large variety of compounds adopt phases at high tem-
perature that have symmetries coinciding with a saddle point

FIG. 8. Fitting statistics for one layer second order cluster-based model with eight hidden nodes per layer. (a) ANN energy vs DFT energy
shows that both training and test set show similar average error. (b) Distribution of errors for lowest 125 meV configurations binned into
25 meV bins. The red and green dashed lines indicate the RMSE over the entire test and training set, respectively. Low energy configurations
show very low error.
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FIG. 9. Model and DFT energies as a function of (a) a linear
interpolation of experimentally observed phases, (b) in-phase tilts,
(c) volume, and (d) antiphase tilts. In all cases, the ANN PES aligns
well with the DFT energy surface.

on a 0 K potential energy surface (PES). Crystal symmetries
corresponding to a saddle point of the PES are dynamically
unstable at low temperature but can become stable at high
temperature through large anharmonic vibrational excitations.
Phonon theories based on the harmonic approximation are
unable to describe the high temperature thermodynamic prop-
erties of anharmonically stabilized phases. Instead, Monte
Carlo or molecular dynamics simulations must be used to nu-
merically perform thermodynamic averages over vibrational
microstates sampled at high temperature. Direct simulation
approaches, however, require a model of the energy of the
crystal as a function of the atomic displacement and lattice
strain degrees of freedom.

Mapping the atomic coordinates of a solid to reproduce
a first-principles energy landscape is a challenging, high-
dimensional supervised learning problem that requires care-
ful consideration of many aspects of the machine learning
pipeline, including feature engineering, model training, and
model selection. High quality input features are an essential
ingredient of any machine-learned model. In this study we
have introduced collective cluster deformation (CCD) vari-
ables that uniquely describe the deformation of a particular
cluster within the crystal relative to its geometry in a high
symmetry reference state. Because the CCDs are symmetry-
adapted functions of the set of all pair distances within

the cluster, any model that is a function of these variables
is inherently invariant to rigid-body rotation or translation
of the crystal. Although they are defined relative to an
undeformed high-symmetry crystal, the CCDs are not them-
selves invariant to the symmetry of this reference crystal. As
such, the feature vector forming the input layer of the neural
net is constructed from symmetry-invariant polynomials of
the CCD variables, thus ensuring that the learned model is
invariant to these additional crystal symmetries. Taken to-
gether, these properties specify features that are particularly
well suited to machine learning PES models for compounds
that undergo group/subgroup structural transformations, in
which the high symmetry phase is often stabilized at high tem-
perature by large, anharmonic vibrational excitations. More-
over, the CCDs are themselves useful descriptors of local
structure that have potential applications in high-throughput
crystallographic data-mining frameworks, such as recently
described workflows for characterizing local coordination en-
vironments [44].

The model selection methodology described here showed
that low order basis functions tended to result in more gener-
alizable models, with low error on holdout test sets. Higher
order descriptor functions, as well as deeper (more layers)
and wider (more nodes) neural nets, tended to overfit the
training data resulting in poorly generalized models. The low
training error of the more complex models indicates that the
descriptors provide adequate information for models to learn
the DFT energy surface, and motivate further studies focusing
on reducing overfitting using techniques such as dropout or
weight decay.

Two approaches were introduced in this study, one based
on a cluster-centric neural net architecture and the other
based on a site-centric architecture. The cluster-based models
are direct generalizations of previous anharmonic vibrational
cluster expansion models as introduced by Thomas and Van
der Ven [8]. The current work extends the linear models in
[8] by allowing the functional form of the cluster energy to
be learned by the machine learning model. The site-based
model using cluster basis functions is an extension to vibra-
tional energy of the site-based neural-net approach introduced
by Natarajan and Van der Ven for modeling configurational
energy [45]. One benefit of the site-based model is that it
allows interaction terms between basis functions from differ-
ent clusters, which may explain the lower error achieved by
the site-based model. The site-based model has some similar-
ities to other descriptor-based machine learning approaches
where descriptors are written in terms of exponentials of pair
distances and bond angles [15,46]. A key difference of the
approach introduced here, however, is that it is specifically
designed to represent the energy of a crystal relative to a
high symmetry reference crystal, making it especially suited
for studies of group/subgroup structural transitions and the
thermodynamics of anharmonically stabilized phases. The
reliance on descriptors that are invariant to the symmetries of
the high symmetry reference phase ensures that symmetries
are automatically satisfied.

The models presented here differ from other recently
described machine-learned potential models [15,18–22,24]
in that they are built from neural networks and features
that encode the connectivity of the reference crystal. For
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this reason, the CCD-based approach yields a very accurate
anharmonic potential energy surface utilizing significantly
fewer features and ANN weights than methods that are not
referenced to a high-symmetry crystal structure. The CCD
models presented here are well suited to describing large but
connectivity-preserving deformations of the reference crystal,
such as occur during the reversible phase transformations
observed in CsPbBr3 and other halide perovskites; however,
the fact that the crystal connectivity is “built-in” to their
functional form prevents these models from describing events
that change the connectivity of the crystal, such as decohesion,
mass transport, or plastic deformation. This distinction in
transferability and complexity between the two approaches is
a classic manifestation of the bias-variance tradeoff that is a
universal challenge in developing predictive models [47].

Both the site-based and cluster-based models presented
here were trained on a dataset of DFT-calculated deformation
energies, yielding models that reproduce the energetics of
crystal deformation with high accuracy. These models are thus
well adapted to simulation frameworks, such as traditional
Monte Carlo methods, that predict thermodynamic equations
of state by directly probing the energy density of states. How-
ever, models trained on energy data alone may underperform
in predicting stresses and/or atomic forces, and are therefore
less well suited for use in simulation frameworks, such as
molecular dynamics, that evolve the equations of motion
of the crystal. Models used in such simulation frameworks
should thus incorporate force data in their training set.

Although the CCD-based models predict deformation en-
ergies with low validation error, the interaction range of
the models is quite short, extending only to the third-
nearest neighbor. This suggests that interatomic interactions
in CsPbBr3 are largely local in nature. Nevertheless, the CCD-
based models cannot directly account for long-range Coulomb
effects, which can alter the energy of long-wavelength de-
formation modes near 
. While the magnitude of this and
other truncation effects would require a detailed comparison
of model-derived phonon dispersion to the first-principles
phonon dispersion, any discrepancies could be addressed
either by adding CCDs for longer-range pair clusters to the
feature vector or by correcting for dipole-dipole interactions,
which follow well-known functional forms [48]. However, be-
cause long-range interactions influence the phonon dispersion
in only a small neighborhood of the Brillouin zone near 
, the
differences in the phonon density of states (and, consequently,
the vibrational free energies) will nevertheless be quite small.

V. CONCLUSIONS

The development of anharmonic vibrational Hamiltonians
is a challenging problem. However, by making use of machine
learning techniques it is possible to capture a high degree
of complexity that is present in the DFT energy landscape.
We have presented a framework that utilizes neural-network
models to reproduce the DFT energy landscape with high
accuracy in the vicinity of a high-symmetry reference crys-
tal. To construct features for the neural-network model we
introduced collective-cluster-deformation variables, which are
descriptive and easy-to-calculate functions of local geometry
that are invariant to rigid-body transformations. The use of

machine learning models is appealing because it removes
much of the manual selection of terms in a Hamiltonian.
Instead, the functional forms are learned through the train-
ing process. However, machine learning models, especially
nonlinear neural networks have a tendency to overfit the
training data, and, therefore, hyperparameter tuning must be
carefully considered. The next step in the progression of ma-
chine learning Hamiltonians is their use in finite temperature
thermodynamics simulations, which is a natural extension of
the work presented here.
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APPENDIX: IDENTIFYING DEFORMATION
COORDINATES FOR DIMENSIONALITY REDUCTION

A nα-atom nonplanar cluster has 3nα − 6 deformational
degrees of freedom in three dimensions (after removal of
rigid translation and rotation) and has Nα = nα (nα − 1)/2
pair distances. For nα > 4, the number of pair distances
exceeds the number of cluster degrees of freedom, such
that any realizable deformation vector �Fα must be confined
to a 3nα − 6-dimensional surface. In the vicinity of the
undeformed cluster, coordinates on this cluster deformation
surface can be projected uniquely into a (3nα − 6)-
dimensional linear subspace, and a point in the subspace
can be described by a truncated 3nα − 6-element vector of
optimized CCDs, which we denote �Q�α .

A simple linear approximation of the cluster deforma-
tion surface can be computed from the matrix image of the
Jacobian J �F ( �Rα ). However, a more robust set of linearized
coordinates can be obtained by accounting for the fact that
the pairwise deformation metrics are correlated for small
deformations of the cluster. We define a correlation matrix
G(F ) whose elements are the overlap, or similarity, between
the deformation metrics of two pairs within the cluster. The
elements of G(F ) are computed as inner products over the
space of functions of the cluster coordinates, such that

G(F )
m,n = 〈 fm, fn〉 =

∫
�Rα

d3Nα �Rα [p( �Rα ) fm( �Rα ) fn( �Rα )], (A1)

where p( �Rα ) is a probability density over all possible geome-
tries of cluster α, and the integral is taken over the entire
configuration space of �Rα . A simple choice of p( �Rα ) is a 3nα-
dimensional multivariate normal distribution, centered at the
coordinates of the undeformed reference cluster and having
an isotropic variance σ 2. This definition allows an analytic
expression for Eq. (A1) for many choices of deformation
metric. Physically motivated choices of the standard deviation
σ are in the range of 10%–25% of the nearest-neighbor pair
distance for the crystal under consideration.

134101-10



MACHINE LEARNING THE DENSITY FUNCTIONAL … PHYSICAL REVIEW B 100, 134101 (2019)

The correlation matrix G(F ) can be used to identify an opti-
mized coordinate transformation from �Fα to �Q�α . For a given
change of basis �Qα = U �Fα , the corresponding transformation
that takes G(F ) to G(Q) is

G(Q) = U−� G(F ) U−1. (A2)

The elements of G(Q) measure the correlation between indi-
vidual components of �Qα over p( �Rα ). If the transformation
U is chosen appropriately, the correlation matrix G(Q) will be
the identity matrix, meaning that individual CCDs have unit
variance and are uncorrelated over p( �Rα ). This occurs when

U = G(F )1/2 = �1/2 V�, (A3)

where � is a diagonal matrix of the eigenvalues of G(F ) and V
is an orthogonal matrix of the eigenvectors of G(F ). Each row
i of U corresponds to a linear combination of the components
of �Fα that yield a particular CCD value. The U transformation
matrices are provided in the Supplemental Material for both a
four-point tetrahedron and six-point octahedron cluster having
maximal symmetry [31].

The transformation matrix U, as defined in Eq. (A3), is
optimal in several ways. First, the original correlation matrix
G(F ) is invariant to symmetry in the sense that

ĉ[G(F )] = M(F )(ĉ) G(F ) M(F )�(ĉ) = G(F ), (A4)

where ĉ is an operation in the point group of cluster α.
This invariance relation is due to the fact that symmetrically
equivalent pairs of pair-deformation metrics have identical
correlation. It is well known that if a symmetric matrix, such
as G(F ), is invariant to a group representation [e.g., M(F )(ĉ)],
then any transformation that diagonalizes G(F ) also block
diagonalizes the symmetry matrices M(F )(ĉ). This means that
the resulting CCD vector space Q is naturally separable into
invariant subspaces, and that, under ideal circumstances, the
invariant subspaces of Q will correspond to irreducible repre-
sentations of the cluster point group. To this end, eigenvectors
of G(F ) having the same eigenvalue correspond to CCDs
that are within the same invariant subspace. Moreover, if
the eigenvalues of G(F ) are ordered from largest to smallest,
there are spectral gaps between irreducible subspaces, with the
largest gap occurring between the first 3nα − 6 eigenvalues of
G(F ) and the remaining eigenvalues. This gap occurs due to
an underlying difference in behavior between directions with
respect to the cluster deformation surface in the vicinity of the
reference cluster. The first 3nα − 6 directions approximately
follow the cluster deformation surface, and so they have much
larger variance than the remaining directions, which are nearly
orthogonal to the cluster deformation surface. The truncated
CCD vector �Q�α then corresponds to the first 3nα − 6 ele-
ments of the CCD vector obtained from the transformation
matrix in Eq. (A3).
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