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Charge nonconservation of molecular devices in the presence of a nonlocal potential
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In the presence of a nonlocal potential in molecular device systems, generally the charge conservation cannot
be satisfied, and in the literature the modifications of the conventional definition of current were given to
solve this problem. We demonstrate that, however, the nonconservation is not due to the invalidation of the
conventional definition of current, but originates respectively from the improper approximations to electron-
electron interactions and the inappropriate definition of current using pseudo wave functions in pseudopotential
implementations. In this work, we propose a nonlocal-potential formulation of the interactions to fulfill the
charge conservation and also give a discussion about the calculation of current when the pseudopotential
is involved. As an example of application of our formulation, we further present the calculated results of a
double-barrier model.
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I. INTRODUCTION

Over the past few decades, investigations on transport
properties of mesoscopic systems and nanostructures have
been extensively reported both on experimental advances
[1–13] and theoretical explorations [14–27]. It is widely ac-
knowledged that these functional devices can be constituted
by ultrasmall conjugated molecules, single-layer or multilayer
nanotubes, bulk organic molecules, etc., and plenty of interest-
ing phenomena such as molecular field effects [1], Coulomb
blockade [2], negative differential resistance [3], and conduc-
tance switching effects [4] have been revealed, which exhibit
fundamental significance and potential microelectronic appli-
cations. In most of the works, considerable research efforts
are focused on current-voltage (I-V ) characteristics as the I-V
profiles provide opportunities for a deeper understanding of,
e.g., the basic mechanism and structure properties, as well
as promising guidance for future molecular nanoelectronics
designs and manipulations.

On the theoretical side, calculations for the I-V character-
istics of molecular device systems are mostly performed by
employing the self-consistent field (SCF) theory or nonequi-
librium Green’s functions combined with density functional
theory (NEGF-DFT) [18–20], and the widely used DFT
calculations at present can be vested in the SCF method.
In comparison with conventional SCF [28–30], in addi-
tion to self-consistent Hartree potential DFT introduces the
exchange-correlation potential, which is nonlocal if one wants
to go beyond the local-density approximation [31]. It has
been shown that if the Hamiltonian H includes a general
nonlocal potential V (r, r′), an extra term naturally appears in
the continuity equation and the charge conservation will not
be fulfilled [24,25,32,33]. Thus the calculations may give very
incorrect results, even nonphysical results.
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To resolve the problem, Li et al. [32] proposed a scheme
to modify the conventional definition of current density to in-
clude the additional current induced by the nonlocal potential
V (r, r′), and therefore yield the charge conservation in a com-
putationally efficacious way. However, either local or nonlocal
exchange-correlation potential stems from the approximation
to electron-electron interactions, and according to the con-
ventional definition of current density we will demonstrate
fundamentally that with the Hamiltonian including the exact
electron-electron interactions the extra term does not appear
and the conservation can be precisely satisfied. Hence the
problem of charge nonconservation coming from the nonlo-
cal exchange-correlation potential should not be settled by
redefining the current density. Instead, it has to be resolved
by finding a reasonable nonlocal-potential approximation to
the electron-electron interactions to eliminate the extra term.
On the other hand, norm-conserving pseudopotentials [34]
are generally utilized to reduce the size of plane-wave basis
sets in first-principles calculations, which is another origin of
the nonlocal potential [35]. Nevertheless, the pseudopotential
implementations give the pseudo wave functions, while in
the continuity equation ∂tρ + ∇ · J = 0 the charge density ρ

and the current density J should be calculated by using the
true wave functions instead of the pseudo ones. Therefore,
when the pseudopotential method is employed, the extra term
appearing in the continuity equation is due to the improper
utilization of the pseudo wave functions for calculating the
current, and the problem of charge nonconservation coming
from the nonlocal pseudopotential should not be resolved
by redefining the current density either. From a fundamental
point of view, the continuity equation is a criterion regardless
of any approximations brought in as long as the particles of
the system are conserved, which can be easily proved with
the original Hamiltonian. It is the purpose of this work to
investigate the above problems.

The paper is organized as follows. In Sec. II, the origins
of the nonlocal potential and the consequent issues of charge
nonconservation are discussed. We lay special emphasis on
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the nonlocal exchange-correlation potential from the starting
point of second quantization, and subsequently demonstrate
that in DFT calculations the nonconservation is caused by
the inappropriate definition of current using pseudo wave
functions rather than the introduction of the pseudopotentials.
As an example, the currents of a double-barrier model are nu-
merically calculated in Sec. III to confirm our theoretical for-
mulation. Section IV gives the conclusions and discussions.

II. THEORETICAL FORMULATION

In the context of first-principles calculations, if one uses
true wave functions ψ (r) of the system from the very be-
ginning throughout the processes, the continuity equation
∂tρc + ∇ · Jc = 0 can be easily realized according to the
Schrödinger equation, where ρc = |ψ (r)|2 is the conventional
electron density and Jc is the conventional current density in
the absence of magnetic field with the definition as

Jc = −ih̄

2m
[ψ∗(r)∇ψ (r) − ψ (r)∇ψ∗(r)]. (1)

One of the origins of the charge nonconservation comes from
the approximation to electron-electron interactions, i.e., some
improper exchange-correlation potentials are introduced. We
will show that according to the conventional definition of
current density, the conservation is still satisfied in the pres-
ence of the interactions, but generally can be violated by
introducing the nonlocal exchange-correlation potentials. To
see this, the simplest case of Hamiltonian of a finite many-
electron system is considered, in which the electron-electron
interactions are not taken into account first so that the second
quantized nonrelativistic Hamiltonian (a quantity with a caret
symbol denotes an operator) is

Ĥ0 = T̂s + Ûex, (2)

where in terms of the field operators �̂†(r, t ) and �̂(r, t ),
the single-particle kinetic energy operator and the external
potential operator can be written respectively as [36,37]

T̂s = −h̄2

2m

∫
dr�̂†(r, t )∇2�̂(r, t ), (3)

and

Ûex =
∫

dr�̂†(r, t )v(r, t )�̂(r, t ). (4)

The density operator can be defined as n̂(r, t ) =
�̂†(r, t )�̂(r, t ) and the current density operator as the
conventional form is

Ĵc(r, t ) = −ih̄

2m
[�̂†(r, t )∇�̂(r, t ) − [∇�̂†(r, t )]�̂(r, t )],

(5)

by means of Heisenberg’s equation and the anticommutation
relation that we obtain

∂ n̂(r, t )

∂t
= 1

ih̄
[n̂(r, t ), Ĥ0]

= ih̄

2m
[�̂†(r, t )∇2�̂(r, t )−[∇2�̂†(r, t )]�̂(r, t )]

= − ∇ · Ĵc(r, t ), (6)

where the charge conservation is accomplished, as expected.
The corresponding Hamiltonian including the interactions can
be written as

Ĥw = T̂s + Ûex + Ŵ , (7)

where

Ŵ =
∫

dr′′dr′w(|r′ − r′′|)�̂†(r′)�̂†(r′′)�̂(r′′)�̂(r′). (8)

Since the foregoing equations present the continuity with
respect to T̂s and Ûex, only the interaction operator is taken
into account hereafter, i.e.,

[n̂(r, t ),Ŵ ]

=
[
�̂†(r, t )�̂(r, t ),

∫
dr′′dr′w(|r′ − r′′|)�̂†(r′, t )

× �̂†(r′′, t )�̂(r′′, t )�̂(r′, t )

]

=
∫

dr′′dr′w(|r′ − r′′|)

× [�̂†(r, t )δ(r − r′)�̂†(r′′, t )�̂(r′′, t )�̂(r′, t )

− �̂†(r, t )�̂†(r′, t )δ(r − r′′)�̂(r′′, t )�̂(r′, t )

+ �̂†(r′, t )�̂†(r′′, t )δ(r − r′′)�̂(r′, t )�̂(r, t )

− �̂†(r′, t )�̂†(r′′, t )�̂(r′′, t )δ(r − r′)�̂(r, t )] = 0, (9)

indicating that the density operator n̂ is commutable with
the interaction Hamiltonian Ĥw, and hence the continuity
equation (6) is still satisfied when the interaction is involved.
In fact, the conventional definition of current and particle
densities are widely used in time-dependent current-density
functional theory (TDCDFT), and the continuity equation is
frequently utilized as a constraint condition between the two
densities [38–41].

Next, we replace the electron-electron interaction Ŵ by a
local potential and a nonlocal exchange-correlation potential.
Since the local potential can be absorbed by the external-field
potential Ûex, and the interaction Ŵ can be replaced only by
nonlocal exchange-correlation potential V̂xc, the Hamiltonian
Ĥw is approximated (see Appendix A) as

Ĥw = Ĥ0 + V̂xc, (10)

where

V̂xc =
∫

drdr′Vxc(r′, r)�̂†(r′, t )�̂(r, t ). (11)

After some calculations we reach

[n̂(r, t ), V̂xc]

=
[
�̂†(r)�̂(r),

∫
dr′′dr′Vxc(r′′, r′)�̂†(r′′, t )�̂(r′, t )

]

=
∫

dr′′dr′�̂†(r, t )Vxc(r′′, r′)δ(r − r′′)�̂(r′, t )

−
∫

dr′′dr′Vxc(r′′, r)�̂†(r′′, t )δ(r − r′)�̂(r, t )

=
∫

dr′�̂†(r, t )Vxc(r, r′)�̂(r′, t )

−
∫

dr′′�̂†(r′′, t )Vxc(r′′, r)�̂(r, t ) �= 0, (12)
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where the continuity condition in Eq. (6) is no longer satisfied,
and it contains an extra term

n̂nl (r, t ) = 1

ih̄

∫
dr′[�̂†(r, t )Vxc(r, r′)�̂(r′, t )

− �̂†(r′, t )Vxc(r′, r)�̂(r, t )], (13)

i.e.,

∂ n̂(r, t )

∂t
+ ∇ · Ĵc(r, t ) = n̂nl (r, t ). (14)

Thus far an inference can be drawn that the charge non-
conservation is not due to the invalidation of the conventional
definition of current density, but originates from the improper
approximations to electron-electron interactions, and a rea-
sonable nonlocal potential arising from the interactions should
make the extra term be zero. This is the central conclusion
of this work, and the task of resolving the problem is to
find such a “no-current” nonlocal potential. Now, we take a
mean-field approximation to the electron-electron interactions
and rewrite the potential energy as

Ŵ =
∫

drdr′ �
†(r)�†(r′)�(r′)�(r)

|r − r′|

≈
∫

dr�†(r)

[∫
dr′ 〈�†(r′)�(r′)〉

|r − r′|
]
�(r)

−
∫

drdr′�†(r)
〈�†(r′)�(r)〉

|r − r′| �(r′)

=
∫

dr�†(r)UH (r)�(r)

+
∫

drdr′�†(r)Uxc(r′, r)�(r′), (15)

where 〈. . .〉 represents the ensemble statistical average,

UH (r) =
∫

dr′ 〈�†(r′)�(r′)〉
|r − r′| , (16)

and

Uxc(r, r′) = −〈�†(r′)�(r)〉
|r − r′| . (17)

Therefore we have obtained our nonlocal exchange-
correlation potential. Introducing an auxiliary variable F̂ as

F̂ (r) = 1

ih̄

∫
dr′[Uxc(r, r′)�

†
(r)�(r′)

− Uxc(r′, r)�†(r′)�(r)], (18)

and similarly we have

∂ n̂(r, t )

∂t
+ ∇ · Ĵc(r, t ) = F̂ (r), (19)

where an extra term is still contained in the meaning of op-
erator. However, after taking the ensemble statistical average
[42] of F̂ (r), we can obtain

〈F̂ (r)〉 = 1

ih̄

∫
dr′[Uxc(r, r′)〈�†(r)�(r′)〉

− Uxc(r′, r)〈�†(r′)�(r)〉]

= 1

ih̄

∫
dr′

[ 〈�†(r′)�(r)〉
|r − r′| 〈�†(r)�(r′)〉

− 〈�†(r)�(r′)〉
|r − r′| 〈�†(r′)�(r)〉

]
= 0, (20)

i.e.,

∂〈n̂(r, t )〉
∂t

+ ∇ · 〈Ĵc(r, t )〉 = 0, (21)

which indicates that in the meaning of statistical average the
conservation can be again fulfilled. This result is quite satis-
factory, because an observable quantity is a statistical-average
one. One may find that the nonlocal exchange-correlation
potential in Eq. (17) is similar to the Fock term of the
Hartree-Fock approximation. In the case of zero temperature,
this proposed nonlocal exchange-correlation potential is just
the Fock term, and in other cases they are different. Normal
Hartree-Fock approximation is only applicable to the ground
state, while Eq. (17) can be used in nonequilibrium states.

Another origin of the nonconservation is the inappropri-
ate definition of current density in pseudopotential imple-
mentations. In fact, the nonconservation is not induced by
introducing the pseudopotential, but is that in the conven-
tional definition the particle and current densities are calcu-
lated inappropriately by using the pseudo wave function (see
Appendix B). Note that in practical calculations, the strict
pseudopotential would be somewhat difficult to be used due
to the explicit energy dependence, and approximate model
pseudopotentials are often introduced instead. As shown in
Eq. (B6), the nonlocal part of the pseudopotential comes from
the core wave functions, which is confined in a small core
region surrounding the atom, and the true and pseudo wave
functions are identical outside this small region [34,43]. Thus
the additional current induced by the nonlocal pseudopotential
is localized in the core of the atom, and its contribution to the
transport current can be neglected.

III. NUMERICAL IMPLEMENTATION

To illustrate the theoretical formulation proposed above,
we consider a quasi-one-dimensional double-barrier model
confined transversely to simulate the device system, as shown
in Fig. 1. The nonlocal potential is placed only in the region
between −a and a, and the barriers can be regarded as part of
two ideal leads without nonlocal potentials.

We imagine a central region C (the dashed-line box) that
encloses both the core device and the barriers, and the total

FIG. 1. Schematic view of the transversely confined double-
barrier model. The dashed-line box C is a hypothetical region includ-
ing the core device and part of two ideal leads, and L/R symbolize
the rest of the leads.
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Hamiltonian for this model can be written as

Ĥtot = Ĥ0 + V̂H + V̂xc, (22)

where Ĥ0 = −h̄2

2m ∇2 + U0 with U0 the local potential within the
barriers, V̂H is the Hartree potential and V̂xc is the exchange-
correlation potential: 〈r|V̂xc|ψ〉 = ∫

Vxc(r, r′)ψ (r′)dr′. We
simplify the potential in Eqs. (16) and (17) to the form of one
dimension as

VH (x) =
∫ ∑

k

v(x, x′)|ψk (x′)|2dx′, (23)

and

Vxc(x, x′) = −
∑

k

v(x, x′)ψ∗
k (x)ψk (x′), (24)

where ψk (x) is the longitudinal wave function, and

v(x, x′) =
∫

ρ1dρ1

∫
ρ2dρ2

∫
dϕ

2π

× ϕ2(ρ1)ϕ2(ρ2)√
ρ2

1 + ρ2
2 − 2ρ1ρ2 cos ϕ + (x − x′)2

, (25)

which is averaged over the transverse wave functions
[44]. A single transverse wave function ϕ(ρ) =
1/

√
2π l2 exp (−ρ2/4l2) is chosen universally, and a

transverse radius 2l characterizes the size of the confinement.
To proceed, we first solve the energy eigenequation of
the double-barrier model with only local potential U0 and
numerically calculate the wave functions ψ (x), thus the
corresponding Hartree potential VH and exchange-correlation
potential Vxc of the central region can be constructed from the
wave functions by using Eqs. (23) and (24). Then we return to
the calculation of the wave functions ψ (x), and self-consistent
calculations are performed using the iterative procedure in
the numerical implementation. In general, once all the wave
functions with eigenenergies below the Fermi energy EF are
known, we can obtain the current density at all points. When
the system is under applied bias, the Fermi levels in the left
and right leads are taken respectively as EF + eV and EF ,

where EF is the Fermi level in the equilibrium state and V is
the bias, i.e., the sums in Eqs. (23) and (24) are up to EF + eV
and EF respectively for left-incident and right-incident modes
of the functions. The energy unit h̄2/2ma2 is used throughout
the calculations as a reduced coefficient, where a is the width
of the barrier, m is the mass of the electron. The Fermi energy
here is set as EF = 1.0, and the magnitude of the barriers is
fixed to be U0 = 6.0. In addition, all the calculations are pre-
formed in low-temperature limit, i.e., the temperature T = 0.

We first study the influences of a model nonlocal potential
and our proposed potential in Eq. (17) on the particle currents,
respectively. The nonlocal potential is nonzero when x is from
−1 to 1, and the barriers are located in [−2,−1] and [1, 2].
The model nonlocal potential here is chosen as V (x, x′) =
λ exp [η(x − x′)2], where λ and η are two independent coef-
ficients. In Fig. 2, we present the calculated currents of left-
incoming electrons with a fixed energy E = 0.8 and below the
Fermi energy EF , respectively. Here, both the conventional
particle current and additional current are given, and the
additional currents coming from nonlocal potential V (x, x′)

FIG. 2. Conventional particle current Ic (left column) and addi-
tional current Iad (right column) are along the x direction. Panels
(a) and (b) are the currents of single-particle with energy E = 0.8
for the model nonlocal potential V (x, x′); (c) and (d) are the currents
of single-particle with energy E = 0.8 for our proposed nonlocal
potential; (e) and (f) are the total currents of all the particles below
the Fermi energy EF calculated with our proposed nonlocal potential
(red dash-dot line) and the model nonlocal potential (blue dash line).
The vertical dash lines at x = −2 and x = 2 mark the contact regions.
Here, λ = 0.009, η = 0.01, and the width of the barriers is 1.0.

are calculated by

Iad (x) = −1

ih̄

∫ x

−1
dx′′

∫ 1

−1
dx′ ∑

k

[ψ∗
k (x′′)V (x′′, x′)ψk (x′)

− ψ∗
k (x′)V (x′, x′′)ψk (x′′)].

From Figs. 2(a) to 2(d), one can see that for a single particle
with the fixed energy the left and right lead currents hold to be
constant, while in the central region the currents turn out to be
varying with x, and the additional currents from the nonlocal
potential are nonzero for both the model potential and our pro-
posed potential. It means that in the case of a single particle,
the lead currents and the central current calculated with the
proposed nonlocal potential behave similarly to that obtained
by using the model nonlocal potential, which also violates the
conservation. However, Figs. 2(e) and 2(f) show that when
currents of all incoming electrons below the Fermi energy EF

are considered, in the case of the model nonlocal potential
the conventional current still violates the continuity condition
due to the nonzero additional current, while the conventional
currents calculated with the proposed nonlocal potential are
seen to be conservative in the whole simulation region and the
corresponding additional current vanishes. Moreover, particle
currents in all the three regions serve as a minor correction to
the ones with Hartree potential only (see Fig. 3).

Figure 4 plots the dependence of the electric current on the
selection of each region. The width of the barriers are fixed
as the above while the whole central region is changeable,
and the nonlocal potential is absent therein. As we shall see,
when the core region is chosen as small as x = [−0.2, 0.2],
it exhibits a sublinear relation between the current I and the
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FIG. 3. Comparison of the particle currents for each region.
The case that involves the proposed nonlocal exchange-correlation
potential Vxc (dash-dot line) is somewhat a correction to the one that
only considers the Hartree potential VH (solid line).

voltage V , which is similar to that of a general single-barrier
model, and the scattering effect in the central box vanishes.
With the increases of the width as x = [−0.5, 0.5] and x =
[−1.0, 1.0], the curves shift downwards gradually and finally
become nonlinear ones, indicating that careful considerations
on relevant area selection must be taken into actual systems to
ensure the computational accuracy.

In Fig. 5, we present the I-V characteristics of different
sites along the x axis when the above model nonlocal potential
V (x, x′) is included. Currents of x = 0, x = 0.5, and x = 2.0
differ mutually, as expected, which implies that currents in
the central region and the leads calculated with the model
nonlocal potential cannot meet the charge conservation. We
further explore the contrastive characteristics with our approx-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

Voltage

E
le

ct
ri

c 
C

u
rr

en
t

x=[−0.2, 0.2]
x=[−0.5, 0.5]
x=[−1.0, 1.0]

FIG. 4. Dependence of the electric currents on the selection of
the central region. Nonlocal potential is not included, and the width
and magnitude of the barriers are both fixed.
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FIG. 5. Current properties of different sites of the system with
the model nonlocal potential V (x, x′). The central region is fixed to
be x = [−1, 1], and the barriers are located in x = [−2,−1] and x =
[1, 2]. Discrepancies of the currents for all three positions enlarge
with the increasing voltage.

imation. From Fig. 6, one can see that when only Hartree po-
tential VH is taken into account, currents of the three sites are
equal to each other with the increase of the voltage, while the
whole of the curve bears an upward shift when the proposed
exchange-correlation potential Vxc is also considered, and the
currents obtained can be still conservative.

IV. CONCLUSIONS AND DISCUSSIONS

In summary, it is of great importance to give correct
dynamic charge and potential distributions of the transport
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FIG. 6. I-V characteristics of different sites for (1) with only
Hartree potential VH , and (2) with both the Hartree potential VH

and the nonlocal exchange-correlation potential Vxc. The currents ob-
tained from the proposed formalism satisfy the charge conservation.
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systems, which is the key point for the valid currents and
prospective applications of molecular devices. Once we are
able to calculate the current strictly according to the origi-
nal Hamiltonian including electron-electron interactions, the
problems of charge nonconservation induced by nonlocal
potential would not exist, and the results are undoubtedly rea-
sonable. However, it is impossible to obtain rigorous solutions
under such intricate interactions. We demonstrate these issues
and attest that the nonconservation stems respectively from
the improper approximations to electron-electron interactions
and the inappropriate definition of current using pseudo wave
functions in pseudopotential implementations, and propose
a nonlocal-potential formulation of the interactions to fulfill
the conservation in the meaning of statistical average, as
well as give a verification about the calculation of current in
the presence of pseudopotentials. With this method, we have
also studied a double-barrier model to simulate the molecular
device system, which further confirms our formulation.
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APPENDIX A

Here, we will attempt to give the second quantized form
of the nonlocal potential. According to common methods, the
wave function ψ can be expanded in terms of a complete basis
set ϕm as

ψ (r, t ) =
∑

m

cm(t )ϕm(r), (A1)

where cm is a coefficient independent of r. Substituting the
above wave function into the following Schrödinger equation,
which includes the nonlocal potential Vxc(r, r′),

ih̄
∂

∂t
ψ (r, t ) = H0ψ (r, t ) +

∫
dr′Vxc(r, r′)ψ (r′, t ), (A2)

we have

ih̄ċm(t ) =
∑

n

H0mncn(t ) +
∑

n

Vmncn(t ), (A3)

where

H0 = −h̄2

2m
∇2 + v(r, t ), (A4)

H0mn =
∫

drdr′ϕ∗
m(r)H0ϕn(r′), (A5)

and

Vmn =
∫

drdr′ϕ∗
m(r)Vxc(r, r′)ϕn(r′) (A6)

is the matrix elements of Vxc(r, r′). Similarly, the field opera-
tor is

�̂(r, t ) =
∑

n

ϕn(r)ân(t ), (A7)

with

ân(t ) =
∫

drϕ∗
n (r, t )�̂(r, t ), (A8)

where â†
n (ân) is the creation (annihilation) operator. There-

fore, we obtain the second quantized form of the nonlocal
potential as

V̂xc =
∑
mn

Vmn(t )â†
m(t )ân(t )

=
∫

drdr′ ∑
mn

Vmn(t )ϕ∗
n (r, t )ϕm(r′, t )�̂†(r′, t )�̂(r, t )

=
∫

drdr′Vxc(r′, r)�̂†(r′, t )�̂(r, t ). (A9)

APPENDIX B

Pseudopotentials were originally introduced to simplify
electronic structure calculations by adding some core func-
tions to the true wave function ψ (r) to obtain a smooth pseudo
wave function [45–47]

ψ (r) = φ(r) −
∑

n

〈ψn|φ〉ψn(r), (B1)

where φ(r) is the pseudo wave function and ψn(r) is the core
function, and the general form of the pseudopotential (only its
nonlocal part) is

Vnl =
∑

n

(E − En)|ψn〉〈ψn|, (B2)

from which we obtain∑
n

|ψn〉〈ψn| = (E − H0)−1Vnl = GVnl , (B3)

where G = (E − H0)−1 is Green’s function, and H0 is the
original Hamiltonian. The true wave function can then be
denoted by

ψ (r) = 〈r|ψ〉 = 〈r|φ〉 − 〈r|GVnl |φ〉

= φ(r) −
∫

dr′′
∫

dr′〈r|G|r′〉〈r′|Vnl |r′′〉〈r′′|φ〉

= φ(r) −
∫

dr′dr′′G(r, r′)Vnl (r′, r′′)φ(r′′). (B4)

Therefore, the corresponding Schrödinger equation for the
pseudo wave function is

H0φ(r) +
∫

dr′Vnl (r, r′)φ(r′) = Eφ(r), (B5)

where

Vnl (r, r′) =
∑

n

(E − En)ψn(r)ψ∗
n (r′)

= (E − H0)
∑

n

ψn(r)ψ∗
n (r′). (B6)

It is easy to verify that the conventionally defined current
density J = −ih̄

2m [φ∗(r)∇φ(r) − φ(r)∇φ∗(r)] along with the
obtained pseudo electron density ρps = |φ(r)|2 do not meet
the charge conservation. Nevertheless, this nonconservation is
not caused by introducing the pseudopotential, but is that the
above definition of current density cannot be used with the
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pseudo wave function φ(r). The correct current density must
be defined by using the true wave function ψ (r). According
to the definition Jr = −ih̄

2m [ψ∗(r)∇ψ (r) − ψ (r)∇ψ∗(r)], we
get

Jr = Jps + Jnl , (B7)

where

Jps = −ih̄

2m
[φ∗(r)∇φ(r) − φ(r)∇φ∗(r)], (B8)

and

Jnl = ih̄

2m
[φ∗(r)∇�(r)+�(r)∇φ∗(r)

− �∗(r)∇�(r)−c.c.]. (B9)

Here, �(r) = ∫
dr′dr′′G(r, r′)Vnl (r′, r′′)φ(r′′). On the basis

of Eq. (B5), in steady states we can easily give ∇ · Jps =
−∇ · Jnl , which verifies the conservation with the definition
of current density in Eq. (B7).
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