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Electrical plasmon injection in double-layer graphene heterostructures
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It is by now well established that high-quality graphene enables a gate-tunable low-loss plasmonic platform for
the efficient confinement, enhancement, and manipulation of optical fields spanning a broad range of frequencies,
from the midinfrared to the terahertz domain. While all-electrical detection of graphene plasmons has been
demonstrated, electrical plasmon injection, which is crucial to operate nanoplasmonic devices without the
encumbrance of a far-field optical apparatus, remains elusive. In this work, we present a theory of electrical
plasmon injection in double-layer graphene, where a vertical tunnel current excites acoustic and optical plasmon
modes. We first calculate the power delivered by the applied interlayer voltage bias into these collective modes.
We then show that this system works also as a spectrally resolved molecular sensor.
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I. INTRODUCTION

Recent years have seen rapid progress in the fabrication
of van der Waals heterostructures [1] comprising graphene,
hexagonal boron nitride (hBN), and other two-dimensional
(2D) crystals. These advances have stimulated a large number
of theoretical and experimental studies of the optoelectronic
properties of these materials and their heterostructures [2–5].
A great deal of work has been focused on graphene plasmons,
which, in high-quality sheets encapsulated between hBN crys-
tals, have shown truly tantalizing properties [2–5]. In view of
such properties, it is not hard at all to envision the realization
in the near-future of a 2D plasmonic platform where plasmon
injection, propagation, and detection occur in the complete
absence of far-field light and is instead achieved via purely
electrical methods.

While all-electrical graphene plasmon detection has been
recently demonstrated in both the midinfrared [6] and the ter-
ahertz [7] spectral ranges, electrical plasmon injection (EPI)
remains elusive. A promising route to achieve EPI is offered
by a tunnel current between two graphene sheets separated by
a thin insulating barrier. Plasmon emission by tunnel currents
has been demonstrated in metal-semiconductor interfaces
[8,9], degenerate semiconductors [10], and metal-insulator-
metal tunnel junctions [11] and between metallic tips and
surfaces [12]. Early experiments focused on the spectroscopic
signatures of plasmon excitations in the tunnel current [13].
Later, plasmon excitations were shown [11] to couple the tun-
nel current to propagating electromagnetic modes, achieving
light emission from tunnel junctions.

Recent spectroscopy studies of graphene layers [14] and
graphene-based heterostructures [15,16] have demonstrated
the existence of electron-plasmon interactions and phonon-
and magnon-assisted tunneling, respectively. These studies
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suggest that the goal of EPI is within reach and motivate a
thorough theoretical investigation of the phenomenon.

In this work, we theoretically study the problem of EPI via
a tunnel current. We consider the double-layer heterostructure
depicted in Fig. 1, comprising two graphene sheets encap-
sulated by hBN, on an SiO2 substrate. The semi-infinite
space above the heterostructure consists of either vacuum
or a toy-model molecular material with a simple absorption
spectrum. The graphene double-layer supports electronic col-
lective modes [17] (“optical” and “acoustic” plasmons), which
hybridize with the optical phonon polaritons of hBN and
the molecular excitations. An external source applies a bias
voltage to the two graphene sheets and generates a tunnel
current, which feeds the collective modes of the system. We
calculate the power delivered by the tunnel current to the
collective modes as the bias voltage is varied, showing that
the system works both as a plasmon source and as a spectrally
resolved molecular sensor.

The paper is organized as follows. In Sec. II we outline
our theoretical formulation, which includes (i) the quantum
mechanical description of the tunneling electrons, (ii) the
dielectric functions of the various layers, and (iii) the method
to calculate the electric field distribution in the double-layer
heterostructure. In Sec. III we report analytical expressions
for the collective modes of the graphene double-layer, i.e., the
optical and acoustic plasmons, and for the graphene double-
layer coupled to a molecular layer, i.e., a molecular polariton.
The results of our numerical calculations are discussed in
Sec. IV and compared to the analytical expressions. Finally,
in Sec. V we draw our main conclusions.

II. THEORETICAL FORMULATION

A. Theories of plasmon injection by a tunnel current

The calculation of the elastic tunnel current between metal-
lic surfaces separated by a thin insulating layer was first con-
sidered by Bardeen in a seminal paper [18] which introduced
the fundamental concepts that later evolved into the so-called
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FIG. 1. Schematic of the double-layer graphene heterostructure
studied in this work. Two graphene sheets lying in the planes z = zGB

and z = zGT, represented as layers with thickness δ (gray regions), are
encapsulated by hBN (green regions) extending from zIB to zIT above
a semi-infinite SiO2 substrate (yellow region). The thickness of the
bottom, middle, and top hBN layers is dB, d , and dT, respectively.
The top semispace z > zIT is filled with vacuum or a model molecular
material (hatched). An electric bias voltage Vb is maintained between
the bottom and the top graphene layers by an external source.
Because of the bias voltage, electrons tunnel from the top to the
bottom layer, establishing a tunnel current and inducing electric
dipolar charges ρ(z) (red and blue circles), oscillating at an angular
frequency ω, which couple to the traveling electric field (orange line)
of the collective modes of the double-layer heterostructure.

“transfer-Hamiltonian” method [19]. This method was soon
adapted to take into account inelastic tunneling [20], i.e., the
interaction of tunneling electrons with impurities and col-
lective electronic excitations localized around the insulating
layer. This approach was successfully applied to the case of
surface plasmons at metal-semiconductor interfaces as well
[21,22].

Notwithstanding these early successes, the transfer-
Hamiltonian method was the object of several critiques, be-
cause a rigorous assessment of its range of validity was miss-
ing [23]. The two most criticized points of the theory were
the perturbative treatment of the tunneling operator and the
precise specification of the “initial” and “final” single-particle
wave functions involved in the tunneling process. The lack
of general agreement on the range of validity of the transfer-
Hamiltonian method stimulated several alternative, although
related, approaches [24–26] to treat elastic and inelastic tunnel
currents.

The theories mentioned above were motivated by experi-
ments using the tunnel current as a spectroscopic tool [13].
The existence of plasmon modes (or of other kind of exci-
tations) localized around the insulating layer was taken into
account by these theories in the form of inelastic tunneling
channels, affecting the tunneling rate and the density of
states and, hence, the current-voltage characteristics. After
the experimental demonstration of light emission from tun-
nel junctions [11], however, more work was devoted to the
relation between the tunnel current and the intensity of the
emitted radiation. The tunnel current excites plasmon modes
at the interfaces, which subsequently couple to propagating
electromagnetic modes. The energy-momentum mismatch be-
tween plasmon and propagating modes is overcome if the
surfaces are sufficiently rough. Different plasmon modes at

the interface have different roles in this two-step process,
coupling more to the tunnel current (“slow” modes) or to the
photonic modes (“fast” modes).

First, a theory by Davis [27] explained the light emission
from tunnel junctions in terms of the classical coupling be-
tween the tunnel current and the electric field of the slow-
mode plasmon at the interface. Then, using the transfer-
Hamiltonian method, it was proposed [28,29] that random
fluctuations of the tunnel current drive the slow mode in
the insulating layer. Based on this concept, Laks and Mills
[30,31] formulated a fruitful theory that allowed, in particular,
discussion of the role of the slow and fast plasmon modes in
the light-emission process. Later, the theory of Laks and Mills
was used to study light emission in the more complicated ge-
ometry of a scanning tunneling microscope tip in the vicinity
of a surface [32,33].

Very recently, the process of plasmon emission by a tunnel
current between graphene sheets was studied in Refs. [34] and
[35]. Both these works are developed around the concept that
tunneling is driven by electron-electron interactions between
graphene’s carriers. In Ref. [34], plasmon excitations are en-
coded in the pole structure of the density-density polarization
function of the graphene double-layer, which is calculated
and related to the tunnel current. Reference [35], instead,
uses an effective interaction, obtained as the electric potential
produced by an external charge screened by the graphene
sheets, treated as conductors with finite conductivity. It has
also been noted that a graphene double-layer could act as
a gain medium for plasmons, due to the back action that
the emitted plasmons exert onto the tunnel current between
graphene sheets [36,37]. Plasmon emission by a tunnel current
between a metallic tip and a graphene sheet has also been
discussed [38].

In this work, we chose to follow the theoretical approach
introduced by Davis [27], which consists of the following
steps: (i) calculate the stationary wave function of the tunnel-
ing electrons; (ii) derive an electronic charge density, oscil-
lating in a dipolar fashion between the two graphene sheets;
and (iii) solve the Poisson equation for the electric field in
the heterostructure, using the charge density calculated in the
previous step as the source term. Two features set this method
apart from other approaches [34,35]. First, there is no notion
of an effective interaction between electrons and plasmons,
as is common to calculations based on a transfer-Hamiltonian
formulation. The advantage is that our approach circumvents
the need for a perturbative expansion in the strength of the
light-matter interaction. Second, the dipolar oscillations of
the electronic charge density are purely due to the quantum
interference between the stationary wave functions of the
tunneling electrons. In this way, the method separates the
calculation of the power delivered to the collective modes
from the calculation of the back action of the electric field
on the tunnel current density, which was performed elsewhere
[34,35].

In the following sections, we provide the elements of the
theory which are needed to take steps (i)–(iii) outlined above.

B. Tunneling-induced dipoles

Let us first consider the calculation of the wave function
of electrons tunneling in the graphene double-layer. Along
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the z direction, the electric potential U (z) experienced by an
electron is (i) constant for z < zGB and z > zGT; (ii) linearly
varying in the interval zGB < z < zGT because of the bias volt-
age, ranging from U (z → zGB) = −eVb/2 to U (z → zGT) =
eVb/2 (where e is the absolute value of the electron charge);
and (iii) singular at the positions of the graphene sheets,
represented as a negative Dirac delta function with amplitude
2[h̄2Wb/(2meff )]1/2, where meff is the electronic effective mass
and Wb is the work function of graphene in hBN. Since the
electron wave function is essentially localized around the
graphene double-layer, we neglect the interfaces z = zIB and
z = zIT. The electron wave function in the heterostructure can
be written in the product form

ψ (r, z; t ) = χ (z)eiq·re−iεt/h̄, (1)

where r (q) is a position vector (wave vector) in the graphene
plane and the envelope wave function χ (z) is normalized such
that

∫
dz|χ (z)|2 = 1. The Schrödinger equation can be easily

solved by separation of variables, using a linear combination
of exponentials and Airy functions, and matching boundary
conditions at the discontinuities of the potential. (A detailed
account of this calculation can be found in Ref. [37].) One
obtains two bound states, |i〉 and |f〉, with envelope wave func-
tions χi(z) and χf (z) and energies εi > εf . In this calculation,
we neglect the kinetic energy due to the in-plane motion (i.e.,
the band dispersion) and other details of the electron wave
function of single-layer graphene such as the pseudospin, as
well as Fermi statistics.

The crucial step in our approach is to recognize that the
electronic system is open, in the sense that it is connected to an
external source which injects and extracts electrons. For this
reason, electrons do not persist indefinitely in an eigenstate
of the Hamiltonian but occupy, in general, states which are
coherent superpositions of the two eigenstates. The general
electronic wave function then reads

�(r, z; t ) = αiχi(z)eiqi·re−iεit/h̄ + αfχf (z)eiqf ·re−iεf t/h̄. (2)

This wave function describes the electronic state until a quan-
tum jump takes place, realizing a tunneling event from the
initial state |i〉 to the final state |f〉. Uncorrelated tunneling
events build up the total tunnel current between the two
graphene layers. The quantum dissipative dynamics respon-
sible for the quantum jump could be modeled with a quantum
master equation [39], with a Lindblad term describing the
action of the external source in terms of electron extraction
from the upper layer and electron injection into the bottom
layer. In this work, we leave the precise form of the dissipative
dynamics unspecified because, for what follows, the values
of the coefficients αi,f are not important and it is sufficient
to absorb the product α∗

f αi into the definition of an effective
density n̄t of tunneling electrons. We point out that Eq. (2)
represents a pure state, but the result of the quantum master
equation is in general a density matrix ρ̂. In this case, the
role of the product α∗

f αi is played by the “coherence” 〈f|ρ̂|i〉.
Finally, we note that, since we neglect the band dispersion, the
wave vectors qi,f are unrelated.

The charge density derived from the wave function,
(2), is ρ(r, z; t ) = −en̄t|�(r, z; t )|2. Upon expanding the
squared modulus, one finds two stationary parts, proportional
to |χi,f (z)|2, and two parts oscillating with the transition

FIG. 2. (a) Envelope wave functions χi (z) (solid line) and χf (z)
(dashed line) of the electronic wave functions, for Vb = −1.0 V.
Dotted vertical lines represent the positions of the two graphene
sheets. The large bias voltage produces a substantial localization
of the two wave functions in the top and bottom graphene sheets,
respectively. (b) Electron charge density ρ(z) defined in Eq. (3),
which oscillates with the angular frequency ω. The plot demonstrates
polarization of opposite charges on the two graphene sheets, i.e.,
an electric dipole along the z direction. Inset: Relation between the
oscillation energy h̄ω and the bias voltage. Parameters used in the
calculation are given in Sec. IV.

frequency ω = (εi − εf )/h̄ and its complex conjugate. The
oscillating part, which we refer to as the “transition charge
density,” is

ρt (r, z; t ) = n̄tρ(z)eiq·re−iωt , (3)

with q = qi − qf , and ρ(z) = −eχf (z)∗χi(z). Note that Eq. (3)
is in general a complex quantity. Since the electron wave
functions are localized around the position of the graphene
planes, the transition charge density has a predominantly
dipolar character, as shown in Fig. 2. The Fourier transform
of the transition charge density with respect to time reads

ρt (r, z; 
) = 2π h̄ n̄tρ(z)eiq·rδ(h̄
 − εi + εf ), (4)

where energy conservation in the tunneling process is made
explicit by the appearance of a Dirac delta function.

In conclusion, electrons, tunneling between bound states,
create an electric dipole oscillating at the transition frequency.
The dipole oscillation is of purely quantum origin, because it
follows from the superposition in the wave function, (2). In the
following sections, we study the coupling of the oscillating
dipoles to the electric field and the collective modes of the
double-layer heterostructure.
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C. Dielectric function of the graphene layers

In the present and in the following two sections, we
detail the dielectric functions of the different layers in the
heterostructure in Fig. 1. To calculate the electric potential, we
choose to take into consideration the finite thickness δ of each
graphene sheet, which is smaller than the interlayer separation
d but not negligible. We then need to provide an effective 3D
dielectric function ε(q, ω) for the finite-thickness graphene
layer. We start from the random-phase approximation (RPA)
[40],

ε(q, ω) = 1 − vqχ̃
(0)(q, ω), (5)

where vq = 4πe2/q2 is the Fourier transform of the Coulomb
interaction potential between carriers in the finite-thickness
graphene layer and χ̃ (0)(q, ω) is the proper non-interacting
density-density polarization function (i.e., the Lindhard func-
tion). To connect this effective Lindhard function to the
well-known Lindhard function χ̃

(0)
2D (q, ω) of massless Dirac

fermions (MDFs) in graphene [41], we use the linear-response
relations [40] n̄(q, ω) = χ̃2D(q, ω)Vext (q, ω) and n(q, ω) =
χ̃ (q, ω)Vext (q, ω), where Vext (q, ω) is an external scalar po-
tential and n̄(q, ω) [n(q, ω)] is the induced density fluctua-
tions in the 2D (finite-thickness) graphene layer. Neglecting
density variations in the z direction, we have n̄(q, ω) = δ ×
n(q, ω), which implies χ̃ (q, ω) = χ̃2D(q, ω)/δ. [The same re-
lation then holds for the noninteracting polarization functions,
χ̃ (0)(q, ω) = χ̃

(0)
2D (q, ω)/δ.]

Substituting these relations into Eq. (5), we find

ε(q, ω) = 1 − 2

qδ
v2D,qχ̃

(0)
2D (q, ω) , (6)

where v2D,q = 2πe2/q is the Fourier transform of the
Coulomb interaction potential between massless Dirac
fermions in the graphene sheet. Note the “form factor” 2/(qδ),
which differentiates Eq. (6) from the well-known RPA for
massless Dirac fermions. The Lindhard function χ̃

(0)
2D depends

on the average 2D electron density n̄. Here, we assume that the
electron density is the same in both graphene sheets and that
the Fermi energy lies above the Dirac point. We have verified
that, using Eq. (6) in the limit qδ � 1, one recovers the correct
expressions (see Sec. II E) for the plasmon spectrum in single-
and double-layer graphene systems.

D. Dielectric function of the hBN crystals

The encapsulant we have chosen for our calculations,
hBN, is an anisotropic and uniaxial material, meaning that
its dielectric function has different values in the crystal plane
[εxy(ω)] and in the stacking direction [εz(ω)], which are
principal directions of the dielectric tensor [42,43]. Moreover,
hBN is a natural hyperbolic material, i.e., there are frequency
ranges, called reststrahlen bands, where εxy(ω) and εz(ω)
have different signs, producing a peculiar propagation of the
electric field [42,43]. These properties are captured by the
dielectric function

εα (ω) = εα,∞ + (εα,0 − εα,∞)ω2
α,T

ω2
α,T − ω2 − iγαω

, (7)

where α = xy or α = z. Here, εα,∞ and εα,0 are high- and
low-frequency dielectric constants, ωα,T is the frequency of

transverse optical phonon polaritons in the α direction, and
γα is the corresponding damping rate. The frequencies of the
corresponding longitudinal modes are given by the Lyddane-
Sachs-Teller relation [44] ωα,L = ωα,T[εα,0/εα,∞]1/2 > ωα,T.
The lower (upper) reststrahlen band is located in the frequency
range ωz,T < ω < ωz,L (ωxy,T < ω < ωxy,L).

E. Dielectric function of the molecular layer

For the dielectric function of the molecular material at z >

zIT we use the expression

εmol(ω) = ε∞ + (ε0 − ε∞)
2
0


2
0 − ω2 − iγω/h̄

. (8)

This expression, similar in form to Eq. (7), is easily derived
starting from the equation of motion of the position vector R
of a bound electron in the presence of an electric field E,

R̈(t ) = (−e)E/m − 
2
0R(t ) − γ Ṙ(t )/h̄, (9)

where h̄
0 is the energy of the electronic resonance, γ is
its broadening, m is an effective electronic mass, and all the
variables oscillate with angular frequency ω. From the expres-
sion for the steady-state polarization Pmol = −enmolR, with
nmol the three-dimensional molecular density, one derives the
polarization χmol(ω) such that Pmol = χmol(ω)E and then the
dielectric function εmol(ω) = ε∞ + 4πχmol(ω). We neglect
local-field effects such as those described by the well-known
Clausius-Mossotti formula [44]. The high-frequency dielec-
tric constant ε∞ encodes the small-scale details of the molecu-
lar material, while the low-frequency constant ε0 = εmol(0) is
identified from Eq. (8) as ε0 = ε∞ + 4πe2nmol/(m
2

0) > ε∞.
In practice, the dielectric function is more easily specified by
treating 
0, γ , ε0, and ε∞ as independent constants.

F. Electric potential in the double-layer heterostructure

The electric potential φ(r, z; t ) = φ(z)e−iq·re−iωt in the
double-layer heterostructure, in the presence of a tunnel cur-
rent, is obtained by solving the Poisson equation

−∇ · [ε�(ω)∇φ(r, z; t ) ] = 4πρt (r, z; t ), (10)

with the transition charge density, (3), as the source. The
dielectric function ε�(ω) of each layer � has been described
in the previous sections.

Let us summarize the method to solve the Poisson equation
in the heterostructure [45], which amounts to a transfer-matrix
approach accounting for the presence of the source. In each
layer z� < z < z�+1 the electric potential is written as φ�(z) =
α�e−q�(z−z� ) + β�e−q�(z�+1−z) + g�(z), where the function g�(z)
solves the Poisson equation in the �th layer without taking into
account the boundary conditions. The boundary conditions
state that (i) the electric potential is continuous at the inter-
faces, (ii) the field vanishes away from the heterostructure, and
(iii) the z component of the displacement field is continuous
at the interfaces. The last boundary condition holds because,
in the Davis approach [27], the conducting regions (in our
case, the graphene layers) are effectively treated as dielectrics,
i.e., the electronic polarization is taken into account in the
dielectric function, (6), and does not generate free charges at
the interfaces of the heterostructure. Applying the boundary
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conditions, we first find that q� = q[εxy(ω)/εz(ω)]1/2 in the
hBN layers and q� = q otherwise, and we then obtain a linear
system L(q, ω) of 12 equations for 12 unknowns {α�, β�}6

�=1,
for each pair of values q, ω, which we solve numerically.

A solution of the linear system L(q, ω) is found for any
wave vector q and frequency ω because the Poisson equation
yields the field φ(r, z; t ) produced by a given charge density
ρt (r, z; t ). On the other hand, to find the collective modes
of the heterostructure, i.e., the self-sustained oscillations of
the electric field, one has to solve the Laplace equation,
i.e., the Poisson equation with the charge density set to 0.
At fixed q, the Laplace equation can be solved only for a
discrete set of values of ω, corresponding to the angular
frequencies of the collective modes. Finding the solutions of
the Laplace equation at fixed q is thus analogous to calculating
the eigenvalues and eigenvectors of a secular equation, with
the added considerable difficulty that here the dependence on
the eigenvalues (i.e., ω) is nonlinear. In practice, we proceed
by numerically finding the roots of the function of ω defined as
follows: (i) we set β6 = 1, (ii) we solve the reduced linear sys-
tem given by the first 11 equations, and (iii) we calculate the
value of the 12th equation. When this function is 0, then all 12
equations are solved and ω is an eigenfrequency of the system.
In this procedure, the ordering of the equations and variables
is arbitrary, however, we find a higher numerical accuracy by
including in the reduced linear system the equations which
represent the continuity of the potential at the interfaces.

Finally, the power P per area A delivered by the tunnel
current to the collective modes reads

P

A
= 2ωn̄t

∫ zIT

zIB

dzIm[φ(z)∗ρ(z)]. (11)

It could be surprising that in Eq. (11) the absorption is due to
the same charge density ρ(z) which generates the potential
φ(z). A more careful look, however, shows that the phase
between φ(z) and ρ(z), which makes the integral nonvanish-
ing, is due to the imaginary part of the dielectric functions.
In other words, Eq. (11) represents the energy dissipated
into the electronic and molecular degrees of freedom of the
heterostructure. Since we solve the Poisson equation, ignoring
retardation in the Maxwell equations, the electric field that we
calculate does not describe coupling to the far-field modes, so
the contribution of radiation losses is not present in Eq. (11).

III. COLLECTIVE MODES OF THE DOUBLE-LAYER
HETEROSTRUCTURE

A graphene double-layer, in a uniform medium with di-
electric constant ε̄, supports a high-energy “optical” plasmon
mode with dispersion [17]

h̄ωop(q → 0) =
√

NfεFe2q/(
√

2ε̄), (12)

where Nf = 4 is number of fermion flavors and εF is the Fermi
energy. The latter is given by εF = h̄vFkF, with the Fermi wave
vector kF = √

π n̄ and Fermi velocity vF [46]. (We reiterate
our assumption that the electron density is the same in both
graphene sheets and that the Fermi energy lies above the
Dirac point.) This mode corresponds to the plasmon mode of a
single layer with twice the density. The double-layer graphene

supports also a low-energy acoustic mode with the dispersion
[17]

h̄ωac(q → 0) = h̄vFq
1 + kTFd√
1 + 2kTFd

, (13)

where kTF = 4kFαee is the Thomas-Fermi wave vector, with
αee = e2/(ε̄ h̄vF) the electron-electron coupling strength. Re-
lating to the jargon used in works concerned with light emis-
sion in tunnel junctions (cf. Sec. II A), the optical and acoustic
modes are the “fast” and “slow” modes of the heterostructure,
respectively.

In the presence of a semispace characterized by the dielec-
tric function, (8), the optical and acoustic modes hybridize
with the molecular oscillations. It is easy to see that a new
collective “polariton” mode appears in the spectrum, with a
dispersion that tends to

h̄ωmp(q) → h̄
0

√
ε0 + ε̄

ε∞ + ε̄
. (14)

The previous expression turns out to be valid both in the
short-wavelength qd , qdT 
 1 and in the long-wavelength qd ,
qdT � 1 limits.

The analysis of the collective modes of the double-layer
heterostructure and of the delivered power is complicated by
the hyperbolic nature of the hBN. Indeed, a thick hBN slab
acts as a Fabry-Perot resonator, where the electric potential
oscillates between the interfaces with an arbitrary large num-
ber of nodes [47]. All these modes accumulate towards the
lower (upper) extreme of the upper (lower) reststrahlen band
and separate as the wave vector q increases. Some of these
modes strongly hybridize with the plasmon modes supported
by the graphene layers and the polariton mode supported by
the molecular oscillations. In Eqs. (12)–(14) we have used a
uniform, frequency-independent dielectric constant ε̄. To use
those formulas in the presence of the hBN layers and gain a
qualitative analytical understanding of the collective modes,
one needs to take ε̄ = √

εxy,0εz,0.

IV. NUMERICAL RESULTS

We now turn to illustrate the main results obtained by
numerically solving the model outlined in Sec. II. Our goal
is to show that the peaks of the absorption spectrum, i.e., the
magnitude of P/A given in Eq. (11) as a function of the bias
voltage Vb, correspond to collective modes of the double-layer
heterostructure.

For convenience, we summarize in this paragraph all the
parameters that we use in the calculation. The geometry of
the double-layer heterostructure is defined by d = 1.0 nm,
dB = 10.0 nm, and dT = 5.0 nm. For the electron density
in the graphene sheets we take n̄ = 3.0 × 1012 cm−2. The
parameters of the negative Dirac delta function potential at
the position of the graphene sheets, introduced in Sec. II B,
are chosen as Wb = 2.25 eV [48] (assuming that the bands of
graphene and hBN are aligned) and meff = 0.5me [49]. The
finite thickness of the graphene sheets, introduced in Sec. II C,
is taken to be δ = 0.2 nm. The dielectric constant of the
substrate is εSiO2 = 3.9; for the molecular ensemble we take
the reasonable values ε0 = 4.0, ε∞ = 1.5, h̄
0 = 100.0 meV,
and γ = 0; and for the hBN layers we use [50] εx,∞ = 4.87,
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FIG. 3. Dispersion of the collective modes of the double-layer
heterostructure (points), when the top semispace is filled with
(a) vacuum or (b) the model molecular material defined in Sec. II.
Gray-shaded areas correspond, from low to high values of h̄ω, to
the intraband electron-hole continuum [41], the lower and the upper
reststrahlen bands of the hBN layers. Solid red, blue, and green
lines correspond to the analytical dispersion of the optical plas-
mon, Eq. (12), acoustic plasmon, Eq. (13), and molecular polariton,
Eq. (14), respectively.

εz,∞ = 2.95, εx,0 = 6.70, εz,0 = 3.56, γxy = 0.87 meV, γz =
0.25 meV, h̄ωz,T = 92.5 meV, h̄ωz,L = 101.6 meV, h̄ωxy,T =
170.1 meV, and h̄ωxy,L = 199.5 meV.

Figure 3 shows the dispersion of the collective modes,
calculated on a mesh of wave vectors as explained in Sec. II F.
The rich structure of Fabry-Perot-like modes in the rest-
strahlen bands is prominent. However, outside of the rest-
strahlen bands and the intraband electron-hole continuum, the
optical and acoustic plasmon and the molecular polariton are
clearly identifiable. The acoustic plasmon is less hybridized
with other modes, being very close to the graphene intraband
continuum, and the analytical expression Eq. (13) proves
accurate in the whole displayed interval. For the optical
plasmon, the expression in Eq. (12) gives a very good approx-
imation of the numerical result in the long-wavelength limit.
Between the reststrahlen bands, however, where the disper-
sion of the hybridized mode is much flattened, the analytical
expression crosses the numerical results in the neighborhood
of q � 0.1 nm−1 (for the parameters used here). The expres-
sion in Eq. (14) for the molecular polariton correctly captures
the long-wavelength limit of the hybrid mode, which, for
larger wave vectors, becomes the optical plasmon between the
reststrahlen bands. A different mode splits off from the lower
reststrahlen band and converges to the molecular polariton
expression for q � 0.05 nm−1.

FIG. 4. Space profile of the electric potential (color map) and of
the direction of the electric field (arrows) as a function of x (hori-
zontal axis) and z (vertical axis), in the range 0 < x < 200 nm and
−15 nm < z < 10 nm. For graphical convenience, the axis labels
are not shown. Red (blue) shades correspond to positive (negative)
electric potential. Horizontal black lines denote the locations zGB

and zGT of the graphene sheets; horizontal green lines, the interfaces
zIB and zIT of hBN. The fields correspond to the modes shown
in Fig. 3(b) at q = 0.1 nm−1 and at the energy indicated at the
bottom of each panel. (a–c) Three modes outside of the reststrahlen
bands, corresponding to the acoustic plasmon, molecular polariton,
and optical plasmon, respectively. (d) A mode within the upper
reststrahlen band, exhibiting Fabry-Perot oscillations [47] in the hBN
layers.

The nature of the modes is demonstrated in Fig. 4, where
the space profile of the electric potential and the direction of
the electric field are shown at a fixed wave vector. For the
sake of the graphical representation, the length of the arrows
is not proportional to the magnitude of the electric field. The
acoustic plasmon [Fig. 4(a)] is characterized by an electric
potential of opposite sign on the top and bottom graphene
sheets. Between the sheets, the field is thus mostly directed
along z. The force lines of the field are almost unperturbed
at the interface with the molecular material. For this reason,
hybridization between the acoustic plasmon and the molecular
polariton is absent. For the optical plasmon [Fig. 4(c)], the
electric potential has the same sign on the top and bottom
graphene sheets. The field is thus mostly directed in the
x − y plane between the two graphene sheets. The behavior
of the force lines of the field is different at the interface
z = zIB with the substrate SiO2 and z = zIT with the molecular
material. Indeed, as Fig. 3 shows, the hybridization between
the optical plasmon and the molecular polariton is strong.
The molecular polariton mode [Fig. 4(b)] is easily identified
because the electric potential is strongest at the interface
z = zIT. For completeness, we also show a typical Fabry-
Perot-like mode within a reststrahlen band [Fig. 4(d)]. The
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FIG. 5. Power per unit area P/A delivered by the tunnel current
to the collective modes of the double-layer heterostructure with wave
vector q (horizontal axis), as the bias voltage Vb is tuned (vertical
axis), when the top semispace is filled with (a) vacuum or (b) the
model molecular material defined in Sec. II. The color bar represents
P/A divided by its maximum, in dB. The intraband electron-hole
continuum and the reststrahlen bands of the hBN layers are clearly
visible as extended regions of high absorption. These regions appear
distorted with respect to the gray-shaded areas in Fig. 3 because the
relation between h̄ω and Vb is not linear [see inset in Fig. 2(b)].
Between these regions, sharp continuous features are easily identified
with the collective modes shown in Fig. 3. The minor discontinuity
around Vb � 0.04 V is due to the numerical implementation of Airy
functions at large arguments.

mode is characterized by periodic oscillations of the electric
potential along z, which appear as diagonal stripes of constant
potential. The profile of the potential is only slightly perturbed
by the presence of the double-layer, so that the mode resonates
between the interfaces z = zIB and z = zIT, in the whole region
occupied by hBN.

Figure 5 shows the absorption spectrum on a wave-
vector mesh when the top semi-space is filled with vacuum
[Fig. 5(a)] or the model molecular material [Fig. 5(b)] defined
in Sec. II. It is important to note that, since one cannot span
the entire h̄ω range by tuning Vb [see inset in Fig. 2(b)], the
vertical axes in Figs. 3 and 5 are not linearly proportional.
However, a one-to-one correspondence between the peaks
of the absorption spectrum and the collective modes can be
easily drawn. This figure clearly shows that, by driving a
tunnel current between the graphene sheets, one excites the
collective modes of the double-layer heterostructure. More-
over, the nearby presence of a molecular layer changes the

FIG. 6. Power per unit area P/A delivered by the tunnel current
to the collective modes of the double-layer heterostructure with wave
vector q = 0.1 nm−1 as the electric bias voltage Vb is changed, when
the top semispace is filled with (a) vacuum or (b) the model molec-
ular material defined in Sec. II. Gray-shaded areas correspond, from
low to high values of Vb, to the intraband electron-hole continuum
and the lower and upper reststrahlen bands of the hBN layers. Dotted
vertical lines correspond to the value of the bias voltage where a peak
of the absorption due to a collective mode is expected, according to
the simplified analytical formulas discussed in Sec. III. These modes
are, from low to high values of Vb, the acoustic plasmon, Eq. (13),
the molecular polariton, Eq. (14), and the optical plasmon, Eq. (12).
In (b), the dashed cyan line reproduces the black line in (a), for
comparison.

absorption spectrum, which means that the system acts as a
frequency-resolved plasmon-enabled detector [45,51]. These
are the main results of this work.

Figure 6 shows the absorption spectrum at a fixed wave
vector q = 0.1 nm−1, i.e., vertical cuts from Fig. 5, normal-
ized to its maximum value. Figures 6(a) and 6(b) correspond
to different fillings of the top semispace, as in Fig. 5. The
peaks corresponding to absorption by the acoustic plasmon,
molecular polariton, and optical plasmon are identified by
comparison with the analytical expressions, which, as shown
in Fig. 3, are sufficiently accurate in this wave-vector range.
We see that the largest absorption is associated with the acous-
tic plasmon. This feature can be understood by inspecting the
space profile of the electric fields in Fig. 4. The electric field
of the acoustic plasmon is largest between the graphene sheets
and directed along z, and thus it is optimally coupled to the
oscillating dipoles generated by the tunneling electrons [see
Fig. 2(b)]. This observation is in agreement with the results in
Refs. [30] and [31], if one remembers that the acoustic mode
is the “slow” mode of the graphene-based heterostructure.
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Notwithstanding the dominance of the acoustic-plasmon
peak, the peak corresponding to the molecular polariton be-
tween the reststrahlen bands is also clearly visible. Finally,
since the electron density along z is not purely antisymmetric
[see Fig. 2(b)], due to the finite bias which breaks space
inversion around z = 0, the optical plasmon mode can also
be excited.

V. CONCLUSIONS

In conclusion, in this work we have calculated the ab-
sorption spectrum of a double-layer graphene heterostructure,
where a tunnel current between the graphene layers is gen-
erated by an external source. In our theoretical approach, the
tunneling electrons generate oscillating dipoles which couple
to the collective modes of the double-layer heterostructure,
i.e., the acoustic and optical plasmons and a molecular polari-
ton mode. This approach highlights the purely quantum nature
of the charge density oscillations coupling to the electric field
of the plasmon and polariton modes. We have verified that the
peaks of the absorption spectrum correspond to the collective
modes of the heterostructure.

Our results show that the setup that we consider can be
used both as a plasmon source and as a frequency-resolved
plasmon-enabled detector [45,51]. In the first case, we find

that acoustic plasmons absorb more power than the other
modes due to a better spatial coupling between the field
and the oscillating dipoles and, hence, are more likely to
be excited. In the second case, the position and resonance
frequency of a nearby molecular layer manifests itself as a
distinct peak in the absorption spectrum (see Fig. 6). In this
case, coupling between the tunnel current and the molecular
layer is mediated mostly by the optical plasmon mode, whose
field extends farther away from the graphene double-layer,
as shown in Fig. 4. The detection of the molecular resonant
frequency is possible in a very large band where the optical
plasmon is not overdamped, as long as it does not fall in
the reststrahlen bands of hBN, where greater absorption takes
place. However, we reckon that, in the reststrahlen bands
[42,43], one could use the hyperlensing phenomenon [52–54]
to couple the optical plasmon to subwavelength absorbers
or to guide the field of the generated modes in a preferred
direction.
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